DOI: <u>https://dx.doi.org/10.21123/bsj.2020.17.1(Suppl.).0371</u>

On Light Mapping and Certain Concepts by Using $m_X N$ -Open Sets

Haider Jebur Ali ^{1*}

Raad F. Hassan²

Received 4/3/2019, Accepted 15/1/2020, Published 18/3/2020

This work is licensed under a <u>Creative Commons Attribution 4.0 International License</u>.

Abstract:

(cc

 \odot

The aim of this paper is to present a weak form of *m*-light functions by using $m_X N$ -open set which is *mN*-light function, and to offer new concepts of disconnected spaces and totally disconnected spaces. The relation between them have been studied. Also, a new form of *m*-totally disconnected and inversely *m*-totally disconnected function have been defined, some examples and facts was submitted.

Key words: $m_X N$ -disconnected space, $m_X N$ -Hausdorff space, mN-light function, $m_X N$ -open set, mN-totally disconnected function

Introduction:

In (2016) Abass and Ali (1) introduced the definition of *m*-light function, Humadi and Ali (2) presented the $m\hat{\omega}$ -light function. Al Ghour and Samarah (3) defined N-open set. In this research we defined the set $m_X N$ -open set, we submitted a new type of functions by using $m_X N$ -open sets, it is weaker than m-light function and we named it mNlight function. In (4) Carlos Carpintero, Jackeline Pacheco, Nimitha Rajesh, Ennis Rafael Rosas and S. Saranyasri defined N-connected space, by the same manner *m*-disconnected, $m_X N$ -disconnection, mN-disconnected, mN-connected and m_XN -totally been disconnected spaces have defined. additionally, many types of functions in *m*-structure spaces such as mN-totally disconnected, mN^* totally disconnected, mN**-totally disconnected, inversely mN-totally disconnected function have been introduced. In (5) Enas Ridha Ali, Raad Aziz Hussain introduced the definition of N-hausdorff, and in the same way, mN-hausdorff has been defined. Also mNT_1 -spaces and zero dimension mspaces have been provided. The relation between these concepts has been discussed. Moreover the relation between m-homeomorphism functions (6) and the mN-light functions has been illustrated. Examples, theorems and some facts supported our study.

¹Department of Mathematics, College of Science, Mustansiriyah University, Baghdad - Iraq.

²Ministry of Education, Senior Specialist Supervise. *Corresponding author:

drhaiderjebur@uomustansiriyah.edu.iq

*ORCID ID: 0000-0001-9128-3293

Main Results:

In this section, mN-totally disconnected, mNlight functions and some spaces by using m_XN open sets have been presented.

Definition 1 (7), (8)

A subcollection m_X of the power set P(X) of a non-empty set X is called a minimal structure on X if $\emptyset, X \in m_X$, the pair (X, m_X) is called *m*-structure space (in short *m*-space). Each element in m_X is said to be m_X -open set and its complement is said to be m_X -closed set.

Remark 1 (9)

Every topological space (X, T) is *m*-space, but not conversely, because \emptyset, X belong to T.

Example 1

If $X = \{n, m, f\}$ and $m_X = \{\emptyset, X, \{n\}, \{m\}\}$, we observe that m_X is not a topology, since $\{n\} \cup \{m\} = \{n, m\} \notin m_X$.

Definition 2 (10), (11)

The m_X -closure to a subset B of m-space (X, m_x) is the intersection of all closed sets \mathcal{F} in X which containing B and we denote it by m_X -cl(B), by symbols m_X - $cl(B)=\bigcap\{\mathcal{F}: B \subseteq \mathcal{F}\}$, where \mathcal{F} is m_x -closed subset of X. While the m_X -interior to a subset B of m-space (X, m_x) is the union of all open sets K in X which contained in B and we denote it by m_X -Int(B), by symbols m_X - $Int(B)=\bigcup\{K: K \subseteq B\}$ where K is m_X -open set in X.

Definition 3

A subset *B* of *m*-space *X* is called $m_X N$ -open set if for each element $a \in B$ there exists an m_X -open set *K* in *X* containing *a* such that *K*-*B* is finite, the complement of $m_X N$ -open set is called $m_X N$ closed. The family of all $m_X N$ -open sets in *X* is symbolized as m_N .

Example 2

Any subset of a finite *m*-structure space (X, m_X) is $m_X N$ -open and $m_X N$ -closed set.

Lemma1

If $\{K_i \mid i \in I\}$ is a collection of $m_X N$ -open subsets of m-space X, then $\bigcup_{i \in I} K_i$ is $m_X N$ -open too.

