DOI: http://dx.doi.org/10.21123/bsj.2019.16.1(Suppl.).0263

A Study on the Accuracy of Prediction in Recommendation System Based on Similarity Measures

Nadia Fadhil AL-Bakri^{1*}

Soukaena Hassan Hashim²

Received 24/4/2018, Accepted 16/10/2018, Published 17/3/2019

Abstract:

Recommender Systems are tools to understand the huge amount of data available in the internet world. Collaborative filtering (CF) is one of the most knowledge discovery methods used positively in recommendation system. Memory collaborative filtering emphasizes on using facts about present users to predict new things for the target user. Similarity measures are the core operations in collaborative filtering and the prediction accuracy is mostly dependent on similarity calculations. In this study, a combination of weighted parameters and traditional similarity measures are conducted to calculate relationship among users over Movie Lens data set rating matrix. The advantages and disadvantages of each measure are spotted. From the study, a new measure is proposed from the combination of measures to cope with the global meaning of data set ratings. After conducting the experimental results, it is shown that the proposed measure achieves major objectives that maximize the accuracy Predictions.

Key words: Collaborative Filtering, Inverse User Frequency, Prediction, Recommender System, Similarity Measure.

Introduction:

Recommender systems are tools that utilize the beliefs of a group of users to assist entities in that group to effectively explore new things of interest from a possibly tremendous set of choices. Collaborative Filtering (CF) is being developed for generating recommendations. CF can be categorized into two main algorithms: memory-based and model-based. Memory-based algorithms use the whole user-item database to generate predictions. Similarity measures are employed to find user's neighborhood.

Memory collaborative filtering can be classified mainly into user to user based and item to item based filtering. User-based exploits the relationship between the target user and all other users. Item-based makes use of the similarity between two items. Similarity measure computation depends mostly on user's explicit ratings (users scan items and rate them on a rating scale values). Although explicit rating captures user favorites to items perfectly, its main drawback is sparsity problem due to the vast amount of information in the world (1). In this paper, a study is presented to analyze the results of prediction values with the use of different similarity measures.

In section 2, challenges of collaborative filtering techniques are presented. In section 3, the Related Works on this field are subjected. In section 4, most similarity measures used in CF are presented in a table form. In section 5, the Experimental Results are conducted. The last section is the conclusion of this study.

Challenges of Collaborative Filtering Techniques

A brief introduction to the challenges that are considered important for the development of the research on recommender systems is introduced:

1- Cold-start problem: This refers to a situation where a recommender does not have adequate information about a user or an item in order to make relevant predictions. This is one of the major problems that reduce the performance of recommendation system.(2)

2- Data sparsity problem: This problem occurs as a result of lack of enough information, that is, when only a few of the total number of items available in a database are rated by users. This always leads to a sparse user item matrix, inability to locate

¹ Department of Computer Science, AL Nahrain University, Baghdad, Iraq.

² Department of Computer Science, University of Technology, Baghdad, Iraq.

^{*} Corresponding author: <u>nfi@sc.nahrainuniv.edu.iq</u>

successful neighbors and, finally, the generation of weak recommendations.(2)

3- Scalability: This is a problem associated with recommendation algorithms because computation normally grows linearly with the number of users and items. It is crucial to apply recommendation techniques which are capable of scaling up in a successful manner as the number of dataset in a database increases.(2)

4- Synonymy: Synonymy is the tendency of very similar items to have different names or entries. Most recommender systems find it difficult to make distinction between closely related items.(2)

5- Gray Sheep: This refers to the users whose opinions do not consistently agree or disagree with any group of people and thus do not benefit from collaborative filtering.(3)

6- Shilling Attacks: It is the case where anyone can provide recommendations; people may give tons of positive recommendations for their own

materials and negative recommendations for their competitors.(3)

7- The Long Tail problem: It is composed of a small number of popular items, the well-known hits, and the rest are located in the heavy tail, those do not sell that well. The Long Tail offers the possibility to explore and discover—using automatic tools; such as (recommenders or personalized filters) vast amounts of data.(4)

8- Diversity: In the recommendation process, the user should be presented with a range of options and not with a homogeneous set of alternatives.(4)

Related Work

In what follows, some of the previous research literatures related to the techniques used in userbased collaborative filtering is presented with employing different data sets. The related works are shown in Table (1).

