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Abstract:

In this work, we introduced the Jacobson radical (shortly Rad (S)) of the endomorphism semiring S
= Endg(B), provided that B is principal P.Q.- injective semimodule and some related concepts, we studied
some properties and added conditions that we needed. The most prominent result is obtained in section three
-If B is a principal self-generator semimodule, then Z(sS) = W(S).
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Introduction:

This paper is interested in the generalization
of some results in ring theory and module theory.
Semirings and semimodules and their applications;
grow in different branches of mathematics,
computer sciences, physics, also in many other
areas of modern science. The study of semimodules
over semiring has been extensively considered, as
reviewed by Golan in (1) and references therein.
Semirings are moved from rings but simultaneously
there are important differences between them. A
semiring is a nonempty set R together with two
operations, addition and multiplication, where these
two operations are associative, whereas addition is a
commutative operation, the distribution law holds,
there is 0 € R (additive identity element) such that
t+0=t=0+t,t0 =0t =0 foreach t in R and there is
multiplicative identity element (denoted 1) where
1+0. It is commutative if the second operation is
commutative. For instance, the set of natural
number N is a commutative semiring under usual
addition and multiplication, but it is not ring. A
semimodule B over semiring R is defined similarly
in module over ring(1). In 1945 Nathan Jacobson
was the first to study the Jacobson radical for
arbitrary rings, it is denoted by J(R) or rad(R), so it
was called after his name, where he defined the
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Jacobson radical of a ring R to be the ideal
consisting of those elements in R that annihilate left
R-module and then was given by Kasch(1982)(2),
Anderson(1992), Isaacs(1993) and Lam(2001) with
equivalent definitions. They defined J(R) to be the
intersection of all maximal left ideals of the ring
which equals the sum of all superfluous left ideals.
Analogously, in this paper we study the Jacobson
radical of endomorphism semiring § of an R-
semimodule, in particular of P.Q.-injective
semimodule (3). For S = Endy(B), we define the
Jacobson radical of S, socle semimodule, singular
and symbolizes them respectively by Rad(S),
Soc(B), Z(S). Rad(S)= N{ J: J is maximal left
ideals of S}= the set of all non-invertible elements
of S (4). Z(S) ={se S | ann(s) is essential ideal
of S}(5), Soc(B)= n{U | U is essential
subsemimodule  of  B}=Y{L : L is a simple R-
subsemimodule of B}(3). Also we define the
concept "Kacsh semimodule" similar to what is
defined in module (6), as well the concept
principally self-generator semimodule and we show
that, if B is principally self-generator with § =
Endzr(B ) we have Z(S ) = W(S) where W(S) ={
w € S| ker w is essential in B }.

We define condition for B called C,-condition,
where an R-semmimodule B is said to satisfy the
C,-condition if each subsemimodule of B which is
isomorphic to a direct summand of B is itself a
direct summand of B, it is shown that every cyclic
P.Q.-injective semimodule has C,- condition and, if
B has C,- condition then W(S)< Rad(S) in module
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theory, but in semimodule theory we must add some
conditions for B in order to get W(S)< Rad(S) .
Throughout this paper all semirings are
commutative with identity and all semimodules are
unitary.
In the following, we review some definitions
and remarks that will be applied in this paper.

Preliminaries

Definition 1. (3). Let R be a semiring, then for any
ae R,

Ra = {x: x =ta} for some t € R. It is a left ideal of
R called the principal left ideal generated by a.

Definition 2. (4). The Jacobson radical of a
semiring R, denoted by Rad(R), is the intersection
of all maximal left ideal of R. For instance,
Rad(Z,) = {0, 2}.

Definition 3. (4). A semiring R is called a left local
semiring if it has a unique maximal left ideal.

Theorem 4. (4). Let R be semiring, then the
following statements are equivalent:

(a)R is local.

(b)Rad(R) is maximal ideal of R.

(c)The set of all non-invertible elements is an ideal
of R.

(d) Rad(R) = {r € R| r is non-invertible }.
Definition 5. (1). A nonempty subset U of
semimodule B is called subsemimodule if b, b'e
B, te R, then b +b" and tb € U. It is denoted by U
<B.

