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Abstract:

In this paper, some necessary and sufficient conditions are obtained to ensure the oscillatory of all
solutions of the first order impulsive neutral differential equations. Also, some results in the references have
been improved and generalized. New lemmas are established to demonstrate the oscillation property. Special
impulsive conditions associated with neutral differential equation are submitted. Some examples are given to

illustrate the obtained results.
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Introduction

The oscillatory theory of impulsive delay
differential equations is appearing as an important
field of investigation, because it is much richer than
the theory of delay differential equations without
impulses effects. The differential equations with
impulses effects describe the process of evolution
that rapidly changes their state at certain moments;
therefore this type of differential equations is
suitable for the mathematical simulation of the
evolutionary process in which the parameters are
subject to relatively long periods of smooth
variation followed by rapid short-term change.

The wide possibility of applications
determines the increasing interest in impulsive
differential equations. The importance of the need
to study differential equations with impulsive is due
to the fact that these equations are more
comprehensive in their use of mathematical
modeling where gaps in the model can be addressed
by limiting these gaps in specific points called the
points of impulses (which are not continuous
points) in many real processes and phenomena
studied in control theory, biology, mechanics,
medicine, electronic, economic, etc.

For instance, there are a lot of applications
of impulsive differential equations in neural
networks (1-4), n control theory (5), in biology (6)
and economics (7).
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Mohamad et al. (8) obtained sufficient
conditions for the oscillation of all solutions of
neutral differential equations with variable delays,
while H. Chen et al (9) studied the existence of
solutions for impulsive differential equations. Isaac
(10) classifies non-oscillatory  solutions  of
impulsive differential equations of the second order.
So many papers focused on studying the oscillation
of impulsive neutral differential equations and
impulsive systems (11, 12).

The main purpose of this paper is to study
one of the important properties of the solution for
the impulsive neutral differential equations with
positive and negative coefficients, it is the
oscillation property. The sufficient conditions to
guarantee the oscillation of all solutions for the
impulsive neutral differential equation with positive
and negative coefficients have been obtained.
Consider the impulsive neutral differential equation
of form:

[x(®) = P®)x(z(®))] + Q®)x(a(t)))
—R(t)x(a(t)) =0,

t#t, k=12,.. (1)
x(t8) + bex(ty) = ay x(ty), J
t = tk' k = 1,2,

Where t;, are the moments of impulses effect. The
numbers a; and b, are positive real numbers,
k=12,.., P€PC([ty,»),R"), where
PC([ty, ), R*) denotes the set of all functions
f:[ty,©) » RTsuch that f is continuous for
t# by, k=12,..and f(ty) = lime; £(0).

LetQ,R € C([ty,),RT), and 1,0,a are
continuous  strictly increasing functions with
lim;_ e T(t) = o0,lim;_ o a(t) =
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0, lim;_,o a(t) = 0. The functions
7 (t),071(t),a”1(t) are the inverse of the
functions ©(t), a(t), a(t) respectively, 7(t) < t.
The initial function has defined:
x(t) = w(t), t € [p(to), tol,
p(t) = ming {7(1), a(t), o ()},
where w(t) € PC(p(ty), R).
Definition 1: A function f is piecewise continuous
on [a, b] if
(@) f(xo™) exists for all x, in [a, b);
(b) f(xo™) exists for all xq in (a, b];
©) f(xo™) =f(xo™) = f(xo) for all but finitely
many points x, in (a, b);
If (c) fails to hold at some x, in (a, b), f has a jump
discontinuity at x,. Also, f has a
jump discontinuity at a if f(a™) # f(a) orat b
if f(b")# f(b).
Definition 2: A function x(t) is said to be a
solution of Eq.(1) which is satisfying the initial
condition if
Al: x(t) = w(t) for p(ty) <t <ty and x(t) is
continuous for t > ty and t # ty,
k=12,...
A2: x(t) — P(t)x(z(t)) is piecewise continuously

differentiable t > t, and

t+t, tET ), t#o ),

t # a 1(ty) k = 1,2, ..., and satisfies Eq.(1);
A3: x(t) and x(ty) exist with
x(tr) = x(t) and satisfies impulsive Eq.(1) where

x(ty) = lim,_,,+ x(tx) and x(ty) =

limt_,t,; X(tk).

