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Abstract: 
 In this paper, several conditions are put in order to compose the sequence of partial sums 𝔅𝓂, 𝔏𝓂 

and 𝔈𝓂 of the fractional operators of analytic univalent functions 𝔅𝜇, 𝔏𝓋 and  𝔈𝓈,𝓉 of bounded turning 

which are bounded turning too. 
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Introduction: 
    In a general series, it is not easy to create a 

summing of all the preceding terms in the series 

since the series begins with 𝑛 =  1 and moves until 

infinity. But a geometric series contains many 

polynomials characteristics, making it handy to 

work with. In this paper, the way we get the sum of 

a geometric series is by partial sums. In geometric 

functions theory, both analytic univalent functions 

and partial sum polynomials can be used to 

introduce a new certain linear operator of squares. 

In addition, the certain values depend on the 

coefficients in such partial sums.  

There are numerous interesting advancements in 

the partial sums of analytic univalent functions and 

classes of bounded turning in the open unit disk.  In 

(1) it was proved that the partial sums of the 

Liberal integral operator of functions of bounded 

turning are bounded turning too. Moreover, some 

special functions are associated with calculus 

operators of analytic univalent functions as in  (2) 

and (3). Recently, the partial 

 sums of some special functions have been studied 

by authors for example (4,5) in the 

domain of open unit disk.  

   The main results are displayed using the method 

of  partial sums of  functions class of bounded 

turning, we review in this paper some definitions of 

functions type of bounded turning of analytic 

univalent and their properties. We begin with a 

definition of analytic functions and some geometric 

properties such as convolution (or Hadamard 

product),  that is a binary operation of two or 

several analytic functions. Also, we consider three 

types of fractional (differential and integral) 

operators with their squares of partial sums in the 

open unit disk.  

 

 Preliminaries 

   Let 𝒜  refer to the family of functions 𝑓 which 

are analytic in the domain of the open unit disk 

𝔄:= {𝑧;  |𝑧| < 1} , and is defined by 

       𝑓(𝑧) = 𝑧 +  ∑ 𝑎𝓃 𝑧𝓃,        𝑧 ∈ 𝔄∞
𝓃=2 .      (2.1) 

    Let the function  𝑓 be defined in (2.1), then the 

starlike functions 𝑓  are functions for which the real 

part of the quantity (𝑧𝑓′/𝑓) is positive and the 

convex functions  𝑓  are functions for which the real 

part of the quantity (1 + 𝑧𝑓′′/𝑓′ ) is positive. In 

contrast, the close-to-convex functions 𝑓 are 

functions for which the real part of the quantity 

(𝑓′/ℎ′ , ℎ is convex ) is positive. The following 

binary operation  (∗) symbolizes the convolution (or 

Hadamard product) of analytic functions in 𝔄 and is 

defined by 

 (𝑓 ∗ ℎ)(𝑧) = 𝑧 +  ∑ 𝑎𝓃𝑏𝓃 𝑧𝓃 = (ℎ ∗ 𝑓)(𝑧)∞
𝓃=2  

where  𝑓(𝑧) is defined in (2.1)  and  ℎ(𝑧) = 𝑧 +
 ∑ 𝑏𝓃 𝑧𝓃,∞

𝓃=2   for  𝑧 ∈  𝔄. 
Definition 1 (6) 

      For 0 ≤  𝜔 < 1, let 𝑓 in 𝐵(𝜔) where 𝐵(𝜔) is a 

subclass of 𝒜, are known as the functions of 

bounded turning whose derivative contains positive 

real part and is denoted by 

    𝐵(𝜔): = {𝑓 ∈ 𝒜:    ℜ{𝑓′(𝑧)} > 𝜔,   𝑧 ∈  𝔄 } . 
     In (6) the functions in 𝐵(𝜔) are univalent (one-

to-one, or injective) and satified the condition of 
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close-to-convex function with ℎ(𝑧) = 𝑧 in 𝔄. For 

functions 𝑓 described in the equation (2.1), many 

families of analytic and univalent functions are 

considered (integral and differential) operators type 

of fractional, which have been introduced by 

numerous researchers for example (see 

(7),(8),(9),(10)).  Moreover, the familiar fractional 

calculus operators of analytic and univalent 

functions 𝑓 are given in (2.1) which are respectively 

presented and studied by Srivastava and Owa (11)  

as follows: 