Table 1. Different Collaborative Filtering A	Approaches Used in Previous Works with their References

Ref. No.	Authors & Publication Year	Approach Used	Methods And Tools Used	Dataset Used	Problem To Solve
(1)	Abdelwahab, A Et Al. 2009	User-Based And Item- Based Collaborative Filtering	User-Based And Item-Based Collaborative Filtering +Spectral Clustering	MovieLens 100 K Book- Crossing	Sparsity
(5)	KG, S., & Sadasivam,G.S. 2017	Memory Based Collaborative Filtering	Modified Similarity Model Jaccard Measure +PSS (Proximity-Significance- Singularity)+Bhattacharya	News Jester Datasets	Sparsity
(6)	Huang, B. H., & Dai B. R., 2015	Collaborative Filtering	Weighted Distance Model(WD)& Jacaard Measure	MovieLens 100K MovieLlens 1M	Prediction Accuracy
(7)	Wu, Z., Et Al. 2014	Collaborative Filtering	Modified Similarity and Fuzzy Clustering	MovieLens 100K	Sparsity Real-Time Response Speed
(8)	Katukuri, J., Et Al. 2014	Similarity Measure	Clustering Using Hadoop Map Reduce	Ebay.Com Site	Scalability
(9)	Mao, J., Et Al. 2013	Memory Based Collaborative Filtering	Modified Pearson Correlation Measure By Similarity Impact Factor.	MovieLens 100k	Sparsity
(10)	Anad D. & Bharadwaj K. 2011	Collaborative Filtering & Evolutionary	Automatic Learning Of Weights By Genetic Used In Sparsity Measures	MovieLens Jester Datasets	Sparsity
(11)	Lee, H.C Et Al. 2007	Collaborative Filtering and Content-Based Filtering	Neighborhood Based Collaborative Filtering Algorithm (NBCFA). Correspondence Mean Algorithm(CMA)	MovieLens 100k Movielens 1M	Prediction Accuracy
(12)	Lee, S, Et AI. 2004	Collaborative Filtering	Discovery Hidden Similarity(DHS)	MovieLlens 100k	Sparsity Scalability

Collaborative Filtering Algorithm

1- Representation of raw data

The recommender system can be abstracted as a black box to generate suggestions for users. It is constructed from the following steps: (13)

Specific data about users can be collected in explicit or implicit ways. The data in this paper is taken explicitly from the MovieLens data set. Then this data set is represented in the form of the User-Movie rating matrix to be further processed.

2- Similarity Computation

It is the most essential stage in the recommendation system because the accuracy of the prediction process is dependent on this stage. It determines the K-nearest users to the active user. The K users form the neighborhood for the target user. Different similarity measures are depicted in Tables (2, 3).

Table 2. different similarity measures with their specification and disadvantages (5) (14) (15)

Eq.no	Similarity Measure	Similarity Measure Formula	Specification	Disadvantage
1	Cosine (COS)	$SIM(u, v)^{cos}$ $= cosine(\overline{R_{u}}, \overline{R_{v}})$ $= \frac{\overline{R_{u}} \cdot \overline{R_{v}}}{\ R_{u}\ \ R_{v}\ }$ $= \frac{\sum_{i=1}^{N} R_{u,i} \times R_{v,i}}{\sqrt{\sum_{i=1}^{N} (R_{u,i})^{2}} \sqrt{\sum_{i=1}^{N} (R_{v,i})^{2}}}$	Measures the angle between u and v vectors. If angle equals 0 then cosine Simi- larity =1 and they are similar. if equals 90 then cosine similarity =0 and they are not similar.	Cosine similarity does not account for the preference of the user's rating.
2	Pearson correlation coefficient (PCC)	$SIM(u,v)^{pcc} = \frac{\sum_{l \in I} (R_{u,l} - \overline{R_u}) (R_{v,l} - \overline{R_v})}{\sqrt{\sum_{i \in I} (R_{u,l} - \overline{R_u})^2} \sqrt{\sum_{i \in I} (R_{v,i} - \overline{R_v})^2}}$	The Pearson correlation coefficient takes values from +1 (strong positive correlation) to -1 (strong negative correlation). The Pearson algorithm makes use of negative correlations as well as positive correlations to make predictions.	The Pearson correlation measurement not consider the fact of finding similar users for common items have less influence in recommendation process than finding similar users on un common items.
3	Constrained Pearson correlation coefficient (CPCC)	$SIM(u, v)^{cpcc} = \frac{\sum_{i \in I} (R_{u,i} - R_{Med}) (R_{v,i} - R_{Med})}{\sqrt{\sum_{i \in I} (R_{u,i} - R_{Med})^2} \sqrt{\sum_{i \in I} (R_{v,i} - R_{Med})^2}}$	Does not make use of negative "correlations" as the Pearson algorithm does. It uses median value instead of average rating.	Does not take into account the number of common rating.
4	Jaccard Distance	$SIM(u, v)^{jaccard} = \frac{ I_U \cap I_V }{ I_U \cup I_V }$ Where $ I_U I_V $ is the total number of items rated by u and v respectively. Jaccard distance=1-Sim(u,v)^{jaccard}	The concept behind this measure is that users are more similar if they have more common ratings.	Jaccard coefficient does not consider the absolute ratings.
5	Inverse User Frequency (IUF)	$IUF_{i} = f_{i} = \log \frac{N}{n_{i}}$ $IUF_{i} \text{ is the significance of the item i in the similarity computation}$ $i \text{ is for specific item}$ $N \text{ is no. of users}$ $n_{i} \text{ is the no. of co-rated users for item i}$	Formula decreases the weight on common items, because these items are less beneficial in recommendation process to target users.	Does not take into account the number of common rating.