Definition 3: The function f(t):[ty,©) =» R is
said to be eventually enjoy the property P if there
exist an interval [t,, ) c [ty, o) in which f(t)
enjoys the property P for t >t¢,. So a function
x(t) € C([ty,©),R) is said to be eventually
positive (negative), if there exist t; = t, such that
x(t) >0 (x(t) <0) forall t >t,.

Definition 4: A regular solution x(t) of eq. (1)
is said to be oscillatory in [ty, o) if it has
arbitrarily large zeros for t > t; > t,, that is, there
exist a sequence of zeros {t,} such that
lim,,_, t, = o where x(t,) = 0, otherwise x(t)
is said to be nonoscillatory on [t;,), that is
x(t) # 0 for each t = t;, which means that either
x(t) is eventually positive, or is eventually
negative.

Some Basic Lemmas:

The following lemmas will be useful to prove the
main results:

Lemma 1: (13) Suppose that g, h: [ty, ) — R are
continuous functions, g(t) = 0 eventually, h(t) >
tand h'(t) =0 for t>¢,. If
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h(t)
1
li{n inff g(s)ds > " (2)

t
then the inequality x'(t)—g®)xh(t) =0
has no eventually positive solutions.

Lemma 2: (13) Suppose thatg,h € [ty ) —
[0,00), h(t) < tand lim;_, h(t) = oo . If
t
1
li{ninf fg(s)ds >E 3
h{t)

then the inequality
x'@®)+g®)xh(®) <0
has no eventually positive solutions.
The following lemma is a generalization of the
lemma 1.5.4 (14).
Lemma 3: Assume that
l. f,9,5,7,v € C[ltg,®),R], f(t) <0,
lim,_, f(t) exist, 0 < g(t) <1,
() <t y(t) >t t >ty lim,e,1(t) =0 and
y(@®) < f(O)+
g(®) max{y(s): 7(t) <s <y (1)},
t=1t,
Then y(t) cannot be positive for t > t; > t,.
1. £, 9,5, 7,y € C[[to,®); R], f(£) >0,
lim;_o, f(t) exist,0 < g(t) < 1,7(t) <,
y(t) =t t =ty limi,g, 7(t) = and
y(®) = f(£) +
g(@® min{y(s):7(t) < s <y(0)},
t =t
Then y(t) cannot be negative for t > t; > ¢,
Proof. The part (I) has been proved, proof of (1) is
similar and will be omitted. For the sake of
contradiction assume that y(t) >0, t >t it
follows that y(t) must be bounded, otherwise, there
exists a sequence {t,,} ,
lim,_o t, = o0 ,lim,_, y(t,) = c and
y(tn) = max{y(s): th=s= y(tn)}
Which is possible since  y(t,) = o, and there
exists n; such that z(t,) =t, for n>n, the
inequality (4) reduces:
y(tn) <
f(tn) + g(tn) max{y(s): t(t,) < s < y(t,)}
< f(tn) + g(ty) max{y(s): to < s < y(t,)}
y(tn) < f(tn) + gy (tn) < y(tn),
n=ng
And that is contradiction. Hence y(t) is bounded,
let lim sup;_q y(t) = M; < oo.
From (4) we get
y() < max{y(s):t(t) <s <y®)},t =t
By taking superior limit to both sides of the above
inequality it follows that M; < M;. And that is
contradiction. O
Remark 1: In the following lemma, suppose that:

4
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W (t)
= x(t) — P(O)x(z(1))

- f R(u)x(a(u))du
a"1(6()

o"1(8(D)
— f Q(u)x(a(u))du (6)
t

Where §(t) > t,o(t) < tand a(t) > t,

t € (i, tisal,

O0<typ<ty <+ <tp—> o as k- oo,

Leta™(8(t)) < tand a1(6(1)) > t,

in addition to the following assumptions:

H1: [R(a™* (8(0) (@~ (8(1)))’
—Q(e71(8()) (671 (8(1))]
>0,t >ty t € (tr trsq]