Definition 6. (7). Let R be a semiring and U < B,
then U is said to be a direct summand of B if there
exists subsemimodule Cof B, suchthat B=U & C
and B is called a direct sum of U and C.
Definition7. (1). A subsemimodule U of an R-
semimodule B is called subtractive if vb, b'e B in
which b +b', be U, then b'e U. A semimodule is
subtractive if all subsemimodules of it is
subtractive. It is clear that {0} is subtractive of any
semimodule.

Definition 8. (8). An element b of a semimodule B
is cancellable if b+ ¢ = b+ d implies that c = d. The
semimodule B is cancellative if every element of B
is cancellable.

Definition 9. (3). A semimodule B is called a
semisubtractive, if for any b, b'e B there is always
some he B satisfying b+ h =b' or some ke B
satisfying b'+ k = b.

Definition 10. (5). A subsemimodule U of an R-
semimodule B is called maximal subsemimodule
of B if it is not contained properly in any other
proper subsemimodule of B.
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Definition 11. (9). A subsemimodule U of a
semimodule B is called essential (large)
subsemimodule of B, if UNnC =0 implies C = 0
where C is any subsemimodule of B, notational U
<, B.

Definition 12. (10). A semimodule B is called
uniform semimodule if the intersection of any
nonzero two subtractive subsemimodules of B is
nonzero subsemimodule of B.

Definition 13. (5). Let B be a semimodule and
be B. The left annihilator of b is defined by
anng(b)={te R|tb = 0}. Obviously annr(b) is a left
ideal of R. If U is a subsemimodule of B, then

anng (V) ={te R|tb =0,V be U}isideal of R .
Definition 14. (5). The singular subsemimodule of
B is defined by Z(b)={be B| anng (b) is essential
ideal in R}. If Z(B)=3B, Bis called singular and if
Z(B)=0, then B is called nonsingular semimodule.
The singular subsemimodule of the left semimodule
rR is called the (left) singular ideal of the semiring
R and is denoted by Z(R), i.e. Z(R) ={te R :
anng(t) NH 0 for every nonzero left ideal H of R}.

Remark. 15. (5). Z(R) is an ideal of R.

Definition 16. (5). A subsemimodule S of B is
called small  (superfluous) if for any
subsemimodule S' of B, S+S' = B implies S'
Definition 17. (5). The radical of a semimodule B
defined by Rad(B)= N{ U: U is maximal
subsemimodule of B}.

Remark 18. (5). Rad(B)={ U: U is maximal
subsemimodule in B}= Y{S: S is small
subsemimodule in B}.

Proposition 19. (5). Let B be left R-semimodule, if
B is finitely generated, then Rad(B) is superfluous
subsemimodule of B.

Definition 20. (3). Let B be a semimodule, the sum
of all simple subsemimodules of B is called the
socle of B, which is equal to the intersection of all
essential subsemimodules of B, it is denoted by
Soc(B). If B has no simple subsemimodule then we
put Soc(B) = 0.

Definition 21.(11). A semimodule B is said to be
semi-simple if it is a direct sum of its simple
subsemimodules B.

Remark 22. (3). If Soc(B) = B, then B is semi-
simple.

Definition 23. (5). Let Band B’ be two R-
semimodules. A mapping ¢»: B — B'is said to be a
homomorphism of R-semimodules if ¢(b +b") =
¢(b)+ ¢p(b") and ¢(tb) = t ¢p(b), Vb, b'e B and te
R.

The set of R-homomorphisms of B into N is
denoted by Hom (B, N). A homomorphism i is
called an epimorphism if its onto, it is called a
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monomorphism ify is one-one and it is
isomorphism if i is one-one and onto. Also we
denoted Endg(B) is the set .S of endomorphisms of
B.

Remark 24. (5). For a homomorphism ¢: B — B’
of left R-semimodules we define

(@) ker(¢) = {be B| ¢(b) = O}which is a subtractive
subsemimodule of B.

(b) ¢(B) = { p(b) | be B}. It is subsemimodule of
B'.
(€) Im(¢p) = {b'e B'| b'+ ¢p(b) = ¢p(b") for some b,
b"e B} also is a subtractive subsemimodule of B'.
It is clear that ¢(B)S Im(¢p). The equality is
satisfied if ¢(B)is subtractive

Definition 25.(3). An R-semimodule E is B-
injective (E is injective relative to B) if, for each
subsemimodule U of B, any R-homomorphism
from U to E can be extended to an R-
homomorphism from B to E. A left R-semimodule
E is injective if it is injective relative to every left
R-semimodule. A semimodule B is quasi -injective
if it is B-injective.

