
Baghdad Science Journal Vol.16(1)2019

130

DOI: http://dx.doi.org/10.21123/bsj.2019.16.1.0130

Developing Load Balancing for IoT - Cloud Computing Based on Advanced

Firefly and Weighted Round Robin Algorithms

Marwa M. Abed Manal F. Younis

*

 Received 13/8/2018, Accepted 22/11/2018, Published 11/3/2019

 This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract:
The evolution of the Internet of things (IoT) led to connect billions of heterogeneous physical devices

together to improve the quality of human life by collecting data from their environment. However, there is a

need to store huge data in big storage and high computational capabilities. Cloud computing can be used to

store big data. The data of IoT devices is transferred using two types of protocols: Message Queuing

Telemetry Transport (MQTT) and Hypertext Transfer Protocol (HTTP). This paper aims to make a high

performance and more reliable system through efficient use of resources. Thus, load balancing in cloud

computing is used to dynamically distribute the workload across nodes to avoid overloading any individual

resource, by combining two types of algorithms: dynamic algorithm (adaptive firefly) and static algorithm

(weighted round robin). The results show improvement in resource utilization, increased productivity, and

reduced response time.

 Key words: Cloud computing, Firefly algorithm, IoT, Load balancing.

Introduction:
Healthcare systems are growing rapidly and

getting improved in the recent years. This growing

has promoted a high increase in data transmission

volume; therefore, a demand for effective

techniques to process and manage data has appeared

(1). The benefits of this improvement are: 1)

diagnosis and 2) prevention of the disease from

early stage by using wearable sensors. This is

performed by providing data for doctor and patient

anywhere and anytime. Healthcare systems that rely

on advanced technologies such as Internet of things

(IoT) and cloud computing have huge numbers of

users. The enormous number of users perform

frequently data request from servers; thus, there are

numerous overloads on the cloud’s VM.

Consequently, there is an urgent demand for

techniques and algorithms to overcome the overload

problem. To handle this problem, load balancing

algorithms and transfer protocols are used (2).

IoT

IoT is a concept of a communication among

billions of physical devices that are connected to the

internet around the world via smart things from

anywhere, anyhow, and anytime. There are many

advantages of IoT in our lives, which can help

persons by connecting many sensors and actuators.
Department Computer, College of Engineering,

University of Baghdad, Baghdad, Iraq
*
Corresponding author: manalfyounis@gmail.com

 IoT applications produce large volumes of

data and multiple computational processing; thus,

they need a big data center for storing; this leads to

integrate cloud computing with IoT in order to

provide computing infrastructure with cost effective

(3).

Cloud computing

Cloud computing is a popular way to access

online computing resources and user requirement in

a low-cost manner. Cloud computing provides

different services to users according to its

requirement such as pay per use and on-demand

service. These services are achieved by supporting

the virtualization way which shows virtualized data

centers.

Basically, cloud computing works on 5-4-3

principles consisting of the five essential

characteristics, four deployment models, and three

service offering models. The five essential

characteristics are (4):

1. On-demand self-service: Service's provider

provides automatically a server, network storage,

and other capabilities of computing to the

consumer.

2. Broad network access: Capabilities can be

provided without taking care about the client

platform either thin or thick, by standard

mechanisms through the network.

3. Elastic resource pooling: Client can get dynamic

virtual or real resources according to his

Open Access

http://dx.doi.org/10.21123/bsj.2019.16.1.0130
https://creativecommons.org/licenses/by/4.0/
mailto:manalfyounis@gmail.com

Baghdad Science Journal Vol.16(1)2019

131

specification and can redefine it on demand.

These resources are pooled to give the service to

several consumers by using the multi-tenant

model.

4. Rapid elasticity: Elastically services provisioned

automatically to scale out and scale in quickly.

5. The measured service: Is transparent between the

client and the service provider, that the cloud

offered by control and reports the status of the

service's type such as storage, processing, etc.

