Open Access
Baghdad Science Journal

Vol.16(1)2019

DOI: http://dx.doi.org/10.21123/bsj.2019.16.1.0116

Solving Mixed Volterra - Fredholm Integral Equation (MVFIE) by Designing
Neural Network

Nahdh S. M. Al-Saif"

Ameen Sh. Ameen

Received 29/3/2018, Accepted 20/1/2019, Published 11/3/2019

- This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract:

In this paper, we focus on designing feed forward neural network (FFNN) for solving Mixed Volterra —
Fredholm Integral Equations (MVFIES) of second kind in 2—dimensions. in our method, we present a multi —
layers model consisting of a hidden layer which has five hidden units (neurons) and one linear output unit.
Transfer function (Log — sigmoid) and training algorithm (Levenberg — Marquardt) are used as a sigmoid
activation of each unit. A comparison between the results of numerical experiment and the analytic solution
of some examples has been carried out in order to justify the efficiency and the accuracy of our method.

Key words: Feed Forward neural network, Levenberg — Marquardt (trainlm) training algorithm, Mixed

Volterra - Fredholm integral equations.

Introduction:

Integral equation is one of the main branches
of modern mathematics that appear in various
applied areas including mechanics, physics and
engineering ...etc. Here, we are concerned with the
numerical solution of the following (MVFIES) that
has the formula below:

u(x,y) = f) + [; [, K@y, uts))dtds
(x,y) € I=Mx|[0,T]..(1)

where u(x,y) is an unknown function that
should to be found and f(x,y) and K(x,y,u(t,s))
are given analytical real valued function defined on
| = Mx[0,T] and M is a compact subset on R"
(n=1,2,3), with convenient norm ||. || .

In literatures, different numerical methods
used to solve 2-dimensional (MVFIEs) have been
reported. In (1) Babolian et al. applied block pulse
function and their operational matrix to solve

(MVFIEs) in 2-dimensional spaces. By using
Hybrid Legendre Functions, Nemati et al.
introduced a numerical method for the

(MVFIEs)(2). Shahooth presented a Numerical
Solution for Mixed (MVFIEs) of the second kind
using Bernstein Polynomial Method (3), this
method is used to obtain the system of algebraic
equations from the integral equation. In 2015,
Ahmadabadi used a Meshless Method for solving
(MVFIEs) of Urysohn type on non — rectangular
regions numerically (4).

Department of mathematic, of Science,
University of Anbar, Anbar, Iraq.

“Corresponding author: nn_ss_m68@yahoo.com

College

116

Ibrahim et al. using the New Iterative
Method for solving (MVFIES) (5). This work is
structured as follows:

In Section 2 we introduce the definition of
Acrtificial Neural Network (ANN). The structure of
a Neural Network presented in Section 3. Section 4
is concerned with Levenberg Marquardt
Algorithm  (LM). Section 5 demonstrates
conducting our proposed approach to calculate the
approximation solution for (MVFIEs), and in
Section 6 the proposed method is applied in some
examples, to clarify the efficiency and accuracy of
this method.

Artificial Neural Network (ANN):

An (ANN) is formed from many artificial
neurons joined together depending on particular
network architecture. The goal of the neural
network is to transform the inputs into significant
outputs.

In other words, (ANN) is an interconnected system
of nodes (‘equivalent to neurons of a human brain’)
by weighted arrows (‘equivalent to synapses
between neurons’). The outcome of (ANN) is altered
by changing the arrow’s weights. The result of the
network for the data fed to the input layer is
displayed by the output layer. Dependent variables
have been estimated from the input nodes, which
represent the independent or predictor variables.
Hristev in (6) characterizes ANN as follows,

i) Its pattern of connections between
neurons (called its architecture).

the


http://dx.doi.org/10.21123/bsj.2019.16.1.0116
https://creativecommons.org/licenses/by/4.0/
mailto:nn_ss_m68@yahoo.com

Baghdad Science Journal

Vol.16(1)2019

ii) The method by which the connections weight is
calculated (training or learning algorithm).
iit) Its activation function .

Neural Network Structure (6):

The structure or topology of an artificial neural
network means the way of regulation of neuronal
computational cell in the network. That is, how the
nodes are connected and how the information is
transmitted through the network. The architecture
can be classified in terms of three aspects (Number
of levels or layers, Connection pattern and
Information flow).see fig(1).