Proof

Consider $x \in \bigcup_{i \in I} K_i$, so there is an $m_X N$ -open set K_j containing x for some $j \in I$, so W_j - K_j is finite, where W_j is m_X -open subset of X containing x, then W_j - $\bigcup_{i \in I} K_i$ is also finite since W_j - $\bigcup_{i \in I} K_i$ $\subseteq W_j$ - K_j , (a subset of finite set is finite), therefore $\bigcup_{i \in I} K_i$ is $m_X N$ -open set.

Definition 4 (1)

An *m*-space X is said to be *m*-disconnected, if there are non-empty m_X -open sets H and L in X such that $H \cup L = X$ and $H \cap L = \emptyset$, if X is not mdisconnected space then it is called *m*-connected space.

Example 3

The discrete *m*-space (Z, m_D) , is *m*-disconnected space.

Definition 5

Let (X, m_X) be an *m*-space and *H*, *L* are two nonempty $m_X N$ -open subsets of *X*, we call $H \cup L$ to be $m_X N$ -disconnection to *X*, if $H \cup L = X$ and $H \cap L = \emptyset$. In example 3 *Z*-{*x*} and {*x*} where $x \in Z$, are $m_X N$ disconnection to *Z*.

Definition 6

An *m*-space X is *mN*-disconnected if we can find an $m_X N$ -disconnection to it, if there is no such *mN*disconnected so X is *mN*-connected space.

Example 4

The finite indiscrete *m*-space (X, m_{ind}) is *mN*-disconnected, but not *mN*-connected.

Proposition 1

An *m*-space X is *mN*-disconnected if and only if there is a non-empty $m_X N$ -clopen subset G in X such that $G \neq X$.

Proof

Suppose *G* is a non-empty $m_X N$ -clopen subset of *X* such that $G \neq X$. Let $U = G^c$, so *U* is a subset of *X* and $U \neq \emptyset$ (because $G \neq X$, and $G \cup U = X$, $G \cap U = \emptyset$). Also *U* is $m_X N$ -clopen because *G* is $m_X N$ -clopen, therefore *X* is mN-disconnected space. Conversely, if *X* is mN-disconnected space, so there is an $m_X N$ -disconnection $G \cup U$ to *X*, hence $G = U^c$ which implies *G* is $m_X N$ -clopen subset of *X* and $G \neq X$ since *U* is non-empty subset of *X*, and then *G* is a non-empty $m_X N$ -clopen subset of *X* such that $G \neq X$.

Proposition 2

An *m*-space *X* is *mN*-connected space if and only if \emptyset and *X* are the only $m_X N$ -clopen set in *X*.

Proof

If X is an mN-connected space, and U is a nonempty proper $m_X N$ -clopen subset of X, then U^c is also $m_X N$ -clopen subset of X, and since $U \cup U^c = X$, where $U^c \neq \emptyset$, therefore X is mN-disconnected space and that is a contradiction, so \emptyset and X are the only $m_X N$ -clopen set in X. Conversely, suppose X is mN-disconnected space, so there is $m_X N$ disconnection $L \cup H$ to X, but L is $m_X N$ -closed (since $L = H^c$) which is a contradiction, therefore X is mN-connected.

Definition 7

The *m*-space (X, m_X) is called an *mN*-totall disconnected space. If for every pair of distinct points a and b in X, there are two $m_X N$ -open sets N, M such that $N \neq \emptyset$, $M \neq \emptyset$, $a \in N$, $b \in M$, $N \cup M = X$ and $N \cap M = \emptyset$.

Example 5

For any distinct points x, y in the discrete m-space (Z, m_D) , the sets $\{x\}$ and $(Z-\{x\})$ are $m_Z N$ -open sets containing x, y respectively such that $\{x\} \cap (Z-\{x\}) = \emptyset$ and $\{x\} \cup (Z-\{x\}) = Z$, so (Z, m_D) is mN-totally disconnected space.

Remark 2

Let *X* be an *m*-space, then:-

1- Every m_X -open subset of X is $m_X N$ -open, but the converse is not true, since if K is m_X -open subset of X, then for each $x \in K$ there is an m_X open subset M of X, pick M=K then M containing x and $M-K = \emptyset$ (finite), so K is $m_X N$ -open set.

2- Every m_X -closed subset of X is $m_X N$ -closed. Example 6

Let $K = \mathcal{R}$ -{0} be a subset of the indiscrete *m*-space (\mathcal{R}, m_{ind}), then K is $m_{\mathcal{R}}N$ -open set, but not $m_{\mathcal{R}}$ -open set.

Remark 3

I- Every mN-connected space is m-connected but the converse is not true, since if (X, m_X) is an mNconnected space, and suppose it is m-disconnected space then there is m_X -disconnection $N \cup M$ to X, and then it is mN-disconnected (by Remark 2) which is a contradiction, hence X is m-connected.