The four deployment models of the principles are

(5):

1. The public cloud: Available to everyone,

which offers different types of services such as

storage, applications, and VMs. IBM's Blue-

Cloud and Google App Engine are examples of

public cloud.

2. The private cloud: Cloud provides

infrastructure, discrete and secure environment

for the consumers in a specific organization

that may be managed by the organization itself

and/or a third party.

3. The community: Infrastructure is provided to

the consumer from multiple organizations.

These organizations can manage the cloud or

by a third party.

4. Hybrid cloud: Combination of two or more

types of cloud (private, public, or community)

this makes the entities have the protection of

the private and community cloud in addition of

connecting with each other or with the word.

The last principle is the three service

offering models that explain the pyramid of the

service as the following (6):

1. Software as a Service (SaaS): It is an

apportionment model where the software is

put up by the seller hardware and can be

used by the client via the Internet. The

service-oriented architecture (SOA) and the

web services depend on the SaaS as an

implicit technology. In this service, the

payment is based on the time or amount the

service demand. The SaaS is such as Yahoo

Mail, Dropbox and Gmail.

2. Platform as a Service (PaaS): The

developer uses this service to build and test

their applications by using various

languages and tools. The PaaS offer all

levels of creating a program without a need

to software. Salesforce, Heroku, AWS

Elastic Beanstalk, and Microsoft Azure are

examples of PaaS services.

3. Infrastructure as a Service (IaaS): The

consumers can manage their deployed

applications in addition to the storage and

the operating systems with restricted of

control on the components of the network.

IaaS includes the Amazon EC2, Windows

Azure, and Google Compute Engine.

Virtualization
Virtualization is a technique utilized to

make a single physical infrastructure act as a

multiple logical infrastructure or resources.

Virtualization takes many forms such as memory,

processor, input/output (I/O), network, operating

system (OS), data, and applications (7). It can

virtualize the server to reduce the requirement of

physical resources. In server virtualization, servers

can host more than one virtual server

simultaneously, which allows the users to reduce

the number of servers to be reserved for various

purposes and thus increases the resources utilization

(8). Servers are required to process large number of

concurrent requests in order to handle millions of

IoT devices and users’ messages. These requests or

messages are handled with load balancing (9). In

cloud computing the requests for the services

should balance the virtual resources. Load

balancing reduces the workload and increases the

utilization of the resources, respectively (5).

Load Balancing
Cloud load balancing (CLB) is used to

distribute the load across all the nodes in the data

center. This distribution is performed by

transferring the heavily loaded nodes to low loaded

nodes to achieve effective resource utilization. CLB

ensures that no node is overloaded; thus, the system

performance is improved. Efficient load balancing

algorithm supports: implementing failover,

enhancing response time, enabling scalability, and

avoiding bottlenecks (10) (11).

The load balancing algorithms is classified into two

types (12):

1. Static algorithm: This type of algorithm is

based on the prior information predefine all the

nodes and their properties. Static algorithm

does not consider the current status of the

node.

2. Dynamic algorithm: This type of algorithm is

based on the current system information

according to the changes in the state of nodes.

The implementation of dynamic schemes is

expensive and very complex; however, it

balances the load effectively.

The contribution of this paper is to

implement two types of algorithms dynamic and

static. The Adaptive Firefly Algorithm (AFA) is

firstly used to dynamically calculate the capability

of virtual machines (VMs). To perform virtual

machine scheduling over the data centers for

solving load balancing problem in cloud computing,

AFA is integrated with Weighted Round Robin

Baghdad Science Journal Vol.16(1)2019

132

Algorithm(WRRA). Then it can take the benefits of

the static and the dynamic at the same time.

 Related Works
Due to the fact that cloud resources are

shared among millions of users tasks, scheduling

these tasks to cloud computing environment

requires load balancing. There are different

techniques which have been proposed for load

balancing in cloud computing; some of them are

discussed as below:

Hou et al. (9) present IoT cloud and several

applications which are based on it such as smart

buildings, smart home/office, intelligent

transportation, and smart healthcare. They use two

types of load balancer: 1) HTTP load balancer used

WRRA, and 2) MQTT load balancer used least

connections algorithm load balance, which selects

the least number of connections as the target server.