𝔅𝜇: 𝒜 ⟶ 𝒜  for   𝜇 ∉ Ν\{0} = {1,2,3, … }, 
is defined by   

𝔅𝜇𝑓(𝑧) = Γ(1 − 𝜇) 𝑧1+𝜇𝔇𝑧
1+𝜇

𝑓(𝑧),   𝑧 ∈ 𝔄   

              =  ∑
Γ(1−μ)

Γ(𝓃+1−μ)
∞
𝓃=0  𝑎𝓃+1 𝑧𝓃+1   

              =  𝑧 +  ∑
Γ(1−μ)

Γ(𝓃−𝜇)
∞
𝓃=2  𝑎𝓃 𝑧𝓃              (2.2) 

and  𝔏𝓋 : 𝒜 ⟶ 𝒜  for   𝓋 ∉ 𝛮\{0} = {1,2,3, … },   
is defined  by 

𝔏𝓋𝑓(𝑧) = Γ(2 − 𝓋) 𝑧𝓋𝔇𝑧
𝓋𝑓(𝑧), 𝑧 ∈  𝔄          

              =  𝑧 + ∑
Γ(2−𝓋)

Γ(𝓃+1−𝓋)
∞
𝓃=2  𝑎𝓃 𝑧𝓃            (2.3)       

where 𝔇𝑧
1+𝜇

 and  𝔇𝑧
𝓋𝑓(𝑧) are respectively in  (2.2) 

and (2.3)  the well known fractional differential 

operators that have been defined by Srivastava and 

Owa  (11), and Γ is the Gamma function defined in 

the form of Factorial function with a positive 

integer number  𝑞, such as:   

                   Γ(𝑞 + 1) = 𝑞Γ(𝑞) = 𝑞!.  
     Now, a new generation of the fractional integral 

operator be defined as follows:   

 𝔈𝓈,𝓉𝑓(𝑧) = 𝑧 + ∑
Γ(𝓈)

Γ(𝓉(𝓃−1)+𝓈) 𝒬(𝛼,𝓃)
∞
𝓃=2  𝑎𝓃 𝑧𝓃,     

                                                                    (2.4)   

(0 ≤ 𝓉 ≤ 1, 0 < 𝓈 ≤ 1, 𝑓 ∈  𝒜, 𝑧 ∈  𝔄) 

where 𝒬(𝛼, 𝓃) = (𝓃+𝛼−1
𝛼

) =
Γ(𝓃+𝛼)

Γ(𝓃)Γ(α+1)
, for 𝛼 > 0 

and  𝑛 = {0,1,2, . . . . } is the binomial coefficient of 

the fractional integral operator 𝔈𝓈,𝓉. 

Observe that the fractional integral operator 𝔈𝓈,𝓉 is 

generalized for the following operators: 

Remark 1 

For  𝑧 ∈  𝔄, ℜ(𝓉) > 0 and  0 < 𝓈 ≤ 1, we have 

1- if  𝓉 = 0 and 𝓈 = 1, operator (2.4) gives Noor 

integral operator (12) and  

2- if  𝛼 = 0, operator (2.4) gives linear operator 

defined in (3). 

 

     A partial sum is a sum of  infinitely several 

terms at the starting of the geometric series. Next, 

the 𝓶-the partial sums of the operators (2.2)-(2.4)  

are defined as follows: 

Definition 2  

For 𝑧 ∈  𝔄, the 𝓶-the partial sums of the operators 

in (2.2)-(2.4) are respectively defined by 

𝔅𝓂(𝑧) =   𝑧 +  ∑
𝛤(1−𝜇)

𝛤(𝓃−𝜇)
𝓂
𝓃=2  𝑎𝓃 𝑧𝓃,            (2.5)                   

𝔏𝓂(𝑧) =  𝑧 + ∑
𝛤(2−𝓋)

𝛤(𝓃+1−𝓋)
𝓂
𝓃=2  𝑎𝓃 𝑧𝓃             (2.6) 

and 

𝔈𝓂(𝑧) = 𝑧 + ∑
Γ(𝓈)

Γ(𝓉(𝓃−1)+𝓈) 𝒬(𝛼,𝓃)
𝓂
𝓃=2  𝑎𝓃 𝑧𝓃.  

                                                                        (2.7)  

Employing the following lemmas to prove the main 

results. 