II- Every *m*-disconnected space is mN-disconnected, but the converse is not true, since if (X, m_X) is *m*-disconnected space, then there is m_X -disconnection $M \cup N$ for X, and by Remark 2 it is $m_X N$ -disconnection, therefore X is mN-disconnected space.

Example 7

The finite indiscrete *m*-space (X, m_{ind}) is *m*-connected and *mN*-disconnected space, but neither *mN*-connected nor *m*-disconnected space.

Proposition 3

A subset G of m-space X is $m_X N$ -disconnected if and only if there is $m_X N$ -open subsets N and M of X with $G \subseteq N \cup M, N \cap G \neq \emptyset$, $M \cap G \neq \emptyset$, and $N \cap M \cap G = \emptyset$.

Proof

If *G* is an m_X *N*-disconnected subset of *X* so there is $m_X N$ -disconnection $S \cup T$ to *G*, and then there are $m_X N$ -open sets *N* and *M* in *X* such that $S=N \cap G$ and $T=M \cap G$, therefore $G \subseteq N \cup M$, $N \cap G \neq \emptyset$, $M \cap G \neq \emptyset$ and $N \cap M \cap G = \emptyset$. Conversely, since $N \cap G$ and $M \cap G$ are separate *G*, so *G* is $m_X N$ -disconnected subset of *X*.

Definition 8

The $m_X N$ -closure for a subset K of m-space X is the intersection of all $m_X N$ -closed sets of X which containing K and it is denoted by $m_X N$ -cl(K). And the $m_X N$ -interior for a subset K of m-space X is the union of all $m_X N$ -open sets of X which containing in K and it is denoted by $m_X N$ -Int(K).

Example 8

In the indiscrete *m*-space (Q, m_{ind}) . If $K=Q-\{1\}$, then $m_X N-cl(K)) = Q$, and $m_X N-Int(K) = Q-\{1\}$. **Proposition 4**

Proposition 4

Let *K* be a non-empty subset of an *m*-space (*X*, m_X), then $m_X \omega$ - $cl(K) = K \cup (m_X \omega - d(K))$

Proof

Assume that $x \in K \cup (m_X N \cdot d(K))$ and $x \notin m_X N \cdot cl(K)$, so there is an $m_X N \cdot closed$ set D such that $K \subseteq D$ with $x \notin D$, put $W = X \cdot D$, hence W is $m_X N \cdot open$ set containing x, then $W \cap K = \emptyset$, thus $x \notin m_X N \cdot d(K)$ and since $x \notin K$ (because $x \notin D$ and $K \subseteq D$), so that $x \notin K \cup (m_X N \cdot d(K))$ and that is a contradiction, therefore $x \in m_X N \cdot cl(K)$, which implies $K \cup (m_X N \cdot d(K)) \subseteq m_X N \cdot cl(K)$. Conversely, if $x \in m_X N \cdot cl(K)$ and assume that $x \notin K \cup (m_X N \cdot d(K))$, then there exists an $m_X N \cdot open$ set S in X containing x and $S \cap K = \emptyset$, also $C = X \cdot S$ is $m_X N \cdot cl(K) C!$, thus $x \in K \cup (m_X N \cdot d(K))$, and then $m_X N \cdot cl(K) \subseteq K \cup (m_X N \cdot d(K))$, which implies $m_X N \cdot cl(K) \subseteq K \cup (m_X N \cdot d(K))$, which implies $m_X N \cdot cl(K) = K \cup (m_X N \cdot d(K))$, which implies $m_X N \cdot cl(K) = K \cup (m_X N \cdot d(K))$.

Proposition 5

If *K* is a subset of an *m*-space *X*, then *K* is $m_X N$ -open set if and only if any point in *K* is an $m_X N$ -interior point of it.

Proof

Consider *K* is an $m_X N$ -open set and $x \in K$, since *K* is a subset of itself, so *x* is an $m_X N$ -interior point. Conversely, since *K* is a union of all its points which are $m_X N$ -interior point, so for each *x* in *K* there is an $m_X N$ -open set *W* in *X* with $x \in W \subseteq K$, then $K = \bigcup_{x_\alpha \in K} W_{x_\alpha}$, for each $\alpha \in \Lambda$, , and by lemma 1 we get *K* is $m_X N$ -open set.

Proposition 6

Let *K* be a subset of an *m*-space *X*, then *K* is $m_X N$ -closed if and only if $m_X N$ - $d(K) \subseteq K$.