It is good to separate the protocols of IoT and HTTP

traffic but using static load balance algorithm make

it unsuitable when the load changes.

Makasarwala and Hazari (5) explore the

deployment of service in cloud computing and the

virtualization means with its effect on the cloud in

terms of load balance. A genetic algorithm is

presented with the dependence of the time to decide

the priority of requests as a solution of load balance.

This algorithm can handle large size search. In

addition, it can solve any type of problems;

however, the benefit of its solution gets down when

the problem size raises. In addition, the result of this

algorithm is changed even if implemented in the

same environment.

Gao and Wu (13) explain the cloud

computing and the importance of load balance. It

presents the dynamic strategies like forward-

backward ant mechanism and max-min rules. The

implementation of pheromone initialization and

pheromone update has been discussed. It is

important to decrease the time that consumers take

in the search for a node, where this can be by

understanding the generation of the ant.

An autonomous agent-based load-balancing

algorithm has been presented in (14) which is

considered a dynamic load balance. It works by

searching for suitable VM, which is selected by the

nearest to the threshold value. Load agent starts

search for a VM from other data centers. Keeping

information of VM earlier reduces service time.

A fuzzy-based method is presented in (15)

to classify the VM in the cloud and sorting the task

to decrease the consumption of the energy and

increase the fault tolerance.

The main aim of makespan is minimization

of the Honeybee algorithm presented in (16). It is a

dynamic algorithm which is suitable for

heterogeneity environment like cloud computing.

Cloudsim and its workflow emulations are used to

discover the difference in nature between the

dependence and independence tasks. However,

cloudsim is attained to settle the condition in a

small distance of time and easier to design, fuzzy

logic is considered hard to make a model and

consumes more fine-tuning.

Xavier et al. (17) reduce the makespan

using the chaotic social spider algorithm. This word

is based on selecting the best appropriate VM for

the task of the user. It emulates by cloudsim tooltik.

The result shows advancement of the algorithm

against other swarm intelligence algorithms such as

ABD, PSO, and GA.

Proposed Method
To handle a large number of concurrent

users’ requests, the virtualization hardware

resources in the amazon cloud environment that

have been implemented. A server in the IoT cloud

can be implemented as VM, also known as instance.

This VM uses different components to implement

the IoT cloud as shown in Fig.1.

Figure 1. Illustration of the cloud implementation

Baghdad Science Journal Vol.16(1)2019

133

The VM components are explained as follows:

1. Application server: Cloud provides HTTP and

MQTT servers, which in turn provides services for

the end-users. These servers are configured as

Virtual Machines (VMs), where these VMs run

independently on the same physical machine.

Servers are developed using Meteor, which is a

JavaScript platform is used for rapid prototyping

and produces cross-platform (Android, iOS, Web)

code, written by Node.js. The HTTP servers react

with the client using HTTP protocol based on

Request-response cycle, which is used to establish

web and mobile applications. HTTP server takes the

client request as web then sends the response to the

client after processing. Generally, the client request

is in three methods, first the GET method to gain a

resource, second the POST method to send

information from client to server, and third the

DELETE to remove a specific resource from the

HTTP server. MQTT server is based on a broker for

publishing/subscribing message, which is employed

the MQTT protocol to publish/subscribe

communication. Note that the MQTT messages are

considered lightweight. Messages published from

the client are subscribed by MQTT servers and

inserted in the DB. These messages contain the

sensor data which is small packet size.

2. Broker: is considered a part of the MQTT server.

All messages are received and published to all

subscribers by broker. When multiple brokers are

used on a cluster, the haproxy is utilized to

distribute MQTT data between these brokers.

3. Database: The proposed IOT cloud utilizes

Redis DB using key-value to store the data in-

memory database. Redis DB is an open source code,

high speed, and NoSQL. In addition, Redis DB

increases the reliability because multiple nodes and

clustering are used. The data is distributed among

Redis DB nodes using a cluster. Therefore, the work

is continuous whenever one or more Redis nodes

are failed.