Hidden
layer

Input
layer

Output
layer

Input #1
i — Output
Input #2

Figure 1. Structure of a Neural Network

(Topology)

Levenberg—Marquardt Algorithm( LMA) (7)
"The Levenberg-Marquardt algorithm is a

variation of Newton’s method that designed for
minimizing functions that are sums of squares of
other nonlinear functions. This is very well suited to
neural network training where the performance
index is the mean squared error.

In order to optimize LMA performance index, If
we assume that F(w) is a sum of squares function
we define it as,

p
F(w) = Z (diep — okp)zl - (2)
p=1Lk=1

where w = [wyw, - wy]T includes all network's
weights. dip) Okp, K, P and N are the desired value
of the k" output and the p" pattern, the actual
value of the k" output and the p'* pattern, the
number of the network output, the number of
pattern and the number of the weights, respectively.
Equation (2) can be written as follows
F(w) =ETE . (3)

k

Where

E = [911 - eg1€12 7 Ea  €1p ...ekp]T, E =
,ekp=dkp—0kp, k=1,"',K, p=1,,P
Where E is the cumulative error vector (for all
pattern). From equation (3) the weights are
calculated using the following equation

Wepr = we — U + e T Ee . (4)
and the jacobian matrix is define as

117

r Odeyq Oeq; Odeqq 1
ow,;  ow, T owpy
dey; Oeyqy  0Oepyq
ow, ow, T owy
66k1 66k1 aekl
ow; dw, T owy
deip Oeyp Oeqp
ow, dw, T owy
aezp aezp aezp
ow; dw, T owy
aekp 6ekp aekp

L ow; dw, Towy

where I,u and ] are identity unit matrix,
the learing parameter and jacobian of m out- put
error of the neural network with respect to n
weights, respectively. At each iteration the u
parameter automatically adjusted in order to secure
convergence, the calculation of the jacobian matrix
J and the inverse of JT] square matrix of order
N X N at each iteration step are the requirement of
LMA.

Description of the Method:

In the current section, we demonstrate
conducting our approach to calculate the
approximation solution of the (MVFIEs):

u(x,y) = fy) + Jy f; K@ y,u(ts))deds,
(x,y)e I =Mx][0,T]

where x,y € 1 € R?, and u(x,y) the solution to
be found. When a trial solution with adjustable
parameters p denoted by u;(x,y,p) , then the
problem is transformed to the following discretize
form:

Min in’yi EM f(xi' yl) +

Iy KOyt s,ue(t,s))dtds ... (6)
In our approach, the trial solution u;(x,y,p)
employs a fast feed neural network (FFNN)and the
parameters p correspond to the weight and biases of
the neural architecture , we choose form for the trial
function u;(x, y)
ut(xiJ’i:p) = G(xrle(x'y'p)) (7)

where N(x,y,p) is a single - output (FFNN) with
parameter p and n input unit fed with the input
vectors (x,y). The term G is constructed, since
u;(x,y) satisfy them. This term can be formed by
using an (ANN) whose weight and biases are to be
adjusted in order to deal with the minimization
problem. The Minimized is given by



Baghdad Science Journal

Vol.16(1)2019

E(p) Marquardt) used as a sigmoid activation of each
unit, in each example the mean square error (MSE)
=<u(x,y) is used to test the accuracy of obtained solutions.
n Example 6.1:
_ Z £y Let the following (MVFIE).
i=1

2

i
+ k(xl-,yi,ut(s, t)) dt ds ..(8)
/]

Numerical Examples:

In this section we report numerical result,
we use a multi-layer FFNN having one hidden layer
with 5 hidden units (neurons) and one linear output
unit. The sigmoid activation of each hidden unit is

u(x,y) = e*y? — 2x%y°®  +

foy f_llxze_tu(t, s)dtds, (x,y) € [0,y] X
-1,1] ...9

whose analytic solution u(x,y) = e* y?

We applied the present method to solve equation
(9). Table (1) shows the analytic, neural result and
its error. Table (2) gives the weight, bias, Epoch,
time and performance of the designer network.

Log — sigmoid and training algorithm (Levenberg —

Table 1. Analytic, Neural and Accuracy of solution Equation (9).