Remark 26. Every injective semimodule is quasi-
injective but the converse is not true.

For example, Z /27 as N-semimodule is quasi-
injective but it is not injective.

In (6) a generalization for injective modules
were given, in (3) the following concept was given
analogous to that concept for semimodules.

Definition 27.(3). An R-semimodule is called
principally quasi-injective (P.Q.-injective) if each
homomorphism from cyclic (principal)
subsemimodule of Bto Bcan be extended to an
endomorphism of B.

Examples 28.

(a) Every injective semimodule is P.Q.-injective .
(b) Every semi-simple semimodule is P.Q.-
injective.

(c) Z, as N-semimodule is P.Q.-injective but not
not injective.

Definition 29. (3). An R-semimodule B is called
P-injective if for any principal ideal / of R and each
R-homomorphism a : / — B, there exists an R-
homomaorphism y : R— B, which extends «.

The Jacobson radical of endomorphism semiring
and some related concepts

In this part we study the Jacobson radical of
endomorphism semiring, in particular for P.Q.-
injective semimodule and some related concepts.
We add some remarks that help us to avoid some
problems which we encountered. For § = Endz(B),
we discuss Z(S), Soc(B), W(S). We introduce the
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concept of kasch semimodule, and study their
relationship with Jacobson radical, also, C,-
condition, where semimodule is said to satisfy the
C,-condition if every subsemimodule of B which is
isomorphic to a direct summand of B is itself a
direct summand of B,and principally self -
generator, an R-semimodule Bis said to be
principally self-generator if for every element be B,
there exists an epimorphism a:B-—>Rb. These
concepts are mentioned for modules in (6) and (12).

In this section we considered B is semimodule
with § = Endg(B).

The following lemma was proved in [Kasch,
p.110](2) for module, similar, we prove this lemma
for semimodule.

Lemma 1. If U<, B’ and a € Hom(B, B’), then
a (V) <, B

Proof: Let V subsemimodule of B and a~}(U)n V =
0 implies Un a (V) = 0 (since U<, B'), then a (V)
0= V< ker (a) = a }(0)<aX(U)> V =
a l(U)nv=0. I/l

Remark 2.Let B be an R-semimodule with S, then
the set W(S)= { w € S| ker w is essential in B } isa
two sided ideal of S.

Proof: Since the zero homomorphism in .§ and its
kernel isB <, B, we have W(S)# @. Now let
a,pe W) and f € S, then kera <, B and
kerp <, B, since kera n kerp < ker (¢ + B), then
ker(a + ) essential subsemimodule of B, so
a+pf € WS). Also ker fa =a l(ker f)2
ker a(since ker a is essential, then ker fa <, B).
Finally ker af =f~(ker a ) by Lemma (1) ker af
<. B. Hence fa, af € W(S). /Il

Note: Let A,p= {m€ B|m = B(w(m))}, where
w,pB ES.

Lemma 3. If B is a P.Q.- injective semimodule and
w € §, then ker w is essential in B iff A,,z=0 for all
B E€S.

Proof: Assume that A,z= 0 VB € § and ker
wNRb=0, beB, then Ix(w(b)S lx(b) by
Proposition(3. 17)(1) it follows be S w(b) this
means b = B(w(b)) for some B € §so b =0, then
kerw <, B.i.e., w € W(S).

Now, assume A,z # 0 for some Be §, that is
30 # b € B such that b = B(w(b)), then Bw |zp=
1zp which implies that kerBw N Rb = 0, then
ker wNRb = O(ker w < kerfw ). Therefor w &
W(S). /1

Note: By the above Lemma W(S)= {w € S| 4,5=
Oforall g €S}.
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Lemma 4. Let J be a subtractive ideal of the
subtractive semiring R, then / CRad(R) if and only
if each element of the coset 1+ / has an inverse.
Proof: (=)Assume that 1+a is not invertible for
some a€ /, then 1+a must belongs to some
maximal ideal J of R, now a € Rad(R) implies a €
J and 1+a € J (since J is subtractive), then 1€ J and
so J=R this contradicts the maximality of J.
Therefor 1+a is invertible.