4. Proxy Load Balancer: Load Balancer manages

cloud resources and decides the distribution of task

among the VMs at run time, whenever an idle or

least loaded VM is discovered by utilizing the

resources. Many algorithms have been proposed to

enhance load balancer, such as static WRRA. This

algorithm type fairly distributes the load among all

VMs. WRR algorithm is considered inappropriate

for cloud computing because there is no previous

acknowledgment of the process running time. This

leads to unfair load distribution among the nodes

(18). The dynamic load balance algorithm is

considered more effective in cloud computing

environment than static algorithm. Firefly algorithm

is considered the most appropriate dynamic based

on the comparison performed in (19). The main

disadvantage of dynamic load-balancing algorithm

is the run-time overhead. This is because decision-

making to distribute the workload among processors

to select processes increases the communication

delay which is related to the job. Therefore, in this

paper, we propose a new developed load balancing

algorithm to reduce the communication delay. The

proposed algorithm modified the Adaptive Firefly

algorithm by utilizing the WRR to overcome the

problem of the dynamic cloud computing

environment (20).

In this paper, a healthcare application is

implemented to reduce the effort of people, and to

insure the status checking of patient. This is

performed all the time and in real-time by detecting

and monitoring the patient's heartbeat by the doctor

and the patient himself. The healthcare web

application consists of client-side which provides

the login, registration, and all information required.

The information includes stuff, doctor, patient, and

patient’s accompanist. Furthermore, the application

provides chatting with the client and displaying

real-time data. The client-side sends information

using HTTP protocols to the server side that is

located in the cloud which works on managing and

saving these data. The real-time data is received

from patients' heartbeats sensor, which is connected

to the omega controller. The omega sends data by

MQTT protocol to the cloud proxy to select one of

the available brokers. These brokers receive and

publish the information to the MQTT server to be

inserted in the Redis database. This information is

required by the clients (doctor, patient and patient's

accompanist) whose send a request from their own

client-side application. Those requests are

transferred via HTTP protocols to the WRRA

proxy. Finally, a suitable server is selected to

receive the requests. This is performed based on the

way server sorted via firefly algorithm as detailed in

Fig.2.

Figure 2. Architecture of IoT cloud computing

system

https://en.wikipedia.org/wiki/Android_OS
https://en.wikipedia.org/wiki/IOS
https://en.wikipedia.org/wiki/World_Wide_Web
https://en.wikipedia.org/wiki/Node.js

Baghdad Science Journal Vol.16(1)2019

134

The task scheduling is occurred as follows;

there are four instances (VMs), one for proxy and

the others are application servers (AS). The value of

all CPUs, memories, and the latency between the

proxy and the application servers are computed.

Based on these parameters the servers are sorted for

each time period. The URLs of sorted servers are

inserted in the database that placed inside the proxy

server. The proxy acquire these values (URLs) from

the database based on the WRRA. The best server

gets a higher weight than the second server and the

second server will be a higher weight than the last

one.

At the same duration the sorted servers will be

inserted to the database. Then, the proxy will read

the new values and reweight his servers’ URLs. The

firefly algorithm continuously checks the servers’

status and sorts them. At the same time the WRRA

frequently reweights the servers based on firefly

results. This parallel operation will lead to minimize

the delay time as illustrated in Fig 3.

Figure 3. The sequence diagram of load balancer procedure

The firefly algorithm takes into

consideration the status of resources to select the

optimal VM for running the task. The best servers

checking is occurred every few milliseconds.

Scheduling and checking are represented by

adding three parameters to the firefly algorithm;

these parameters are CPU, memory, and latency. To

represent these parameters between proxy and the

servers, the probability range of the scheduling is

divided into 10 values from (0.1 – 1). For each one,

by giving the highest probability to CPU, then to

memory, and finally the latency. The prioritization

calculation is illustrated in Table 1:

Table 1. Firefly priority scheduling
CPU

Ratio

Memory

Ratio

Latency

Ratio
Probability

Sorting

Index

1 1 1 1 1

1 1 0.9 0.99 2

1 1 0.8 0.98 3

1 1 0.7 0.97 4

1 0.9 1 0.96 5

1 1 0.6 0.96 6

.