In Table (3), additional similarity measures are defined as a combination of the previous similarity measures mentioned.

Eq.no	Similarity Measure	Similarity Measure Formula	Specification	Disadvantage
6	Constrainted pearson correlation with IUF	$SIM(u, v)^{cpcc&IUF} = \frac{\sum_{i=1}^{N} f_i^2 (R_{u,i} - R_{Med})(R_{v,i} - R_{Med})}{\sqrt{\sum_{i=1}^{N} f_i^2 (R_{u,i} - R_{Med})^2} \sqrt{\sum_{i=1}^{N} f_i^2 (R_{v,i} - R_{Med})^2}}$	Take the effect of positive and negative similarity values and give weight to less known items.	Does not make use of negative correlations and number of common rating is not counted.
7	Constrainted pearson correlation with jaccard	SIM=SIM ^{CPCC} *SIM ^{JACCARD}	Take the effect of positive and negative similarity values and consider the number of common rating.	Does not give weight to less known item.
8	Constrained Pearson correlation with IUF & Jaccard	SIM ^{proposed} =SIM ^{CPCC&IUF} *SIM ^{JACCARD}	 1-Take the effect of positive and negative similarity values. 2- Consider the number of common rating. 3- Give weight to less known items (long tail problem. 	Does not cope with Synonymy and gray sheep problems.

 Table 3. Additional Similarity Measures from Previously Mentioned Measures [source: "own elaboration"]

3- Prediction Computation

After a similarity computation, a group of size K of nearest neighbors for the target user is chosen. Then a prediction for the target user (**a**) on a target item (**i**) is generated by aggregating weighted ratings of neighbor users (u's) plus the mean of target users' rating ($\overline{R_a}$). The prediction formula for user-based collaborative filtering is shown below (15):

 $\begin{array}{l} predict(user \ a, item \ i) = \\ \overline{R_a} + \frac{\sum_{u \in U} sim \ (a,u).(R_{u,i} - \overline{r_u})}{\sum_{u \in U} |sim \ (a,u)|} \ \dots \ \text{EQ. 9} \end{array}$

Where $u \in U$ are target user's neighbors (K highest similarities).

Sim (a,u) similarity between target user (a) and neighbor users (u's).

R_{u,i} rating of user u to item i.

Results and Discussion:

In this section, the impact of the similarity measures on the prediction formula for user-based collaborative filtering is tested. The task is to assess different similarity measures mentioned in Table (2) and Table (3) by applying them on Movielens data set which contains 943 users,1682 movies and 100,000 ratings (provided by GroupLens Research) (16. The rating scale of this data set is [1 to 5].

Using MATLAB as a programming language, MovieLens data set is loaded and represented as User-Movie matrix where the rows represent the number of users and the columns are the number of movies. In this study, a sample of the experiments is taken to clear the idea more simply and also do not take a lot of area in the page. Table (4) shows an adjacency matrix, containing number of co-rated (common) movies between five users.

These values are needed in the prediction formula, which specify the number of movies shared among users <u>Tables from (5 to 12) below</u> their sources are "own elaboration".

 Table 4. The number of co-rated movies between users.