<= If each member of 1+ / has an inverse in R, but /
is not contained in Rad(R) that is, there is a
maximal ideal J of R not containing /. If a € / and
a ¢Jthen (J,a) =R = 1=u +ra for some u in J and
rinR. we have 1+0=u +ra (0,ra€ /) =21+ /=u+/
=u€l+ /=u is invertible, a contradiction , =
] SRad(R). I

Lemma 5. For any element a of R, a €eRad(R) if
and only if 1+rais invertible forallr € R.

Proof: If a €Rad(R), then (a) <Rad(R) by
Lemma(4) we have, each element of the coset 1+(a)
is invertible = 1+ra has inverse where re R.
Conversely, let 1+ra is invertible, if a¢Rad(R),
then for some maximal ideal j , a¢J which implies
Ra+j=R =ra+j=1forsomejinj, thatis, ra +j
=0+1 implies that, jel+(a) hence j is invertible and
this is a contradiction.  ////

The following is illustration of some relationships
between Rad(S) and concepts W(S) and Z(S) on
P.Q.-injective semimodule. Where those properties
are mentioned in (6) and (12) for modules.
Proposition 6. Let B be P.Q.-injective semimodule
with S.

(a) 2(3) < W(S)

(b) If Bis uniform, then Z(S) < Rad(S)

(c) If every monomorphism in § has right inverse
then W(S) € Rad(S).

Proof: (a) Leta &€ W(S), then ker « is not essential
in B= keraN Rb = 0 where 0 #be B hence
a|grp: Rb— B is monic, since B is P.Q.-injective,
then there is B:B— B such that af
1g impliesaf(b) = b = a ¢ Z©S)(if t € l(a
)= ta=0, (ta)f=0=t(af)=0=1t=0,50
I(a )= 0 but this a contradiction.

(b) If @ € Z(S) = () is essential ideal of S =
ker(a) #0 ( let ker(a) =0, if t € I(a) = ta=0, then
3 f such that ¢ f=1= (ta)f=0 =t (af ) =1=0 this
contradiction with essential). For any 8 € S we have
ker (a)n ker(1 + fa) = 0 (since Bis uniform) we
have ker(1+Ba)=0= (1+fa)f=13 = a €
Rad(S).

€ If ae W) =ker (a) <,B, ker (a)N
ker(1 + a)= 0 we get ker(1 + a) = 0, hencel+ «
has right inverse by hypotheses , then @ € Rad(S).
1
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In (6) the notion kasch module was
introduced, similarly, we introduce this concept for
semimodule as follows:

Definition 7. (3). An R-semimodule B is called a
kasch semimodule if every simple sub quotient A of
B is embedded in B. i.e., there is monomorphism
from A into B.

Example 8. let B= Zg= 2Zs®3Zg. Since
Lel2Z¢ =3¢, then 3Zgembeds in Zg, i.e. there is
monomorphism «a: 3Zg — Z¢, Similarly Ze/3Zg,
but Z over itself is not kasch semimodule

Lemma 9. (3). Let Bbe a P.Q.-injective
semimodule which is kasch semimodule. if / is
maximal ideal of R, then r(/ )#0 if and only if
[(m)< [ for some 0+ m € B. Particularly, (/) is a
simple as right S-simimodule. Where r(/)={b € B
| ub=0, Yue / }and I(m)={te R| tm=0}.
Proposition 10. If B is a P.Q.-injective which is
kasch semimodule, then W(S) = r5(Soc(B)).

Proof: Since Soc(B) <. B by Proposition(3.31.)
(3). Let @ € W(S) = ker(a) <, B, then Soc(B) <
ker(a) = Soc(B)a = 0 = a € rg(Soc(B)). On the
other hand, Soc(B)a = 0 implies ker(a) <, B and
a € W(S). /Il

Proposition 11. Let Bbe a P.Q.-injective
semimodule which is kasch semimodule with S,
then Soc(rB) = Soc(Bs)< r(Rad(R))

Proof: Soc(zB) = Soc(Bs) from (3). Let be
Soc(Bs). If  Rb is a simple in gB, then bS is a
simple inBs. Let / be a maximal ideal in R, /b =
Rbor /b=0.If Jb=Rb there exists i€/ such that
b=ib implies i=1, but this contradiction, then /b =0
and hence be r(J) )< r(Rad(R)). /Il

Lemma 12. For b in a local semiring R, then Rb is
small in R if and only if be Rad(R).