.

.

0.1 0.1 0.2 0.11 999

0.1 0.1 0.1 0.1 1000

The Adaptive Firefly algorithm code is inserted in

two locations. The first location is in the application

servers (AS) which is responsible for collecting data

from the server itself. The other location is in the

proxy server in order not to waste time when proxy

asks for the firefly decision; the job of this part is

comparing the data received from the AS. Then

sorting them is based on the information of

scheduling table and save the data in Redis

database, which it also located in proxy server. This

is used by WRRA as a proxy. The AFA difference

from the standard algorithm by using the scheduling

table is illustrated in Table 1. In addition, AFA

includes two parts working in parallel as show in

the following pseudo-code:

Baghdad Science Journal Vol.16(1)2019

135

Pseudo code of Adaptive firefly (AFF) algorithm
 Begin

 Input: objective function f (x);

 Output: the sorted best solution;

 Initialize the population p: X = x1, x2,, xn ;

 /* This part is located in the application servers sending

their status frequently*/

 Time interval do/* For each firefly lighting part1*/

 Calculate the objective function f (xi) for firefly

position xi of firefly i;

 Light intensity Ii at xi is determined by f (xi);

 End

 /*This part is located in proxy server to check and sort the

application servers */

 Time interval do

 Calculate the latency Li between congregation C

and lighting fireflies

 For i=1 to No_of_fireflies do

 For j=1 to No_of_fireflies do

 If Ii>Ij then

 Exchange firefly population;

 Else if Ii=Ij then

 If Li> Lj then

 Exchange fireflies

population

 End

 End

 End

 End

 End

 Output the best sorted fireflies in the population;

 End

Results and Discussion:
In order to evaluate the proposed load

balance algorithm in IoT cloud environment,

various experiments are implemented. The

implementation is performed by applying different

conditions on the HTTP and MQTT proxy VMs

separately. The performance of the HTTP proxy is

measured by generating many users to connect

between them and the HTTP server. The client

requests a web page using the GET methods, and

then if the request reaches to the HTTP servers

successfully; it should respond with the web page.

On the other hand, if the client does not get the

response, this request is considered as a failure.

Throughput and response time are used to evaluate

the performance of this system in both HTTP and

MQTT sides. Throughput is the number of requests

that a server can serve per second. The greater the

value of throughput is, the better the system

performance becomes. Response time is the total

time from the moment that a client sends a

request until the time that a request has done.
The small value of response time is, the better the

system performance becomes.

In Fig. 4. (a), we compare the throughput of the

HTTP proxy between two algorithms (AFF

combined with WRR and AFF alone) according to

the number of users.

Overall, it is noticeable that the throughput of the

(AFF+WRR) is always more than AFF alone during

the entire period. The maximum difference between

both algorithms occurs at 12000 users, as the

combined algorithms reach its peak at more than

275 req/sec and AFF alone value a lit bit more than

100 requests per second.

At the beginning, both algorithms experienced

exponential increase since the number of the user is

growing up and it can be handled, but this increase

stops at nearly 6k users with throughput

approximately 75 req/sec in AFF. After that, the

throughput started to be more stable with the minor

rise to exceed 100 req/sec at 12 thousand users

because the ability of proxy to serve more user is

decreased. Finally, the throughput fluctuates put and

down until it reached the maximum value for AFF

at nearly below 150 req/sec at 20000 users when the

ability of the proxy to process more request stops.

For AFF and WRR, the throughput continues rising

from the initial value to reach its maximum value

for a specific number of users that can be served

which is 12000 users. Then it is slightly decreased

to approximately 250 before reaching 16k users

where the number of users reached to the highest

capability value of the system. During the period

between nearly 15000 and 18000 users, the

throughput remains constant at almost 250 req/sec.