	User1	User2	User3	User4	User5
User1	<mark>262</mark>	15	7	4	73
User2	15	<mark>52</mark>	8	3	3
User3	7	8	<mark>44</mark>	6	1
User4	4	3	6	<mark>14</mark>	1
User5	73	3	1	1	<mark>165</mark>

Similarity measures formulas mentioned in Table (2) and Table (3) are applied on User-Movie matrix, the obtained adjacency similarity matrices are shown in Tables (5 to 11) for five users.

Table 5. Pearson Similarity Measure

				/	-
	User1	User2	User3	User4	User5
User1	1.0000	0.9545	0.8555	0.9318	0.9285
User2	0.9545	1.0000	0.9522	0.9918	0.9829
User3	0.8555	0.9522	1.0000	0.9484	1.0000
User4	0.9318	0.9918	0.9484	1.0000	1.0000
User5	0.9285	0.9829	1.0000	1.0000	1.0000

Table 6. Cosine Si	milarity Measure
--------------------	------------------

	User1	User2	User3	User4	User5
User1	0.0000	0.1468	0.0507	0.0513	0.3648
User2	0.1468	0.0000	0.1258	0.1177	0.0494
User3	0.0507	0.1258	0.0000	0.2367	0.0234
User4	0.0513	0.1177	0.2367	0.0000	0.0131
User5	0.3648	0.0494	0.0234	0.0131	0.0000

Table 7. Constraint Similarity Measure						
	User1	User2	User3	User4	User5	
User1	1.000	0.632	-0.105	0.309	0.465	
User2	0.632	1.000	-0.674	0.816	0.866	
User3	-0.105	-0.674	1.000	-0.195	1.000	
User4	0.309	0.816	-0.195	1.000	NaN	
User5	0.465	0.866	1.000	NaN	1.000	

Table 8. Jaccard Similarity Measure

	User1	User2	User3	User4	User5	
User1	0	0.9498	0.9766	0.9853	0.7938	
User2	0.9498	0	0.9091	0.9524	0.9860	
User3	0.9766	0.9091	0	0.8846	0.9952	
User4	0.9853	0.9524	0.8846	0	0.9944	
User5	0.7938	0.9860	0.9952	0.9944	0	

Table (9) Constrained Pearson Correlation with

Jaccard						
	User1	User2	User3	User4	User5	
User1	0	0.600	-0.10	0.304	0.369	
User2	0.600	0	-0.61	0.777	0.853	
User3	-0.10	-0.61	0	-0.17	0.995	
User4	0.304	0.777	-0.17	0	NaN	
User5	0.369	0.853	0.995	NaN	0	

Table 10. Constrained Pearson Correlation with

IUF						
	User1	User2	User3	User4	User5	
User1	1.000	0.805	-0.46	0.702	0.490	
User2	0.805	1.000	-0.84	0.963	0.929	
User3	-0.46	-0.84	1.000	0.371	1.000	
User4	0.702	0.963	0.371	1.000	NaN	
User5	0.490	0.929	1.000	NaN	1.000	

Table 11. Constrained Pearson Correlation with IUF & Jaccard Similarity Measure

IOF & Jaccaru Sinnarity Measure											
	User1	User2	User3	User4	User5						
User1	0.000	0.765	-0.453	0.692	0.390						
User2	0.765	0.000	-0.766	0.918	0.916						
User3	-0.453	-0.766	0.000	0.329	0.995						
User4	0.692	0.918	0.329	0.000	NaN						
User5	0.390	0.916	0.995	NaN	0.000						

Then the prediction formula (EQ.9) is applied, using the resultant similarity matrices on selected users; to generate predictions for their rated and unrated movies. Prediction for rated movies is used to see how accurate the generated results to the real rating. Prediction results are shown in Table (12) for User 1, User 2, User 4 and User 5.