Proof

Suppose *K* is $m_X N$ -closed set in *X*, and assume that $x \in m_X N$ -d(K) with $x \notin K$, hence K^c is $m_X N$ -open subset of *X* containing *x*, and since $K^c \cap K = \emptyset$, we get that *x* is not $m_X N$ -limit point to *K*, that implies $x \notin m_X N$ -d(K) which is a contradiction, therefore $x \in K$, and hence $m_X N$ - $d(K) \subseteq K$. Conversely, if $m_X N$ - $d(K) \subseteq K$ take $x \in X$ and $x \notin K$, then $x \in K^c$, hence *x* is not $m_X N$ -limit point for *K*, so there is an $m_X N$ -open set *G* containing *x*, with $G \cap K = \emptyset$, then $G \subseteq K^c$, therefore *x* is $m_X N$ -interior point for K^c , thus K^c is $m_X N$ -open subset in *X*, which implies *K* is $m_X N$ -closed.

Definition 9 (6)

An *m*-function f from *m*-space X into *m*-space Y is called an *m*-continuous function if and only if $f^{-1}(M)$ is m_X -open set in X, for every m_Y -open set M in Y.

Proposition 7

The *m*-continuous image of m_X -connected set in *X* is m_Y -connected set in *Y*.

Proof

Let $f: X \to Y$ be an *m*-continuous function and *T* is m_X -connected set in *X*, and suppose that f(T) is not m_Y -connected, so it is m_Y -disconnected, so there is an m_Y -disconnection $N \cup M$ to f(T), since *f* is *m*-continuous function, then $f^{-1}(N)$ and $f^{-1}(M)$ are m_X -open sets in *X*, with $f^{-1}(N) \cup f^{-1}(M) = T$, so $T \subseteq f^{-1}(N) \cup f^{-1}(M)$, and $N \cap M \cap f(T) = \emptyset$, then $f^{-1}(N)$ and $f^{-1}(M)$ are disjoint and separation of *T*, that is a contradict the hypothesis that *T* is *m*-connected set in *X*, so f(T) is m_Y connected set.

Note 1

An *m*-space X is called is mNT_1 -space if for each two distinct points a, b in X there are two nonempty

 $m_X N$ -open sets N and M such that N containing a but not b and M containing b but not a.

Example 9

The co-finite *m*-space (\mathcal{R}, m_{cof}) is mNT_1 -space.

Remark 4

Every mT_1 -space is mNT_1 -space.

Definition 10

An *m*-space *X* is called is *mN*-Hausdorff space if for each distinct points *a*, *b* in *X* there are two nonempty $m_X N$ -open sets *N* and *M* in *X* such that $a \in N, b \in M$ and $N \cap M = \emptyset$.

Example 10

The discrete *m*-space (\mathcal{R}, m_D) is *mN*-Hausdorff space.

Remark 5

1- Every mN-Hausdorff space is mNT_1 -space, but not conversely, since if X is mN-Hausdorff space, then there are two disjoint m_XN -open sets N and M in X, such that $N \cap M = \emptyset$, and $a \in N$, $b \in M$, since $N \cap M = \emptyset$, so $b \notin N$ and $a \notin M$, hence X is mNT_1 space.

Example 11

Let (Z, m_{ind}) be the indiscrete *m*-space, let $x, y \in Z$ with $x \neq y$, then we can find two $m_Z N$ -open sets U and V in Z such that $U=Z-\{x\}$ which containing y but not x, and $V=Z-\{y\}$ which containing x but not y, so (Z, m_{ind}) is mN T_1 -space, but not $mN T_2$ -space since $(Z - \{x\}) \cap (Z - \{y\}) \neq \emptyset$. Also (\mathcal{R}, m_{cof}) is mNT_1 -space but not mNT_2 -space.

Remark 6

Every mN-totally disconnected space is mN-Hausdorff space, but the converse is not true, since if X is mN-totally disconnected space then for each distinct points a, b in X, we can find two $m_X N$ -open sets *M*, *N* containing a, b respectively with $N \cap M = \emptyset$ and $N \cup M = X$, so X is mN-Hausdorff space.

Example 12

Let (\mathcal{R}, m_u) be the usual *m*-space, it is *mN*-Hausdorff space, but not *mN*-totally disconnected. **Remark 7**

Every *m*-Hausdorff space is *mN*-Hausdorff, but the converse is not true, since if X is m-Hausdorff space, so there are m_X -open sets N and M in X, such that $N \neq \emptyset$, $M \neq \emptyset$, and $a \in N$, $b \in M$, by Remark 2 X is mN-Hausdorff.