Lemma 1 (1)  

      For 𝑧 ∈  𝔄, we have    

                    {∑
𝑧𝓃

𝓃+2

𝑗
𝓃=1 } >  

−1

3
.                       (2.8) 

Lemma 2 (6) 

     Let 𝑝(𝑧) ∈ 𝔄 and 𝑝(𝑧) be satisfied 𝑝(0) = 1 

where  ℜ{𝑝(𝑧)} > 0.5 in 𝔄. For 𝜓  analytic 

function in 𝔄 , the values of convolution operation 

of two analytic functions  (𝑝 ∗ 𝜓)(𝑧)  are shown in 

the convex hull (the intersection of all convex set or 

the smallest convex set) of the image on the domain 

𝔄 under construction of function 𝜓. 
 

Results 
   By applying Lemma 1 and Lemma 2, we will 

demonstrate some conditions in order to compose 

𝓶-the partial sums of the operators (2.5), (2.6) and 

(2.7)  of  functions of bounded turning that are 

bounded turning as well. 

Theorem 1 

  Let 𝑓 ∈ 𝐵(𝜔). If  0.5 < 𝜔 < 1and 0 < 𝜇 ≤ 0.5,  
then we have 

𝔅𝓂(𝑧)  ∈ 𝐵 (
3−𝛤(1−𝜇)(1−𝜔)

3
),      𝑧 ∈ 𝔄. 

Proof  

 Let 𝑓 be defined in (2.1) besides 𝑓 ∈ 𝐵(𝜔) and 

0.5 < 𝜔 < 1. Then  

                      ℜ{𝑓′(𝑧)} > 𝜔,     𝑧 ∈  𝔄. 
By definition (2.1) leads to,   

 ℜ{1 +  ∑ 𝓃𝑎𝓃 𝑧𝓃−1∞
𝓃=2 } >  𝜔 > 0.5,           (3.1) 

as concerning  0.5 < 𝜔 < 1,  we obtain              

 ℜ {1 + ∑ (
𝓃

1−𝜔
)  𝑎𝓃 𝑧𝓃−1∞ 

𝓃=2 } > 

                          ℜ{1 +  ∑ 𝓃𝑎𝓃 𝑧𝓃−1∞
𝓃=2 },      (3.2) 

by appling (3.1) and (3.2), we have          

 ℜ {1 +  ∑ (
𝓃

1−𝜔
) 𝑎𝓃 𝑧𝓃−1∞

𝓃=2 } > 0.5 .           (3.3) 

Now, by employing some of the convolution 

properties to 𝔅𝓂
′ (𝑧) we have  

𝔅𝓂
′ (𝑧) = 1 +  ∑

𝛤(1−𝜇)

𝛤(𝓃−𝜇)
𝓂
𝓃=2  𝓃𝑎𝓃 𝑧𝓃−1  

             =  [1 + ∑ (
𝓃

1−𝜔
) 𝑎𝓃 𝑧𝓃−1𝓂

𝓃=2 ] ∗

                         [1 +  ∑
𝛤(1−𝜇)

𝛤(𝓃−𝜇)
(1 − 𝜔)𝑎𝓃 𝑧𝓃−1𝓂

𝓃=2 ] 

             =  𝑝(𝑧) ∗ 𝑄(𝑧).                                   (3.4) 

As well as from (2.8)  and  𝑗 = 𝓂 − 1, we have  

            ℜ { ∑  (
1

𝓃+1
) 𝑧𝓃−1𝓂

𝓃=2 } >
−1

3
 . 

Under the hypothesis 



Open Access     Baghdad Science Journal                                P-ISSN: 2078-8665 

2020, 17(4):1267-1270                                                            E-ISSN: 2411-7986 

 

1269 

           𝛤(𝓃 − (𝜇 + 1) + 1) = (𝓃 − (𝜇 + 1))! and 

(𝓃)! ≥ 2𝑛 for  𝑛 ≥ 4, we conclude 

          (𝓃 − (𝜇 + 1))! ≥  2𝓃−(𝜇+3),  for  𝑛 ≥ 2 

then, for  0 < 𝜇 ≤ 0.5  and  𝓃 ∈ 𝛮\{0,1} we 

obtain the following inquality      

 

 |∑  
𝑧𝓃−1

𝛤(𝓃−𝜇)
 𝓂

𝓃=2 | = |∑  
𝑧𝓃−1

𝛤(𝓃−(𝜇+1)+1)
 𝓂

𝓃=2 | =

                     |∑  
𝑧𝓃−1

(𝓃−(𝜇+1))!
 𝓂

𝓃=2 | ≤ |∑  
𝑧𝓃−1

2𝓃−(𝜇+3) 
𝓂
𝓃=2 |. 