Table 12. Prediction Computation Results

Similarity measures	User 1 prediction to:			User2 prediction to:		User4 predicti on to:	User 5 Prediction to:		
	Movie ID.2	Movie ID.3	Movie ID.4	Movie ID.5	Movie ID.1	Movie ID.10	Movie ID.11	Movie ID.42	Movie ID.63
Pearson Correlation coefficient Cosine	3.03≅3	3.53≅4	3.64≅4	3.30≅3	4.09≅4	3.84≅4	4.49≅5	3.12≅3	2.52≅3
correlation measure	3.33≅3	3.07≅3	3.95≅4	3.21≅3	4.39≅4	4.02≅4	4.75≅5	3.14≅3	2.49≅3
Constraint Correlation coefficient	2.99≅3	3.62≅4	2.75≅3	3.03≅3	4.05≅4	3.92≅4	4.41≅4	3.06≅3	2.40≅2
Jaccard Distance measure	3.35≅3	3.35≅3	3.16≅3	3.36≅3	4.27≅4	4.03≅4	4.61≅5	3.03≅3	2.57≅3
Constraint correlation with IUF	3.37≅3	3.66≅4	2.61≅3	2.90≅3	3.62≅4	3.98≅4	4.43≅4	3.03≅3	2.43≅2
Constraint correlation &Jaccard	3.35≅3	3.61≅4	3.44≅3	3.11≅3	3.99≅4	3.89≅4	4.39≅4	3.03≅3	2.44≅2
Constraint correlation & IUF	3.36≅3	3.55≅4	3.34≅3	3.06≅3	3.68≅4	2.42≅2	4.44≅4	4.60≅5	2.23≅2
& Jaccard Real rating	3	4	3	3	4	2	0	5	0

The discussion of the prediction computation results from Table (12) is presented below:

measures approach (3) which is the same as the <u>real</u> rating (3) in MovieLens data set.

User 1 rated (3) to movie2 because all the prediction values according to different similarity

User 1 rated (4) to movie3 conducting 5 similarity measures which is the same as the real rating (4) in

MovieLens data set and rated (3) using cosine and Jaccard measure.

User 1 rated (3) to movie4 using 5 similarity measures which is the same as the <u>real rating (3)</u> and **rated (4)** using Pearson correlation and cosine measures.

User 1 rated (3) to movie5 using all similarity measures which is the same values as in the <u>real</u> rating (3).

User 2 rated (4) for movie1 which is the same as in real rating (4)

User 2 rated (2) for movie10 using the proposed similarity measure Constrained Correlation with IUF and Jaccard only which is the same real <u>rating</u> (2) in movielens data set.

User 4 rated (4) for movie11 which is not rated by the user in the real Movielens data set.

User 5 rated 5 for movie42 when using the proposed similarity measure Constrained Correlation with IUF and Jaccard only which is rated 5 in real rating.

User 5 rated (2) for movie63 which is not rated by the user 5 in the real MovieLens data set.

Conclusion:

This study shows the explicit rating significance rather than just calculating distances among users using similarity measures. The aim is to focus on the global meanings of rating values in real data set rather than local meanings. Moreover less known movies are focused on by using the parameter (IUF) and treated effectively and as a result, the diversity is achieved and long tail problem can be partially solved. Many similarity measures are conducted, it is concluded that it is not possible to relate between users effectively, since it provides a relatively equivalent similarity values. But in the proposed similarity measure (Constrained Correlation with IUF and Jaccard); a relatively accurate prediction results are obtained because each user in the data set became distinguished as a dependable user since it provides different similarity values for each pair of users. It is concluded from this study that the explicit rating of users can be dependable in the prediction process for target users. Better results are obtained from a combination of similarity measures because the weakness of each of measure is strengthened by another measure.

Conflicts of Interest: None.

Reference:

1. Abdelwahab A, Sekiya H, Matsuba I, Horiuchi Y, Kuroiwa S .Collaborative filtering based on an iterative prediction method to alleviate the sparsity problem. ACM, Proceedings of the 11th International Conference on Information Integration and Webbased Applications & Services [internet].2009 December; pp: 375-379. DOI:10.1145/1806338.1806406.