Finally, the throughput suddenly drops to nearly

175 req/sec at 20k users because it overrides the

limitation.

The average response time comparison of

adaptive Firefly algorithm and its combination with

weighted round robin is displayed in Fig.4(b)

It is noticeable that in entire period the

average response time of the algorithms’

combinations is always lower than AFF. In

addition, the difference of them increases when 15k

users is reached, where the maximum peak of the

AFF plus WRR is about 9000 ms and the AFF alone

is about 12000ms.

At the start, the average response time of

both algorithms increase gradually as the number of

requests increases. On the other hand, the increase

in the response time is saturated at nearly 16k users

with average response time of ~10,000 ms in AFF.

The average response time, after 16k users, slowly

increases until it reaches 12kms for 20k users.

Hence the system reaches the maximum allowable

number of users.

For the combination of algorithms, the

relation between number of users and average

response time is linear until the number of users

reaches14k. Because the response time depends on

serving the request, the load of the proxy increases

Baghdad Science Journal Vol.16(1)2019

136

and thus it cannot redirect more than a specific

number of requests and the rest of requests wait. In

this case, the number of requests is between 14k and

20k. The solution of these limitations is to use more

proxies or more cores.

(a) Throughput of the HTTP proxy

(b) Average response time of the HTTP proxy

Figure 4. HTTP proxy performance comparison of the combination algorithms and AFF alone

To estimate the performance of the MQTT

proxy, 10k users is generated. Each user publishes a

topic in a message based on the number of

messages. These messages that are published and

the delay of transmission are used to determine

median response time and the throughput. Fig. 5(a)

shows the median response time of the MQTT

server increasing from 0.01 to 0.12 ms in the

interval 9k and 10k users. Fig. 5 (b) shows the

throughput of MQTT server. When the number of

users is rising to more than 4000 the throughput is

decreasing to less than 3500 requests per second

because the limitation of the proxy then cannot

handle all users.

Baghdad Science Journal Vol.16(1)2019

137

a. Median Response time of the MQTT proxy

b. Throughput of the MQTT server

Figure 5. Performance of the MQTT server

Conclusion:
The development of IoT technology has led

to a huge amount of information because there are

millions of peoples connecting with each other by

using different physical devices, then cloud

computing is very important paradigm. The aim of

this paper is to solve the load-balancing in the

cloud-computing environment by using Adaptive

Firefly Algorithm (AFA) based on the Round Robin

(RR) to get high performance.

The proposed method minimizes the response time

and maximizes the CPU utilization by distributing

the workload between different VMs with

considering availability and load of each VM.

Whenever a virtual machine (VM) is loaded with

multiple tasks, these tasks should be eliminated and

sent to less loaded VMs in the same data center.

Baghdad Science Journal Vol.16(1)2019

138

This research uses MQTT protocol to send the data

from the sensors to the server at cloud computing

and HTTP protocol utilized to send the data of the

patient to the cloud computing. In addition, two

different kinds of load balancing algorithms are

used, the first is dynamic (Firefly) and the other is

static (weighted round robin) to gain both types'

benefits. Furthermore, the result shows the

influence on the average response time and the

throughput by the huge growing amount of user in

the two sides, the HTTP and the MQTT sides. In the

future, the proposed method can be developed by:

1. Updating the mechanism for the firefly algorithm

in order to reduce the searching time for

candidate nodes. Furthermore, we will check

how to use other intelligent algorithms into this

work in order to improve system performance

and efficiency.

2. The system could include multiple kinds of

sensors and other types of protocols.

3. Priority can be added to the message depending

on its important information.

4. Finally adding the privacy and security to the

whole system.

Conflicts of Interest: None.

References:
1. Abdulhussain S, Ramli A, Saripan M, Mahmmod B,

Al-Haddad S, Jassim W. Methods and Challenges in

Shot Boundary Detection: A Review. Entropy.

2018;20(4):214. doi:10.3390/e20040214.