H2: There exist positive real

numbers a;, and by, such that

ay _bk >1,k=1,2,.. and
{ P(td) < P(ty) for t(ty) # t;,i <k,

P(t) < - 1b P(t) fort(t,) = t;,i <k, where
k Pk

a, = a;, bk = bi when
(ty) =t;, i < k.
Lemma 4: Let W(t) be defined as in (6),

H1-H2 hold, and
5(t)

P -1 -1
11{2(1)on [R (a (5(u))) (a (6(u)))
t
1
- (o7 (6W)) (¢ (sW)) | du >,
t € (g, tgsal- (7)
Let x(t) be an eventually positive solution of
Eq.(1). Then W(t) is eventually negative and
nondecreasing function.
Proof. Let x(t) be an eventually positive solution
of Eq.(1), thatis x(t) > 0,
x(t(t)) >0, x(a(t)) >0and x(a(t)) >0, t=>
to,
Differentiate Eq.(6) for every interval (ty,tr41]
where k = 1,2, ... and use Eq.(1), then:
w'(©)
= [x(®) — P(Ox(z ()] — R(©)x(a(t))
+R(@(8(®))x(E ) (a~ (51®))’
— Qo7 (E())x (B (e (B @)Y
+ Q(®)x(a(t))
= —Q(t)x(a(t)) + R(t)x(a(t)) — R(t)x(a(t))
+R(a™1(8())x () (@ (8(1))
— Qa7 (8(1)))x (8 (@~ (5 (1))’
+ Q(®)x(a(t))

= [r (a2(6)) («2(6)))
- (71 (8®)) (e (8()))'| x(5(8))

=0 (8)
Then: W'(t) = 0

Hence W (t) is nondecreasing function on

ty <t <tpy1, k=123, ...

To prove that W(tf) = W(t,) fork=1,2,.. In
view of ap-b, =1 and condition H2
when t(t,) =t;, i <k, then:

W(td) = (ax — b)x(te) —

P(tg)(ax — bi)x(z(ty))

— ftk R(w)x(a(u))du
a~1(8(tp)

o"(8(ty)
-| Q(Wx(o(w)du
> x(t) — P(tk)x(rgtk))
- f R(w)x(a(u))du
a~1(6(ty))

o1 (8(tr))
-| Q(wx(o(w)du
tk
= W (ty).
When t(ty) # t;, i < k then from H2

W(ts) = (ay _tbk)x(tk) - P(tl:-)x(‘[(tk))
—f ’ R(w)x(a(w))du
a~1(8(ty))

a1 (8 (tr)
- f QW (o(w))du
t

k

= (ax — bi)x(ty) —tP(tk)x(T(tk))
—f ’ R(uw)x(a(u))du
a=1(8(tx))

J-a‘i(o"(tk))

Q (u)x(cr(u))du

= W (ty) 9)
W (t) is nondecreasing on [t,, ). Hence
lim;_, W(t) = L < . Where
IL| = sup{(W (£, limyeo W (ti)}, t € [t;,0)
We claim that W(t) <0 for te€ (ty, tgsil
k=11+1,...0Otherwise, there exists
t* € (ty, tx+1] such that W(t*) > 0. So W(t) =
W) >0, t=t", W(t) <x(t) for
t € (tg, tyra], W(S(®) < x(8()) and
w'(t)

= [ (a1 (5®))) («*(5))

= Q (071 (8(8)) (61 (8()))'1x(8(1))

> R (a2(5®)) («2(5)))

= (o71(8®)) (™ (8)) W (B(t)
w'® ~ R (a2(50)) (a1 (5®)))

—Q (a7 (8(®)) (™8O W (1) = 0

In view of condition (7) and Lemma 1, the last
inequality cannot has eventually positive solution,

2%

_oo<
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which is a contradiction. Hence W(t) <0 for
t € (t, tysql, K=011+1,....
It remains to prove that W (t;) < 0 for
k=1,2,.. . If it is not true, then there exists
tm € (ti,txs1), such  thatW(t,,) =0, by
integrating (8) on (t,,, tms1], We have:

W (tms1) = W(tn)

tm+1

+ [ Je(o (@) @ 5@y

tm

—R(a(6)) (¢ (5®)) | x(6(®)) at
>W(th)=W(t,) =0

This contradiction shows that
W(t,) < 0for k = 1,2 ... therefore from (8)
W(t) < W(tk+1) < 0, where ty <t <tlps1, k=
1,2,..
Thus W(t) < 0for t > t,. O
Remark 2: In the following lemma, suppose that:
Leta™(8(t)) <tandt < 6~1(8(t)), and