Example 13

Let X =2, 3} $m_X =$ {1, and $\{\emptyset, X, \{1, 2\}, \{2\}, \{3\}\}, 1 \text{ and } 2 \text{ are distinct points in}$ X, and there exist $m_X N$ -open sets $U = \{1\}$ and $V = \{1\}$ {2} in X containing 1, 2 respectively, and $U \cap V = \emptyset$, also 1 and 3 are distinct points in X, there exist $m_X N$ -open sets $U = \{1\}$ and $V = \{3\}$ in X containing 1, 3 respectively, and $U \cap V = \emptyset$, by the same way 2 and 3 are distinct points in X, there exist $m_X N$ -open sets $U = \{2\}$ and $V = \{3\}$ in X containing 2, 3 respectively, and $U \cap V = \emptyset$ so (X, m_X) is mNT_2 space which is not mT_2 -space since there is no two disjoint m_x -open sets containing 1, 2 respectively.

Remark 8

Every *m*-totally disconnected space is *mN*disconnected but the converse is not true, since if Xis *m*-totally disconnected space, then for any two points $a, b \in X$ where $a \neq b$ we can find m_X -open sets N and M in X, with $N \neq \emptyset$, $M \neq \emptyset$, $N \cap M = \emptyset$, and they containing a, b respectively such that $N \cup M = X$, so X is m-disconnected and then mN-disconnected (by remark 4)).

Example 14

Let $X = \{a, b, c\}$ and $m_x = \{\emptyset, X, \{a\}, \{b, c\}\},\$ then X is mN-disconnected space and not m-totally disconnected.

Remark 9

Let $f:(X, m_X) \rightarrow (Y, m_Y)$ be an *m*-continuous function and K be $m_X N$ -totally disconnected subset of X, then f(K) is not $m_{Y}N$ -totally disconnected subset of Y.

Example 15

Let $I_Z: (Z, m_D) \to (Z, m_{cof})$ where I_Z is the identity function, (Z, m_D) is *mN*-totally disconnected space, while (Z, m_{cof}) is not mNtotallly disconnected.

Definition 11

The *m*-function $f:(X, m_X) \rightarrow (Y, m_Y)$ is called mN-totally disconnected if the image of each m_{x} totally disconnected set in X is $m_Y N$ -totally disconnected in Y.

Definition 12

 $f:(X,m_X) \rightarrow (Y,m_X)$ The *m*-function is called mN^* -totally disconnected if the image of each $m_X N$ -totally disconnected set in X is m_Y totally disconnected in Y.

Definition 13

The *m*-function $f:(X, m_X) \rightarrow (Y, m_Y)$ is called mN^{**} -totally disconnected if the image of each $m_X N$ -totally disconnected set in X is $m_Y N$ -totally disconnected in Y.

The following Example satisfying Definitions 11, 12 and 13.

Example 16

The identity *m*-function $I_X:(X, m_X) \rightarrow (X, m_D)$ is mN-totally disconnected function.

Definition 14

The surjective *m*-function $f: (X, m_X) \rightarrow (X, m_X)$ is called *mN*-light function if the inverse image of any $b \in Y$ is $m_X N$ -totally disconnected set in X.

Example 17

The identity *m*-function $I_{\mathcal{R}}:(\mathcal{R}, m_D) \rightarrow (\mathcal{R}, m_{cof})$ is *mN*-light function.

Remark 10

Every *m*-light function is *mN*-light function, but the converse is not true, since if $f:(X, m_X) \rightarrow (Y, f)$ $m_{\rm Y}$) is *m*-light function, then $f^{-1}(b)$ is $m_{\rm X}$ -totally disconnected for any b in Y, then it is $m_X N$ -totally disconnected set in X (by Remark 2), so f is mNlight function.

Example 18

The *m*-function $f:(X, m_{ind}) \rightarrow (X, m_{cof})$, which defined by f(x) = c, for each $x \in X$, where $X = \{1,$ 2, 3}, is *mN*-light function but not *m*-light function. Remark 11

Every *m*-homeomorphism function is *mN*-light function, but the converse is not true, since if f:(X, X) $m_X \rightarrow (Y, m_Y)$ is *m*-homeomorphism function, then for any b in Y there is a unique a in X where f(a) = b (since f is bijective), so $f^{-1}(b) = \{a\}$ which is m_X -totally disconnected, so {a} is $m_X N$ -

totally disconnected (by Remark 2), and then f is mN-light.

Example 19

The function $f:(X, m_D) \rightarrow (Y, m_Y)$, where $X = \{a, b, c, d, e, f\}$ and $Y = \{g, h, i\}$ such that f(a) = f(b) = g, f(c)=f(d)=h, f(e)=f(f)=i, is *mN*-light function but not *m*-homeomorphism.