- Isinkaye F, Folajimi Y, Ojokoh B .Recommendation systems: Principles, methods and evaluation. Egyptian Informatics Journal [internet]. 2015 November; 16(3):261-273. DOI:10.1016/j.eij.2015.06.005.
- 3. Su X, Khoshgoftaar T .A survey of collaborative filters techniques. Advances in artificial intelligence [internet].2009 August. DOI:10.1155/2009/421425.
- Celma O .Music recommendation: In Music recommendation and discovery. Springer [internet]. 2010; 194 p. Berlin Heidelberg. DOI: 10.1007/978-3-642-13287-2.
- 5. KG S, Sadasivam G S .Modified Heuristic Similarity Measure for Personalization using Collaborative Filtering Technique. Appl. Math. Inf. Sci. [internet].2017 November; 11(1):307-15.DOI:10.18576/amis/110137.
- Huang B H, Dai B R .A Weighted Distance Similarity Model to Improve the Accuracy of Collaborative Recommender System. 16th IEEE International Conference on Mobile Data Management [internet].2015 September; pp: 104-109. DOI: 10.1109/MDM.2015.43.
- Wu Z, Chen Y, Li T .Personalized recommendation based on the improved similarity and fuzzy clustering. Information Science, Electronics and Electrical Engineering (ISEEE) International Conference [internet].2014 April; Vol. 2, pp: 1353-1357. DOI:10.1109/InfoSEEE.2014.6947895.
- Katukuri J, Könik T, Kolay S, Mukherjee R Recommending similar items in large-scale online marketplaces. IEEE International Conference on Big Data [internet].2014; pp: 868-876. DOI: 10.1109/BigData.2014.7004317.
- 9. Mao J, Cui Z, Zhao P, Li X .An improved similarity measure method in collaborative filtering recommendation algorithm. IEEE, Cloud Computing Data (CloudCom-Asia) International Big and [internet].2013 Dec.; Conference 297-. pp: DOI:10.1109/CLOUDCOM-ASIA.2013.39.
- 10. Anand D, Bharadwaj K K .Utilizing various sparsity measures for enhancing accuracy of collaborative recommender systems based on local and global similarities. ALSEVIER, Expert systems with applications [internet].2011; 38(5):5101-5109. DOI: 10.1016/j.eswa.2010.09.141.
- 11. Lee H C, Lee S J, Chung Y J .A study on the improved collaborative filtering algorithm for recommender system. IEEE, Software Engineering Research, Management & Applications 5th ACIS International Conference [internet].2007 Aug.; pp: 297-304. DOI:10.1109/SERA.2007.33.
- Lee S, Yang J, Park S Y .Discovery of hidden similarity on collaborative filtering to overcome sparsity problem. Springer, International Conference on Discovery Science [internet] 2004 Berlin, Heidelberg; pp: 396-402. DOI: 10.1007/978-3-540-30214-8_36.

- 13. Verma A, Bhamidipati K .A survey of memory based methods for collaborative filtering based techniques for online Recommender systems. (IJCET) [Internet].2013; 4(2):366-372.
- 14. AL Bakri N F, Hashim S H .A modified similarity measure for improving accuracy of user-based collaborative filtering. Iraqi Journal of Science [internet].2018; 59(2B):934-945. DOI:10.24996/ijs.2018.59.2B.15.
- 15. Adomavicius G, Tuzhilin A .Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transaction, Knowledge Data Eng. [internet].2005; 17(6):734–749. DOI: 10.1109/TKDE.2005.99.
- 16. MovieLens data set. Available from: <u>https://grouplens.org/datasets/movielens/</u>.

دراسة حول دقة التنبؤ في نظام التوصية على أساس مقاييس التشابه

سكينه حسن هاشم²

ناديه فاضل البكرى¹

¹قسم علوم الحاسبات، جامعه النهرين، بغداد،العراق ²قسم علوم الحاسبات، الجامعه التكنولوجيه، بغداد،العراق

الخلاصه:

نظم التوصية هي أدوات لفهم الكم الهائل من البيانات المتاحة في عالم الإنترنت. التصفية التعاونية هي واحدة من أكثر تقنيات اكتشاف المعرفة المستخدمة بشكل إيجابي في نظام التوصيات. تركز التصفية التعاونية القائمة على الذاكرة على استخدام الحقائق حول المستخدمين القائمين والمتوفرين، للتنبؤ بأشياء جديدة للمستخدم المستهدف. مقاييس التشابه هي من العمليات الأساسية في التصفية التعاونية ودقة التنبؤ تعتمد في الغالب على حسابات التشابه. في هذه الدراسة ، تم استخدام مجموعة من مقاييس التشابه هي من العمليات الأساسية في المعرجه لحساب العلاقة بين المستخدمين عبر مصفوفة التخمين لمجموعة بيانات (MovieLens). تم اكتشاف مزايا وعيوب كل مقياس. من الدراسة ، تم اقتراح مقياس جديد مكون من مجموعة من المقاييس للتعامل مع المعنى الشامل لتخمين مجموعة البيانات. بعد إجراء النتائج التجريبية ، تبين أن المقتراح مقياس المعترد من الأهداف التي تزيد من دقة التنبؤت.

الكلمات المفتاحية: التصفية التعاونية ،معكوس تردد المستخدم ،التنبق ،نظام التوصية، قياس التشابه .