Subsequently,                   

          ℜ { ∑  
z𝓃−1

Γ(𝓃−μ)
 𝓂

𝓃=2 }  ≥ ℜ { ∑  
z𝓃−1

𝓃+1
 𝓂

𝓃=2 } , 

 for   0 < 𝜇 ≤ 0.5. 

Then by applying Lemma 1, we have  

 

             ℜ { ∑  
𝑧𝓃−1

𝛤(𝓃−𝜇)
 𝓂

𝓃=2 } >
−1

3
 .                    (3.5) 

From a simple computation to (3.5) and 𝑄(𝑧) in 

(3.4) leads to the following  

ℜ{𝑄(𝑧)} = 

ℜ {1 +  ∑
𝛤(1−𝜇)

𝛤(𝓃−𝜇)
(1 −  𝜔)𝑎𝓃 𝑧𝓃−1𝓂

𝓃=2 }  >   

                                                  
3−𝛤(1−𝜇)(1−𝜔)

3
, 

for  0.5 < 𝜔 < 1, 0 < 𝜇 ≤ 0.5  and  |𝑧| < 1. 

Moreover,   

         𝑝(z) = (1 + ∑ (
𝓃

1−𝜔
) 𝑎𝓃 𝑧𝓃−1𝓂

𝓃=2 ),    

where  𝑝(0) = 1 and  by applying (11) we have 

ℜ{𝑝(𝑧)} = ℜ {1 +  ∑ (
𝓃

1−𝜔
) 𝑎𝓃 𝑧𝓃−1𝓂

𝓃=2 } > 0.5 . 

Also by using Lemma 2,  we have shown that 

ℜ{ℬ𝓂
′ (𝑧)}  >  

3−𝛤(1−𝜇)(1−𝜔)

3
,     for  𝑧 ∈ 𝔄. 

Theorem 2 

    Let 𝑓 ∈ 𝐵(𝜔) if 0.5 < 𝜔 < 1and 0 < 𝓋 ≤ 1, 

then we have   

         𝔏𝓂(𝑧)  ∈ 𝐵 (
3−𝛤(2−𝓋)(1−𝜔)

3
),         𝑧 ∈ 𝔄. 

Proof 

    The prove is similar in the sense to the proof 

Theorem 1. 

Theorem 3  

   Let  𝑓 ∈ 𝐵(𝜔)  if  0.5 < 𝜔 < 1 and 0 < 𝓈 ≤ 1, 

then we have  

           𝔈𝓂(𝑧) ∈ 𝐵 (
3−𝛤(𝓈)(1−𝜔)

3
),   for all  |𝑧| < 1. 

Proof 

  From the hypotheses of the theorem, it is well 

known that  

  {1 +  ∑ 𝓃𝑎𝓃 𝑧𝓃−1∞
𝓃=2 }  >  𝜔 > 0.5 ,           (3.6)  

for 0.5 < 𝜔 < 1, we set    

 ℜ {1 + ∑ (
𝓃

1−𝜔
) 𝑎𝓃 𝑧𝓃−1∞

𝓃=2 } > 

                            ℜ{1 +  ∑ 𝓃𝑎𝓃 𝑧𝓃−1∞
𝓃=2 }.    (3.7) 

 By utilizing (3.6) and (3.7) we have                      

 ℜ {1 +  ∑ (
𝓃

1−𝜔
) 𝑎𝓃 𝑧𝓃−1∞

𝓃=2 } > 0.5 

and applying the Hadamard product properties, we 

obtain 

 

 𝔈𝓂
′ (𝑧) = 1 + ∑

𝓃Γ(𝓈)

Γ(𝓉(𝓃−1)+𝓈) 𝒬(𝛼,𝓃)
𝓂
𝓃=2  𝑎𝓃 𝑧𝓃−1 .               

            =  (1 + ∑ (
𝓃

1−𝜔
)𝓂

𝓃=2  𝑎𝓃 𝑧𝓃−1)  ×

                     (1 + ∑ (
(1−𝜔)𝛤(𝓈)

𝛤(𝓉(𝓃−1)+𝓈) 𝒬(𝛼,𝓃)
)𝓂

𝓃=2  𝑧𝓃−1) 

            = 𝑝(𝑧) ∗ 𝒲(𝑧). 
 