Proof: Let Rb be small in R implies, be Rb, R +
Rb then b is not invertible, hence b € Rad(R).
Conversely, suppose that b € Rad(R) and / is an
ideal of R with /+ Rb=R. If ] # R then, by Zorn's
Lemma there is a maximal ideal J of R with beJ.
Since J + Rb=R and be Rad(R) c J, a
contradiction hence / = R, consequently Rb is
small.  //l/

In (13) the notion rP-injective ring” was
introduced, where the ring R is said to be P-
injective if gR is a P.Q.-injective module.
Analogous, we introduce this notion for semiring as
follows, a semiring R is called P-injective if R is a
P.Q.- injective semimodule.

In (13) the next result was proved for ring. We
prove this result for semiring, but in different way
(we will add the conditions r(b)+aR is subtractive
subsemimodule of RR and gR is semisubtractive
semimodule) as follows.
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Proposition 13. If R is left P-injective semiring,
then Rad(R) = Z( rR). Provided that r(b)+aR is
subtractive subsemimodule of gR and R is
semisubtractive semimodules
Proof: If a € Z (zR), then l(a) <, R. But,
I(a) NI(1+a)=0) [ sa=0 and s(1+a)=0 = s=0], so,
I(1+a)= 0. Hence r[l(1+a)] =R which implies
R =(1+a)R by Proposition (3.20.(iii))(3),
which means 1 + a is invertible and a € Rad(R),
that is Z ( rR) S Rad(R). Conversely, if a€
Rad(®R) andl(a)N Rb 0, b eR, by
Proposition(3. 21.) (iv) ) (3), r[Rb nl(a)]= r(b)+aR,
that is, r(b)+aR= R, but aR is small since a€
Rad(R) by Lemma(12.), so r(b) =R which implies
b =0, and hence l(a) <, R , therefore a € Z(R).
1

In(6) the following condition was added to
module which is related to P.Q.-injective, similarly,
we introduce this condition for semimodule.
Definition 14. A semimodule B has the C,-
condition, if every subsemimodule of B that is
isomorphic to a direct summand of B is itself a
direct summand of B.
Lemma 15.(3) Let B be a subtractive,
semisubtractive and cancellativeR- semimodule,
thenB=U@CifandonlyifB=U+Cand Un
¢ ={0}

In literatures, the notion of split monomorphism
or epimorphism were not found, only split exact
sequences where defined, see (14). In the following
we will give suitable conditions to define split
monomorphism of semimodule.

Lemma 16. If B is subtractive, semisubtractive and
cancellative semimodule, then a subsemimodule U
of B is a direct summand of B if and only if the
inclusion map i:U —» B has left inverse.

Proof: (=) is clear.

(&)Assume that a: B — U is a homomorphism
such that i = 1y. Let C = ker a, then UEUNC
implies

a(u) = uand a(u) =0=u =0, that is UnC = 0.
Claim. B = U & C, we must to show that B = U
+ C. Let be B, then a(b) € U. B is semisubtractive
implies either b = a(b)+h or b+ k = «a(b) for some
h,ke B

Casel b = a(b)+th = a(b)= a(a(b)) ta(h) =
a(b)= a(b) +a(h) = a(h)= 0 = he C=be U
+ C [a(a(®)) = a(i(a(d)) = ai(a(b)) = a(b)]

Case 2 b+ k = a(b), also implies k € C. Now k €
C=keU®C,ab)e U= a(b)e USC.ButU
@ C is a subtractive subsemimodule of B, so we get
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be U®C. Therefor B = U & C which means U is
a direct summand of B. ////

Remark 17. If B is subtractive, semisubtractive
and cancellative semimodule, a:U/ — B is said to
split  monomorphism if there exists a
homomorphism y: B — U/ such that ya = 1y;.
Proposition 18. Every quasi-injective semimodule
has C,-condition.