X] Y Analytic u,(x,y) Trainlm u,(x,y) Error = |u.(x,y) — ua(x, y)|
-1 0.0 0.0000e+000 1.1709e-007 1.1709e-007
-0.8 0.2 1.7973e-002 1.7973e-002 2.4602e-007
-0.6 0.4 8.7810e-002 8.7810e-002 1.6134e-007
-0,4 0.6 2.4132e-001 2.4132e-001 5.1660e-007
-0.2 0.8 5.2399e-001 5.2399e-001 1.0256e-006
0.0 1.0 1.0000e+000 1.0000e+000 3.1978e-007
0.2 1.2 1.7588e+000 1.7588e+000 1.4060e-006
0.4 14 2.9240e+000 2.9240e+000 1.9408e-006
0.6 1.6 4.6646e+000 4.6646e+000 4.6404e-007
0.8 18 7.2108e+000 7.2108e+000 1.8224e-007
1 2 1.0873e+001 1.0873e+001 4.4215e-009
MSE 7.30e-013

Table 2. Weight, Bias, Epoch, Time and Performance of the Network.

Weight and Bias Epoch, Time and Performance

Net-1W{1,1} Net-LW{1,2} Net-B{1} Epoch Time Performance
0.9991 0.6692 0.1564 0.4283
0.1711 0.1904 0.8555 0.4820 20000 0:04:15 6.21e-14
0.0326 0.3689 0.6448 0.1206
0.5612 0.4607 0.3763 0.5895
0.8819 0.9816 0.1909 0.2262
Example 6.2: Using the same present method for solving

equation (10). Table (3) shows the analytic, neural
result and its error. Table (4) gives the weight, bias,
Epoch, time and performance of the designer
network.

Consider the following (MVFIE).
u(x,y) =e* —x%y + fgfolxze_Stu(t,s)dtds
(x,y) €[0,y] x[0,1] .. (10)

Which has the analytic solution below u(x,y) =
e*y

Table 3. Analytic, Neural and Accuracy of Solution Equation (10).

X] Y Analytic u,(x,y) Trainlm u,(x, y) Error = |u,(x,y) — u.(x,y)|
0.0 0.0 1.0000e+000 1.0000e+000 9.4199¢-010
0.1 0.1 1.0101e-000 1.0101e-000 2.8402e-008
0.2 0.2 1.0408e-000 1.0408e-000 1.3063e-008
0.3 0.3 1.0942e-000 1.0942e-000 5.2128e-008
0.4 0.4 1.1735e-000 1.1735e-000 3.2270e-009
0.5 0.5 12840e+000 12840e+000 1.1274e-008
0.6 0.6 1.4333e+000 1.4333e+000 2.2061e-008
0.7 07 1.6323e+000 1.6323e+000 7.e-0518508
0.8 0.8 1.8965e+000 1.8965e+000 5.8855e-008
0.9 0.9 2.2479e+000 2.2479e+000 1.3026e-008
1 1 2.7183e+001 2.7183e+001 2.2140e-010
MSE 1.28e-013

118



Baghdad Science Journal Vo0l.16(1)2019

Table 4. Weight, Bias, Epoch, Time and Performance of the Network.

Weight and Bias Epoch, Time and Performance

Net-1W{1,1} Net-LW{1,2} Net-B{1} Epoch Time Performance
0.0842 0.5399 0.9742 0.3307
0.1639 0.0954 0.5708 0.4300 9684 0:01:51 4.55¢-16
0.3242 0.1465 0.9969 0.4918
0.3017 0.6311 0.5535 0.0710
0.0117 0.8593 0.5155 0.8877
Example 6.3: f(x,y) = exp(—y)(cos(x) + ycos(x)
Suppose the following (MVFIE). + Yycos(x — 2) sin(2)).
u(x,y) = 2

their analytic solution is u(x,y) = cos(x) exp(—y)

Using our method to solve equation (11).
Table (5) shows the analytic, neural result and its
error. Table (6) gives the weight, bias, Epoch, time

fl,y) + foy fM K(x,y,t,s) u(t,s)dtds, (x,y) €
M x[02].....(11)
with M = [0,2],and K(x,y,t,s) = —cos(x —

t) exp(s —y)

and performance of the designer network.

Table 5. Analytic, Neural and Accuracy of Solution Equation (11).