Theorem 1

If $f:(X, m_X) \to (Y, m_Y)$ is *mN*-light function and $G \subseteq X$, so $f|_G: G \to f(G)$ is *mN*-light function too. **Proof**

If $q \in f(G)$, so $q \in Y$ (because $f(G) \subseteq Y$), and since f is mN-light function so $f^{-1}(g)$ is $m_X N$ totally disconnected set in X. To prove that $f^{-1}(g) \cap G$ is $m_G N$ -totally disconnected set in G for any $g \in f(G)$. Let $a, b \in f^{-1}(g) \cap G$, then $a, b \in f^{-1}(g)$, since $f^{-1}(g)$ is $m_X N$ -totally disconnected set in X, then there is an $m_X N$ disconnection $N \cup M$ to $f^{-1}(g)$ with $(N \cap f^{-1}(g))$ $f^{-1}(g)$ and $(N \cap f^{-1}(g))$ $\bigcup(M \cap f^{-1}(g)) =$ $\bigcap (M \cap f^{-1}(g)) = \emptyset$, such that N and M are $m_X N$ open sets in X, and $a \in N$, $b \in M$. To show that $f^{-1}(g) \cap G$ is $m_G N$ -totally disconnected set in G. Since $((G \cap f^{-1}(g)) \cap N) \cup ((G \cap f^{-1}(g)) \cap N)$ $M = (G \cap (f^{-1}(g) \cap N)) \cup (G \cap (f^{-1}(g) \cap M))$ $= G \cap ((f^{-1}(g) \cap N) \cup (f^{-1}(g) \cap M)) = G \cap$ $f^{-1}(g)$, and $((G \cap f^{-1}(g)) \cap N) \cap ((G \cap f^{-1}(g)))$ $f^{-1}(g)) \cap M) = (G \cap (f^{-1}(g) \cap N)) \cap (G \cap$ $(f^{-1}(g) \cap M)) = G \cap ((f^{-1}(g) \cap N) \cap (f^{-1}(g)))$ $(\bigcap M)$ = $G \cap \emptyset$ = \emptyset , such that $a \in (G \cap f^{-1}(g)) \cap N$ and $b \in (G \cap f^{-1}(g)) \cap M$, hence $(G \cap f^{-1}(g)) \cap M$ and $(G \cap f^{-1}(g)) \cap N$ are disjoint $m_G N$ -open sets and the union of them is equal to $f^{-1}(g) \cap G$, so $f^{-1}(g) \cap G$ is $m_G N$ -totally disconnected set in G, therefore $f|_G$ is mN-light function.

Definition 15

A surjective *m*-function $f:(X, m_X) \rightarrow (Y, m_Y)$ is called inversely *mN*-totally disconnected function if the inverse image of any m_YN -totally disconnected set in *Y* is m_XN -totally disconnected set in *X*.

Example 20

The identity *m*-function $I_x:(X, m_{ind}) \rightarrow (X, m_X)$, where X is a finite set is inversely *mN*-totally disconnected function.

Proposition 8

Every inversely mN-totally disconnected function is mN-light function.

Proof

Let $f:(X, m_X) \longrightarrow (Y, m_Y)$ be inversely mN-totally disconnected function and $b \in Y$, since f is surjective *m*-function (since it is inversely mNtotally disconnected) and $f^{-1}(\{b\})$ is m_XN -totally disconnected set in X, where $\{b\}$ is m_YN -totally disconnected set in Y which implies f is mN-light function.

Proposition 9

The *m*-function $h:(X, m_X) \rightarrow (Y, m_Y)$, where $h=g \circ f$ is *mN*-light function if $f:(X, m_X) \rightarrow (Z, m_Z)$ is inversely *mN*-totally disconnected function and $g:(Z, m_Z) \rightarrow (Y, m_Y)$ is *mN*-light function.

Proof

Let $b \in Y$, so $h^{-1}(b) = (g \circ f)^{-1}(b) = f^{-1}(g^{-1}(b))$, but $g^{-1}(b)$ is $m_Z N$ -totally disconnected set (because g is mN-light function), and then $f^{-1}(g^{-1}(b))$ is $m_X N$ -totally disconnected set in X (since f is inversely mN-totally disconnected function), so that $h^{-1}(b)$ is $m_X N$ -totally disconnected set in X, which means h is mN-light function.

Proposition 10

If $g: (Z, m_Z) \to (Y, m_Y)$ is bijective *m*-function and $f:(X, m_X) \to (Z, m_Z)$ is *mN*-light function, then the surjective *m*-function $h:(X, m_X) \to (Y, m_Y)$ where $h=g \circ f$ is *mN*-light function.