2. Ahmed S, Saqib M, Adil M, Ali T, Ishtiaq A.

Integration of Cloud Computing with Internet of

Things and Wireless Body Area Network for

Effective HealthCare. 2017 (ISWSN) [Internet].

2017 Nov; DOI: 10.1109/ISWSN.2017.8250019.

3. Al-Joboury IM, Al-Hemiary EH. F2CDM: Internet of

Things for Healthcare Network Based Fog-to-Cloud

and Data-in-Motion Using MQTT Protocol.

International Symposium on Ubiquitous

Networking UNet 2017: Ubiquitous Networking

[Internet]. 2017 Nov;10542:368-379. Available from:

DOI: 10.1007/978-3-319-68179-5_32.

4. Ahmad MO, Khan RZ. Load Balancing Tools and

Techniques in Cloud Computing: A Systematic

Review. Advances in Computer and Computational

Sciences (ACCS). 2017 Sept;554:181-195.

DOI:10.1007/978-981-10-3773-3_18.

5. Makasarwala HA, Hazari P. Using Genetic Algorithm

for Load Balancing in Cloud Computing. 2016 8th

(ECAI) [Internet]. 2016 Jul [cited 2017 Feb 23];ESS-

50-ESS-54. DOI:10.1109/ECAI.2016.7861166.

6. Kumar SM, Chakravarthi P, Jagadeesh B, Prakash

SM. Load Balancing in Cloud Computing. IJET.

2018; 7(1.1):306-310.

7. Chandrasekaran K. Essentials of cloud computing. 9
th

ed. CRC Press, Boca Raton London NewYork:

Chapman and Hall; 2015.7, Virtualization; p. 161-

181.

8. Khan MA, Paplinski A, Khan AM, Murshed M,

Buyya R. Dynamic Virtual Machine Consolidation

Algorithm for Energy-Efficient Cloud Resource

Management: A Review. Sustainable Cloud and

Energy Services[Internet]. 2017 Sep [cited

2013];135-165.DOI:10.1007/978-3-319-62238-5_6.

9. Hou L, Zhao S, Xiong X, Zheng K, Chatzimisios P,

Hossain SM, et al. Internet of Things Cloud:

Architecture and Implementation. Communications

Magazine (CM). 2016 Dec;54(12):32-39. DOI:

10.1109/MCOM.2016.1600398CM.

10. Makkar G, Kau PD. A Review of Load Balancing in

Cloud Computing. IJARCSSE. 2015;5(4):594-597.

11. Gavathri G, Latha R. Implementing a Fault Tolerance

Enabled Load Balancing Algorithm in the Cloud

Computing Environment. IJEDR. 2017;5(1):249-256.

12. Karthika K, Kanakambal K, Balasubramaniam R.

Load Balancing Algorithm Review’s in Cloud

Environment. IJERGS. 2015 Jun;3(3):661-667.

13. Gao R, Wu J. Dynamic Load Balancing Strategy for

Cloud Computing with Ant Colony Optimization.

Future Internet [Internet]. 2015 Sep [cited 2015 Nov

26]; 7 (4):465-483. DOI:10.3390/fi7040465.

14. Bhole R, Singh HJ, Khamkar P, Joshi P, Bendbhar R.

Load Balancing in Cloud Computing Using

Autonomous Agents. IJIR. 2017;3(3):237-239.

15. Moghtadaeipour A, Tavoli R. A New Approach to

Improve Load Balancing for Increasing Fault

Tolerance and Decreasing Energy Consumption in

Cloud Computing. 2015 2nd International Conference

on Knowledge-Based Engineering and Innovation

(KBEI). 2015 Nov [cited 2016 Mar 21];

DOI:10.1109/KBEI.2015.7436178.

16. Gopinath G, Vasudevan SK. A Novel Improved

Honey Bee Based Load Balancing Technique in

Cloud Computing Environment. AJIT.

2016;15(9):1425-1430.