Proof: Let U be a direct summand of B and ¥:
U'— U be an isomorphism, m: B —» U be the
projection map. If ¢: B — B is an extension of 9,
such that ¢i'=i 9, then (W lm)pi'=W n)iv
=@ ng)i'=971(mi )9 = 9711y 9= 9719 = 1y,
then i' has left inverse and hence U ' is a direct
summand of B by Lemma(16).

S

1

v

)

1

Lemma 19. If B is subtractive, semisubtractive and
cancellative semimodule with S. If B has the C,-
condition, then W(S) < Rad(S).
Proof: ker( ) n ker (1+8) = 0 always holds. If
ker 6 is essential in B, then ker( 1+ 68) = 0 and
hence 1+ 6 is monic. Im(1+ 6 )= B letg: Im(1+6
) — B be the isomorphism b(1+ 8) — b. Since B
has the C,-condition, then Im(1+6) is a direct
summand of B (B is a direct summand of B ) this
means B =Im(1+6 ) @& B’ forsomeB' < B , let
a € § defined by a (b) = g(b) ifbe Im(1+6), a
(b) =0 if b € B, then a is well defined and a (1+ 6
) =1 and hence 8 € Rad(S). /I

Remark 20. If B is subtractive, semisubtractive and
cancellative quasi-injective semimodule, then W(S)
C Rad(S).

Proof: Since B has C,-condition by Proposition(18)
and by Lemma(19), we have W(S) < Rad(S). //ll

The  following characterization explain the
relationship between the C,-condition and cyclic
P.Q.-injective semimodule.
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Proposition 21. Let
semimodule with S.
@ If U and U’ are isomorphic cyclic
subsemimodules of B and U’ is a direct summand,
then U is also a direct summand of B.
(b) Every cyclic P.Q.-injective semimodule satisfies
C,-condition.
Proof: Since a direct summand of a cyclic
semimodules is cyclic, it is enough to prove (a),
similar to Proposition (18) with take U= Ru and U’
=Ru'.
(b) From (a). /Il
Proposition 22. If B is a cyclic, subtractive,
semisubtractive and cancellative semimodule P.Q.-
injective semimodule with §', then Z(S) < Rad( S).
Proof:
Since B is P.Q.-injective, then by Proposition (6
(b)) Z(S) & WI(S). Moreover by Proposition(22) B
has C,-condition, therefore W(S) < Rad(S) (by
Lemma(19) W(S) < Rad(S). We have Z(S)c<
Rad(S). /1l

In (6) principally self-generator module was
given. In the following we given an analogous of
that notion for semimodule and related relation.

Bbe a P.Q.-injective

Definition 23. (3). An R-semimodule B is said to
be principally self-generator if for every element
be B, there exists an epimorphism a:B—>Rb, and
then there exists b'e B such that a(b") = b.

Proposition 24. Let B be a principally self -
generator semimodule with S. Then Z(sS )= W(S).
Proof: Let w € W(S). Take 0 # a € .S we have ker
wN a(B)#0, say 0 # a(b) € ker w.

Since Bis principally self - generator, then b = A(b,)
where A: B — Rb, then a 4 #0, since a A(by) =
a(b) #0, but wa A = 0 because wa A(B)S wa(Rb)
= Rwa(b) = 0. Hence 0 # a A € r(w) N SA . This
means w € Z(S). Conversely, if w € Z(S) and 0 #
b € B, we must show that ker wN Rb+0. Since B is
principally self -generator, then there s
epimorphism A: B — Rband A1 #0, so r(w)N
SA #0, let war = 0 then ad € r(w)N SA for
some a € S where ad #0. Let aA(b,) #0, b,€ B, we
have alA(b;) € a(B) = Rb , so write ai(by) = tb
where te R , then w(tb) = w[aA(b;)] =0, so 0 #tbe
ker wN Rb, then w € W(S). //l/

528

Conclusion:

Some results are obtained in this paper, some
conditions and Lemma of semimodules have been
added to get similar results and characteristics of
modules. The Jacobson radical of endomorphism
rings has been expended for endomorphism
semirings of a P.Q.-injective semimodule, also
some properties of this notion are discussed.
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