Proof

Let $b \in Y$, then there is an element $z \in Z$ such that g(z) = b (since g is bijective m-function), now $h^{-1}(b) = (g \circ f)^{-1}(b) = f^{-1}(g^{-1}(b)) = f^{-1}(g^{-1}(g(z))) = f^{-1}(z)$, but $f^{-1}(z)$ is $m_X N$ -totall disconnected set in X (because f is mN-light function), which implies $h^{-1}(b)$ is $m_X N$ -totally disconnected set in X, so that h is mN-light function.

Proposition 11

If $g:(Z, m_Z) \to (Y, m_Y)$ is one-to-one *m*-function, $f:(X, m_X) \to (Z, m_Z)$ is *m*-function and $h:(X, m_X) \to (Y, m_Y)$ is *mN*-light function such that $h=g \circ f$, then f is *mN*-light function.

Proof

Since $g(z) \in Y$, for each $z \in Z$ and $h^{-1}(g(z))$ is $m_X N$ -totally disconnected set in X (because h is mN-light function), and since $h^{-1}(g(z)) = (g \circ f)^{-1}(g(z)) = f^{-1}(g^{-1}(g(z))) = f^{-1}(z)$, so $f^{-1}(z)$ is $m_X N$ -totally disconnected set in X, hence f is mN-light function.

Proposition 12

If $f:(X, m_X) \to (Z, m_Z)$ is mN-totally disconnected function and $h:(X, m_X) \to (Y, m_Y)$ is a surjective mN-light function such that $h=g \circ f$, then $g:(Z, m_Z) \to (Y, m_Y)$ is mN-light function. **Proof**

Since $h^{-1}(y)$ is $m_X N$ -totally disconnected set in Xfor each $y \in Y$ (because h is mN-light function), and $f(h^{-1}(y))$ is $m_Z N$ -totally disconnected set in Z(since f is mN-totally disconnected function), but $f(h^{-1}(y)) = f((g \circ f)^{-1}(y)) = f(f^{-1}(g^{-1}(y)) =$

 $g^{-1}(y)$, hence $g^{-1}(y)$ is $m_Z \omega$ -totally disconnected set in Z, so that g is mN-light function.

Definition 16

The *m*-space (X, m_X) is called a zero dimension *m*-space if it has a base of $m_X \omega$ -clopen sets.

Lemma 2

Every zero dimension metric m-space is mN-totally disconnected space.

Proof

Let X be a zero dimension metric *m*-space and *a*, *b* are points in X with $a \neq b$, then X is *m*-Hausdorff space and since it is metric *m*-space, then *a* has a neighbourhood K with $b \notin K$, then there exists a basic m_X -open set W which is also m_X -closed set in X (since X is zero dimensional *m*-space) and then W is $m_X N$ -clopen set (by Remark 2 and since the complement of $m_X N$ -open set is $m_X N$ -closed set), where $a \in W \subseteq K$, and W^C is $m_X N$ -clopen set in X such that $b \in W^C$, $X=W \cup W^C$ and $W \cap W^C = \emptyset$, so X is *mN*-totally disconnected space.

Proposition 13

Let X, Y be metric *m*-spaces and $f:(X, m_X) \rightarrow (Y, m_Y)$ be a surjective *m*-function where X is *mN*-compact space, then f is *mN*-light function if the inverse image for each $b \in Y$ is a zero dimension a subspace of X.

Proof

Let $b \in Y$, so $f^{-1}(b)$ is zero dimension metric *m*-subspace of *X* (since metric is hereditary property), so it is $m_X N$ -totally disconnected subspace of *X* (by lemma (3-63)) and so that *f* is *mN*-light function.

New subjects and future work.

Definition 17 (12)

A subset F of m-space X is said to be m_X -gclosed if for each m_X -open set U with $F \subseteq U$, then m_X -cl $(F) \subseteq U$.

Definition 18

A subset G of m-space X is said to be m_X -g-open if $F \subseteq m_X$ -Int (G) for each m_X -closed set F with $F \subseteq G$.

Definition 19

A subset A of m-space X is said to be m_X -Ngopen set if for each $x \in A$, there exists m_X -g-open set U containing x such that U-A is finite. The complement of m_X -Ng-open set is m_X -Ng-closed set.

There is a relation between Definition 19 and m_X -*N*-open set as follows.

Remark 12

Every m_X -N-open set is m_X -Ng-open, but the converse is not true in general.

Example 21

The subset $\{x\}_{x \in \mathcal{R}}$ in (\mathcal{R}, m_{ind}) is m_X -Ng-open but it is neither m_X -open nor m_X -N-open set.

Question 1

Is there a relation between Definition 19 and m_X open set? if there is a relation, is there an example to the converse?