H4: [Q(a™(6(6))) (071 (8(1)))’
—R (a_l(S(t))) (a‘l(c?(t))),]

>0,t >t t € (tg, trsq]
H5: There exists nonnegative
numbers ap and by, 0 < ap-b, <1,
k =1,2,... such that
P(t) = P(ty) for t(ty) # t;,i <k,

{P(t;) = ! P(tk) for T(tk) = ti,i <k

ap —bg
a, = ai’bk = bi when T(tk) =t

i<k
Lemma 5. Assume that H4-H5 hold. Let x(t) be
an eventually positive solution of Eq.(1) and
t

[e (o7 (6w)) (0 (5(w)y’
8(t) )
—R (a‘1(6(u))) (a‘l(d(u))) ] du > >

t € (ty, tisa]: (10)

Where  §(t) <t, t € (ty, tys1), 0<ty <ty <
<t > o0 as k - oo Let W(t) be defined as
in(6). Then W(t) is eventually negative and
nonincreasing function.
Proof. Let x(t) be an eventually positive
solution of equation that is x(t) > 0, x(t(t)) >
0, x(a(t)) > 0and x(a(t)) >0, t = t,,
Differentiate (6) for every interval (ty,tx+1] Where
k =1,2,... and use Eq.(1),then:
w'(¢)
= [x(8) = P(O)x(z ()] — R(®)x(a(D)
+ R(a™ (8()))x(8() (a1 (8(6)))’
— Q71 (8())x(B()) (@~ (8(6)))
+ Q(®)x(a(t))

real

where

lim inf
t—oo0

540

—Q(t)x(a(t)) + R(t)x(oc(t)) - R(t’)x(a(t))
+R (a71(6(1))) x(8(5) (a2 (5(0)))

—Q(a71(8@N)x (6N (671 (5()))’

+ Q(®)x(a(t))
~le (7 (5®)) @1 (5@®)))
—R(a(6®)) (a7 (6®)) |x(8(e) (1)
Then: W'(t) < 0.
Hence W (t) is nonincreasing function on
tk <t< tk+1f0rk2 0

To prove that W(t}) < W(t,) fork=12,..In
view of 0 < a, -b, <1 and from (6) with regard
to H5 when t(t,) = t;, i < k, then:
W(td) = (ax — b)x(ty)
= P(t)(ax — bix(t(ty))

tk
—f R(w)x(a(w))du
a 1(8(tw)

o 1(8(ty)
- f QWx(o(w)du
tk

< x(ty) — P(tk)x(Tgtk))
R(u)x(a(u))du

f k
a~1(8(ty))

J-U_l(s(tk))
t
= W(ty)

Qw)x(a(u))du
When t(t,) #t;, i <k then from (6) with regard
to the condition H5:
W () = (ax — b)x(ty) — P(e5)x((ty))

_ f Y R@(e)du
a~1(8(ty))

a™(8(tx))
— f Q(u)x(cr(u))du
tk

< (ax — by)x(ty) _tp(tk)x(T(tk))
’ R(u)x(a(u))du

k

- -fa‘l(d(tk))

j0_1(5(tk))
t
< W(ty)

Qwx(o(u))du
(12)

W (t) is nonincreasing on [t,, o),

—o0 < limy_, W(t) = L < 0. Where

IL| = sup(W (t), limye0 W (ti)}, t € [t1,0)

Suppose that W (t) < 0 fort € (ty, tx41l,

k=11+1,...0therwise, there exists

t* € (ty, tyx4+1] Such that

W(t*) >0.SoWw(t) = W(t*) >0,

ty <t<t"