X] Y Analytic u,(x,y) Trainlm u,(x,y) Error = |u,(x,y) — uga(x,y)|
0.0 0.0 1.0000 e+000 1.0000 e+000 9.9680e-008
02 02 8.0241e-001 8.0241e-001 2.4528e-006
04 0.4 6.1741e-001 6.1741e-001 6.4110e-007
06 06 4.5295e-001 4.5295e-001 -2.4407e-007
08 08 3,1305e-001 3,1305e-001 -1.0810e-007
1.0 1.0 1.9877e-001 1.9877e-001 2.4741e-007
1.2 1.2 1.0913e-001 1.0913e-001 1.6111e-007
14 14 4.1913e-002 4.1913e-002 1.1516e-007
16 16 -5.8953e-003 -5.8953e-003 1.2807e-008
18 18 -3.7556€-002 -3.7556€-002 1.2018e-007
2 2 -5.6319¢-002 -5.6319¢-002 1.6989¢-006
MSE  5.15e-013

Table 6. Weight, Bias, Epoch, Time and Performance of the Network

Weight and Bias

Epoch, Time and Performance

Net-1W{1,1} Net-LW{1,2} Net-B{1} Epoch Time Performance
0.0249 0.4503 0.7269 0.9798
0.6714 0.5825 0.3738 0.2848 1052 0:00:14 3.35e-14
0.8372 0.6866 0.5816 0.5950
0.9715 0.7194 0.1161 0.9622
0.0569 0.6500 0.0577 0.1858
Conclusion: Computational and Applied Mathematics.2011;235:

In this work, it has been successfully designed
feed forward neural network (FFNN) for solving
(MVFIEs). This design includes fast and efficient
algorithm (LM) with one hidden layer that has 5
neurons and one output layer. From the numerical
examples, it can be seen that the design (FFNN)
method is accurate and efficient to estimate the
numerical solution of these equations, because the
errors decrease to smaller values compared with the
solution for the same examples solved by the other
methods(8, 9) .

References

1. Babolian E, Maleknejad K, Mordad M. A numerical
method for solving Fredholm— Volterra integral
equations in two— dimensional space using block
pluse functions and an operational matrix. Journal of

119

. Mohammed K, Numerical

3965- 3971.

. Nemati S, Lima P, Ordokhani, Y. Numerical Method

for the Mixed Volterra — Fredholm Integral Equations
using Hybrid Legendre Functions. Conference
Application of Mathematic 2015. Institute of
Mathematics AS CR, Prague 2015;85:184-193
Solution for Mixed
Volterra — Fredholm Integral Equations of the second
kind by using Bernstein Polynomials Method.
Mathematical Theory and Modeling ,2015;5(10):
154-162

. Nili A, Laeli D. A Numerical Solution of Mixed

Volterra — Fredholm Integral Equations of Urysohn
type on non-rectangular regions using meshless
methods. Journal of Linear and Topology Algebra,
2015;4(4): 289-304.

. Hassan I, Francis A, On the Solution of Volterra —

Fredholm and Mixed Volterra — Fredholm Integral
Equations Using the New lterative Method . Applied
Mathematics,2016;6(1): 1-5.



Baghdad Science Journal Vo0l.16(1)2019

6. Hristev R M. The ANN Book. GNU public license; Fredholm integral equations. International Journal of
1998. 374 p. Computer Mathematics,2012; 1-12.

7. Martin T H, Howard D. neural network design. 2" 9. Lechoslaw H. Computational Methods for Volteraa —
ed. India: Thomson press;1996.736 p. Fredholm Integral Equations.  Computational

8. Laeli D H, Maalek Ghaini F M, Hadizadeh M.A Methods in Science and Technology, 2002;8 (2): 13 —
meshless approximate solution of mixed Volterra — 26.

Luant) Gl aladiuly dalidal) 4lalsil) al gy 8 - ) il gb ddalaa Ja
Ol Glaldi Cpsal A dada anles (2AU

LGBload) ¢ SLa) ¢ HLaY) daals ‘(.\}LJ\ IS cdandall lusaly Sl eua
« bl

(ANN) Apall Gl aladinly SYabaall e g ol 138 Jal odds 4pne 4d) jla annfi g Sl a0 (8wl Cangl)
482 paalg aih e S5 L..E:ﬂ‘} saaxall Chladall g3 HA.\ASS‘ e cday p (FFNN )A_LAL«\ L3S ) dauacs A0l araal ot Cus
da A alaiuly sl a8 Al g ozl A Basl g Adda s ((og_sigmoid ) Jdusadll Allall ardiug g 4l Glas g dsed e (g gind
o3¢l dda guaall J4lall & doaua gil) ALiaY) ol 4 laa o Aanaal) 45y Hhall 3leS g 480 luly | (Levenberg — Marquardt) Sy ol
Jas Jali cUad cld g dulle d8a 5ol Cld Ay yhall b (s 35l A e g cAliaY)

. AR ) LSl A 58 -yl 58 Alobaa ccun il @ 5 eyl s Apseanll ASLEN GualeY) Adasll A palibal) cilaldl

120