17. Xavier VMA, Annadurai S. Chaotic Social Spider

Algorithm for Load Balance Aware Task Scheduling

in Cloud Computing. Cluster Computing. 2018

Jan;1–11. DOI:10.1007/s10586-018-1823-x.

18. Aditya A, Chatterjee U, Gupta S. A Comparative

Study of Different Static and Dynamic Load

Balancing Algorithm in Cloud Computing with

Special Emphasis on Time Factor. International

Journal of Current Engineering and Technology

(IJCET), 2015 Jun; 5(3):1898-1907.

19. Rajeshkannan R, Aramudhan M. Comparative Study

of Load Balancing Algorithms in Cloud Computing

Environment. Indian Journal of Science and

Technology (IJST), 2016 May; 9(20).

DOI:10.17485/ijst/2016/v9i20/85866.

20. Singh A.B, Bhat S, Raju R, D’Souza R. Survey on

Various load Balancing Techniques in Cloud

Computing. Advances in Computing (AC). 2017;

7(2):28-34.

https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22M.%22&searchWithin=%22Last%20Name%22:%22Saqib%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22M.%22&searchWithin=%22Last%20Name%22:%22Adil%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Taimur%22&searchWithin=%22Last%20Name%22:%22Ali%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Atif%22&searchWithin=%22Last%20Name%22:%22Ishtiaq%22&newsearch=true
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8241164
https://doi.org/10.1109/ISWSN.2017.8250019
https://link.springer.com/conference/unet
https://link.springer.com/conference/unet
https://link.springer.com/book/10.1007/978-3-319-68179-5
https://link.springer.com/book/10.1007/978-981-10-3773-3
https://link.springer.com/book/10.1007/978-981-10-3773-3
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7843798
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7843798
https://doi.org/10.1109/ECAI.2016.7861166
https://link.springer.com/book/10.1007/978-3-319-62238-5
https://link.springer.com/book/10.1007/978-3-319-62238-5
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=35
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=35
https://doi.org/10.1109/MCOM.2016.1600398CM
https://doi.org/10.3390/fi7040465
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7430175
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7430175
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7430175
https://doi.org/10.1109/KBEI.2015.7436178

Baghdad Science Journal Vol.16(1)2019

139

الحوسبة السحابية اعتمادا على خوارزميات اليراعة المتقدمة -تطوير موازنة الاحمال لأنترنت الأشياء

 والدورية المرجحة

 منال فاضل يونس مروة محمد عبد

 قسم الحاسابات، كلية الهندسة، جامعة بغداد، بغداد، العراق.

 :الخلاصة

البلايين من الأجهزة المادية غير المتجانسة معاً لتحسين نوعية الحياة ربطإلى (IoT) أدى التطور في إنترنت الأشياء

بالإضافة إلى سعة تخزين كبيرةفي الهائلة التي تم تجميعهاخزين هذه البيانات . يجب تبيئتهم، من خلال جمع البيانات من البشرية

نقل . تباستخدام نوعين من البروتوكولا IoTتوفيرها الحوسبة السحابية. يتم نقل بيانات أجهزة التي، قدرات حاسوبية عالية

 أداء النظاملتحسين يهدف هذا البحث. Hypertext Transfer Protocol (HTTP)و(MQTTالرسائل في قائمة انتظار النقل)

، استخدام موازنة التحميل في الحوسبة السحابية لتوزيع عبء العمل لمن خلاموثوقية من خلال الاستخدام الفعال للموارد. ال وزيادة

الديناميكية :ديناميكياً عبر العقد لتجنب زيادة التحميل على أي مورد فردي. من خلال الجمع بين نوعين من الخوارزميات

 Weighted Round Robin)الثابتة الخوارزمية و Advanced Firefly Algorithm)المتقدمة اليراعة) خوارزمية

Algorithm) وقت الاستجابة.. وأظهرت النتيجة تحسن في استخدام الموارد وزيادة الإنتاجية وتقليل وقت

 .موازنة الحملإنترنت الأشياء، ، اليراعة : الحوسبة السحابية، خوارزميةالمفتاحيةلكلمات ا