Under the hypothesis  

            𝛤(𝓃 + 𝑘) ≤ Γ(𝓃𝛽 + 𝑘), 𝓃, 𝛽 ∈ 𝛮  

which is identical to  
1

𝛤(𝓃𝛽+𝑘)
 ≤  

1

𝛤(𝓃+𝑘)
, 𝓃, 𝛽 ∈ 𝛮  

and  𝑛! ≥ 2𝑛 for  𝑛 ≥ 4, we conclude the following 

inequality 

        (𝓃 + (𝑘 − 2))!  ≥  2𝓃+(𝑘−4),       for   𝑛 ≥ 2 

and for  0 ≤ 𝓉 ≤ 1 we obtain  

|1 + ∑ (
𝛤(𝓈)

 𝛤(𝓉(𝓃−1)+𝓈) 
)𝓂

𝓃=2  𝑧𝓃−1|                                                

    ≤ |1 +   ∑ (
𝛤(𝓈)

 𝛤(𝓃+𝓈−1) 
)𝓂

𝓃=2  𝑧𝓃−1|                                          

       = |1 + ∑ (
𝛤(𝓈)

 (𝓃+𝓈−2)! 
)𝓂

𝓃=2  𝑧𝓃−1|     

         ≤  |1 + ∑ (
𝛤(𝓈)

 2𝓃+𝓈−4 
)𝓂

𝓃=2  𝑧𝓃−1|                (3.8) 

from Lemma 1 and  

             𝑗 = 𝓂 − 1,   𝛼 = 0, 𝓉 ≥ 0, 𝓈 > 0                                
yields                      

ℜ {1 + ∑ (
1

 𝛤(𝓉(𝓃−1)+𝓈) 
)𝓂

𝓃=2  𝑧𝓃−1}  ≥

                                     ℜ {1 + ∑ (
1

 𝓃+1
)𝓂

𝓃=2   𝑧𝓃−1} 

thus 

 ℜ {1 + ∑ (
1

 𝛤(𝓉(𝓃−1)+𝓈) 
)𝓂

𝓃=2   𝑧𝓃−1} >   
−1

3
.   (3.9) 

Under the conditions (3.9), we arranged 

ℜ{𝒲(𝑧)} = ℜ {1 + ∑ (
(1−𝜔)𝛤(𝓈)

 𝛤(𝓉(𝓃−1)+𝓈) 
)𝓂

𝓃=2 𝑧𝓃−1} >

3−(1−𝜔)𝛤(𝓈)

3
                

otherwise,                  

𝑝(𝑧) = (1 +   ∑ (
𝓃

 1−𝜔  
)𝓂

𝓃=2  𝑎𝓃 𝑧𝓃−1) ,     𝑧 ∈ 𝔄  

satisfies: 𝑝(0) = 1, and for |𝑧 | < 1  we have   

 ℜ{𝑝(𝑧)} = (1 + ∑ (
𝓃

 1−𝜔  
)𝓂

𝓃=2 𝑎𝓃 𝑧𝓃−1) > 0.5. 

By applying Lemma 2 we deduce           

ℜ{𝔈𝓂
′ (𝑧)} >  

3−(1−𝜔)𝛤(𝓈)

3
,  for   (0.5 < 𝜔 < 1 ) 

and by this, the proof of Theorem 3 is completed. 

 

Conclusions:  
In this paper, we used the method of partial 

sums of functions class of bounded turning. The 

conditions of the partial sums of the fractional 

(differential and integral) operators are determined 

to be bounded turning too. 
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 الجمع الجزئي لبعض المؤثرات الكسريه ذات الدوال المحدودية

 

زينب عيسى عبد النبي
 

 

 .العراق ،بغداد ،الجامعة المستنصرية، كلية العلوم ،قسم الرياضيات

 

 الخلاصة:
للمؤاثرات الكسرية ذات   𝔅𝓂, 𝔏𝓂, 𝔈𝓂الهدف من هذا البحث هو وضع عدة شروط من اجل تكوين متسلسلة الجمع الجزئي  

𝔅𝜇, 𝔏𝓋  الدوال التكافئية التحليلية  , 𝔈𝓈,𝓉 .في فئة الدوال المحدودية والتي تكون بدورها داله محدودية ايضا 

 
 . الجزئي الجمع, الدالة المحدودية، المؤثرات الكسرية التفاضلية، المؤثرات الكسرية التكاملية  التحليلية، التكافئية الدوال الكلمات المفتاحية:

 

 