W(t) < x(t) fort € (ty, tysq]

w(s@®)) < x(8(t)) and

k
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w'(t) x(t) =W (@) + P(®)x(z(1))
= —10(671(5®)) (e (6®))’ N f L RGx(e@)du
—R(a*(6®)) (¢ (5®)) 1x(5(t) a-igfg(g)
w'() + f Q)x(o(w))du
< -0 (s71(5(0)) (e (5®)Y —w t
~R(a(50)) («2(5(0)) W) <P(t)+ R0
W' @) +[Q (e72(8(0)) (01 (8(®))) —1(am)
_ _ a1 (6)
—R (a 1(5(t))) (0‘ 1(6(t))) w(s@®) <o. f Q(u)du) max{x(s) p(t) <s
With regard to (10) and Lemma 2, the last t

inequality cannot has eventually positive solution, < o~ (8(1))},
which is a contradiction. Hence W(t) <0 for  p(¢) = min{z(t),a *(6())}

t € (e tisal k=L1+1, ... < W@ + max{x(s):p(t) < s
It remains to prove that W (t,) < 0 for < 0_1(5(t))}
k=1,2,.. If it is not true, then there exists N

tm € (tr,txs1), such that W(t,,) =0, and from

By lemma 3, we get x(t) is eventually negative, a
(11), we have: =

contradiction.

Kygtvn(l;% Theorem 2. Let W (t) be defined as in (6), and let

ot H4 — H5, (10) and (13) hold, Then every bounded
solution of Eq.(1) oscillates.

- f [Q (0_1(5(0)) CaCIO))] Proof. Assume that x(t) be eventually positive

tm solution of Eq.(1.1). From lemma 5, it follows that

—R (a—l(é‘(t))) (a_1(5(t)))’]x(5(t)) dt W(t) is eventually negative and nonincreasing.

From (6) for t > t; > t, we get:
SWEtH) <W(t,) =0 h
This contradiction shows that x(t) =w() +P (t)tx(f(t))

W(t,) <O0fork =1,2... therefore from (11) it _|_f Rwx(a(w))du
follows that W (t) < W(t,) < 0, where -1(8(t))

tk <t S tk+1! k = 1,2, e _1(5(t))

Thus W(t) < 0 fort > t,. O + f QwWx(a(w))du
t

Main results x(t) S W(ty) + P(©)x(z(1))
t

Remark 3: In the following theorems, if y(t) = f
x(t) almost everywhere, where * a-1(5(t)) R@)x(aw)du
y(©) € C([to, 0); R) andx(t) € PC(p(ty), R). o-1(5(0)
The next results provide sufficient conditions + j
for the oscillation of all solutions of Eq.(1): t
Theorem 1. Let W (t) be defined as in (6) and the

Q(u)x(a(u))du

assumpti_o_ns H1 —H2 and (7) hold, in addition to <=Ww(t) ,
the condition , s1(5(6)) + (P(t) + f . R(uw)du
P(t) + J R(w)du + j Q(w)du L e (W)
a=1(8()) t (6() |
<1,t=t,. (13) +ft Q(w)du | max{x(s):p(t) <'s

Where t;, <t < 8(t) < try1,

t <t < T O6W) S tpyr, k=L1+

1oty <a™2(8(t) <t < tpy,

tre <t <o 1(8(t)) < tiys-

Then every bounded solution of Eq.(1) oscillates.
Proof. Assume that x(t) be bounded eventually
positive solution of Eq.(1). By lemma 4 it follows
that W (t) is eventually negative and nondecreasing,
from (6) we get:

<o 1(5(0)))

< W(ty) + max{x(s):p(t) <s <a71(5(0))},
where p(t) = min{z(t),a *(6(1))}.
By lemma 3, it follows that x(t) is eventually
negative, leads to a contradiction. O
Example 1: Consider the impulsive neutral
differential equation

541
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[x(t) —e ™1 —e VHx(t —2m)] +

e tx(t —2m) —
s
(1—e™+ e e b)x (t + —) =0,
2 s (14)
t#t k=12, ...
k+1
x(ty) = x(ty), t=1ty
k=1,2,..

Let
t+tg

sint,
x(t) = {1 +%, t =t
{ e "(1l—e™) , t#1t
k, t=t,
Where a;, = %and by = %
We can see that

P(t) =

k+2 1 k+1

—hp =2 2T
e

where §(t) =t + %-

H1: [R(a™* (6N (@ (6(1)))
- Q(cf;l((S(t)))(ff‘l(5(t)))']
is yis
R -o(+)
=(1-e ™+ e‘"e_H%) —e et
= 0.956786 + 0.094744¢~t > 0,

t € (ti tir1]-
P(t{)=Pk*) = tlirI£1+P(t)
— lim o -ty — ,— -k
= lime Tl—e ) =eT(1-e%)
< 0.043213
< K = ! P(ty)
k +1 N ap — bk k

fork =1,2,.