Question 2

If we use m_X -Ng-open set instead of m_X N-open in this research, will we get approach results?

Now we will use the previously presented set to define another type of m-disconnected space, which is:-

Definition 20

An *m*-space X is said to be *m*-Ng-disconnected if it is union of two disjoint m_X -Ng-open sets.

Question 3

What is the relation between m-N-disconnected and m-Ng-disconnected space?

In a same way and by using m_X -Ng-open set, new type of *m*-light function have been defined, which is:-

Definition 21

A function f from m-space X into m-space Y is said to be m-Ng-light if for every $y \in Y$, $f^{-1}(y)$ is m-Ng-totally disconnected.

Question 4

What is the relation between *mN*-light and *m-Ng*-light function?

Remark 13

There is a definition in the topological space to Nadia Kadum Humadi (13), we can exploit it by using the definition of m_X - ω g-open set.

Conclusions:

In this research, new spaces namely mN-disconnected, mN-totally disconnected, mN-Hausdorff, mNT_1 -spaces, have been defined and mN-light and inversely mN-totally disconnected functions have been introduced.

Acknowledgements:

The authors would like to thank Mustansiriyah University (<u>www.uomustansiriyah.edu.iq</u>) Baghdad – Iraq for its support in the present work. We also express our gratitude to the referees for carefully reading the paper and for their valuable comments.

Conflicts of Interest: None.

References

- 1. Huda F A, Haider J A. On m-light mappings. Al-Mustansiriyah Journal of Science.2016; 27(3):72-75.
- Nadia KH , Haider J A. On mŵ-light Functions. Al-Mustansiriyah J. Sci, 2019; 4(30): 1-12.
- 3. Samer Al G, Salti S. Cocompact Open Sets and Continuity. ABSTR APPL ANAL.2011; 2012:1-9.
- 4. Rosas ER, Carpintero C, Pacheco J, Rajesh N, Saranyasri S. Almost nearly \$\omega \$-continuious

multifunctions. Eurasian Bull. Math. (ISSN: 2687-5632). 2017 Dec 28:24-33.

- 5. Enas R A, Raad A H. On Dimension Theory by Using N-open sets. Journal of Babylon University/pure and Applied Sciences.2015; 23(2):595-604.
- 6. Haider J A , Marwa MD. When m-lindelof sets are mx-semi closed. J. phys: conference series.2018:1-7.
- Zakari AH. gm-continuity on generalized topology and minimal structure spaces. J. Assoc. Arab Univ. Basic Appl. 2016 Jun 1;20(1):78-83.
- Boonpok C, Viriyapong C, Thongmoon M, Viriyapong N. On M_A⁽(i,j))-Continuous Functions in Biminmal Structure Spaces". IJMMS.2013:1-4.
- Shyamapada M. Minimal spaces with a mathematical structure. J. Assoc. Arab Univ. Basic Appl.2016; (22):98-101.

- Takashi N, Valeriu P. Minimal structure, punctually m-open functions in the sense of Kuratowski and bitopological spaces. MATH COMMUN. 2007; 12(2007):247-253.
- 11. Ravio , Rodrigo J. Between *-Closed Sets and Iw- Closed Sets. JNRS. 2013; 2(3); 87-97.

12. Rosas E, Rajesh N, Carpintero C. Some new types of open and closed sets in minimal structures. II. InInt. Math. Forum. 2009; 4(44) 2169-2184.

13. Nadia K H, Haider J A. On ω C-Continuous Functions. IOP Conf. Series: J. Phys: Conf. Series. 2019; 1-12.

m_xN -حول التطبيقات الواهنة وأنماط من الفضاات بأستخدام المجموعات المفتوحة

رعد فالح حسن²

حيدر جبر على¹

¹ قسم الرياضيات، كلية العلوم، الجامعة المستنصرية، بغداد، العراق . ² مديرية تربية الرصافة الثالثة، وزارة التربية، بغداد، العراق.

الخلاصة:

قدمنا صيغه ضعيفة من الدوال m—واهنه بأستخدام المجموعة m_xN- المفتوحة والتي هي الدالةmN - الواهنة، وقدمنا مفاهيم جديدة الفضاءات غير المترابطة والغير مترابطة كلياً، العلاقة بينهما قد درست. كذلك عرفنا صيغة جديدة من الدوال m-غير المترابطة كلياً و الدوال العكسياً m-غير المترابطة كلياً قد عرفت، أعطينا بعض الامثلة والحقائق.

ا**لكلمات المفتاحية:** الفضاء غير المتصل – m_xN ، الفضاء هاوسدورف– m_xN ، الدالة الواهنة – mN ، المجموعة المفتوحة– m_xN ، الدالة غير المتصل كليا– mN.