P(t; )—0043213<ﬁk k+1

= (ak - bk)P(tk) fOI‘ k = 1 2
So, H2 holds.
5(t)

liminf [ [RG@ @@ @ G@HY
t

o

— Qa7 (6(w)) (0™ (E(W)) |du

Y4
t+g

- litrgionff [R (u - %)

“ofer

V4
t+g

= li{n inf [ [0.956786 + 0.094744e *]du

t
1
= 0.751457 > ”

t a"1(8(D)
[P(t) +f R(uw)du +f Q(w)du]
a~1(6() t
=[eT"(1-e™")
¢
(1—e‘"+ e e ") du
t‘z
o

+ f e "e “du]

t
= 0.845385 < 1. Hence all conditions of
theorem 1 are fulfilled, then according to theorem 1
all solutions of equation (14) oscillate. It is obvious
that

sint, t#t, _
x(t)={1+%' c=t, S such an oscillatory
solution.
Example 2: Consider the impulsive neutral

differential equation
[x(t) —e 2™(1 — e Hx(t — 2m)] +
-2 —-2m ,—t 7T
(1—e“"+ e™"e )x(t—i)
—e Mo tx(t + n) =0,

X(t ) k+2x(tk) t =ty
k=12,..

Let

cost, t =+t
x(t)={ 1 _.,PO=
1+, t=t
e T(1—e™t) , t+t
! t=tk

1500k’ - ki1
+

Wher = =
ere ai =2 and b, =;—.

2k+2 k+1 _ k+1
=
k+2 k+2 k+2

We can see that a;, — by, =
Let t, =k, P(t) = P(k™)
— -2 _ ,—t
t1_1>rlg1+P(t) t1_1>r1£1+ e “"(1—-e™)
=e (1 —-e7F)
So 0 < P(tf) < 0.001867,
if k=1then P(t;) =0.00118

L pa kD1
(@ = b)P(te) = 3775 Tso0k
k+1

~ 1500k (k + 2)

If k = 1then (a; — by)P(t;) = 0.000444, and
1 k+2 1 k+2

(ax -br) P(t) = m 1500k 1500k(k+1)
if k = 1,then P(t;) = 0.001, so H5 holds.
(ay —b1)

Where §(¢t) = t — %.
H4: [R(a™*(8(0))) (@™ (6())" —
Qe )@ e@)]  =R(t-)-

Q(e+3)
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5w

4 — (1 —e”
+ e 2me ™t 4)

—0.903376 — 0.00851e™t < 0,

t € (ty tr1l-

2@, —t=

=e e

1 k? 1
H5: P(t; )=5<— Sak_ka(tk).titk for
k=12,.
P(t;)——<ﬁk k+1=(a —

b )P(ty),t =t, fork =1,2,.
t

lim inf
t—oo

f [0(o™ (W) (e (W)Y
8@t

- R(a‘l(8(u)))(a'1(5(u)))’]du
5t
R (=7 )| au

U]du

—llmlnf f[Q u+

t__

= li{n inf [O 903376 + 0.00851e™

1
= 0.709509 > 2
a"(8(D)
Qw)du]

t
[P() + f o)
e 27 (1 —

R(uw)du + J;

+ e ?Te ") du]
=0.879703 < 1
Hence all conditions of theorem 2 are fulfilled, then
according to theorem 2 all solutions of equation
(15) oscillate. It is obvious that
cost, t#t
x(6) ={1+§, t=1t,
solution with impulsive.

is such oscillatory

Conclusion:

In this paper, the impulsive neutral
differential equations are studied. The impulses
characteristics of the first order neutral differential
equations have been clarified. Some necessary and
sufficient conditions have been obtained to ensure
that all bounded solutions of the first order neutral
differential equations are oscillatory. The lemma
154 in (14) has been generalized, some new
lemmas have been submitted to obtain the main
results of the oscillation property. Illustrative
examples of the obtained results have been
provided.
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