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Abstract:
Volterra — Fredholm integral equations (VFIES) have a massive interest from researchers recently.
The current study suggests a collocation method for the mixed Volterra - Fredholm integral equations
(MVFIEs)."A point interpolation collocation method is considered by combining the radial and polynomial
basis functions using collocation points”. The main purpose of the radial and polynomial basis functions is
to overcome the singularity that could associate with the collocation methods. The obtained interpolation
function passes through all Scattered Point in a domain and therefore, the Delta function property is the
shape of the functions. The exact solution of selective solutions was compared with the results obtained
from the numerical experiments in order to investigate the accuracy and the efficiency of scheme.
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Introduction:

Consider the general mixed Volterra -  Fredholm integral equation by designing neural
Fredholm integral equation has the from network is given .
u(s,t) = The aim of this paper is to apply collocation method
¢ K(s,t,x,y,u(x,y))dxdy for solving mixed Volterra — Fredholm integral
fe+f" ¢ ( ) (1) equations (MVFIES) which have the formula (Eq.1).

(s, ) el =0x%][o,T]
where u(s,t) is unknown function should to be
found , f(s,t) and K(s,¢t,x,y,u(x,y)) are given
analytic functions on I =Q X [0,T] and C(I? X
R) ,respectively and Q is close subset on R, with
norm ||.|| .

Equations of this type arise in the main branches of
modern mathematics that appear in various applied
areas including mechanics, physics and engineering
...etc. In recent years different numerical methods . .
have been used to solve (Eg. 1). Hassan (1) Where t,t € R ands Il s the Euclldgan
investigated a new iterative method to solve the dlst.;:lvnce F’EtW‘jie” t and ¢;". If chooses N points
(MVFIES). In (2) Nili used the Meshless method ~ (tidi=1 in R®,then

for solving (MVFIEs) of Urysohn type on non —

rectangular regions numerically.  Nemati (3) S =Xl 4 oUt—t 1) ;4 €ER XE

introduced numerical method for the (MVFIEs) R" 3)

using Hybrid Legendre Functions. In (4) Shahooth ~ Called a radial basis function (RBF) (7).

presented a numerical solution for mixed (MVFIEs)  Point Interpolation Method (PIM) on (RBF)

of the second kind using Bernstein polynomial Let u(s, t) be an approximation function in
method. Babolian (5) applied block pulse function @ domain (with an arbitrarily distributed nodes
and the associated operational matrix to solve the ~ Set) denoted by (s; ¢t;),i =1,2,3,...,N. Where N
(MVFIEs) in 2 - dimensional spaces. In our is the influence domain nodes number. At the node

previous work (6), solution of mixed Volterra -  (s;t;) u; assumed to be the Nodal Function Value.

Radial basis functions (RBF)
Definition of radial function

Consider R* = {t € R, t = 0} the half — line
of non-negative numbers and @:R* > R be a
continuous function with @(0) > 0. A (RBF) on
R? is a function of the form

ot — ¢t 1) (2)
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Using radial basis function A;(s,t), i=1,2,3,... ,N
and polynomial basis function
B;(s,t),j=1,2,...M, Radial basis (PIM)
constructs the approximation function u(s,t) to
access the node points (8).
U,(S, t) = ZILV=1 ai Ai (S; t) + Zy:lb] 'Bj (S; t) =
a AT (s,t) + bBT (s, t) (4)

Where a; are the coefficient of 4;(s,t) and b;
the coefficient of B;(s,t) (usually,N > M) the
vectors are defined a

a’ = (aia; -+ ay) ]
b" = (byby - by)
AT (s,0) = (Ka(s,8)  Aa(s,O) .. AN(s,t»}
BT(s,t) = (Bi(s,t) By(s,t) ... By(s,t)))

(5)
The general form of a multiquadrics (MQ) radial
basis functions is

Ai(s,t) = Ai(dy) = ’diZ+C2 ,0<c<1 (6)

Where d; is the distance between the node (s;, t;)
and the interpolating point(s, t) in the Euclidean 2
- dimensional space d; could be described as
1
di = [(s —s)? + (t — t;)?]2
The terms of polynomial basis function are as
following:
BT=(1 sts?stt? ) ()
The coefficients a; and b; in Eq. (5) are found by
taking the interpolation of the scattered nodal
points N in the domain. Therefore, k" point,
the interpolation is:
W = u(sp, ti) = XLy a; A (Sp,ti) +
Z]Nilb] Bj(sk;tk) ,k = 1,, v, N (8)
The polynomial terms are so important to obtain
the optimum approximation. To fulfill that,
consider the following conditions:
Yieia; Bi(syt) =0, j =12,..M (9)
The matrix form is expressed as follows:

Ao Bo)/a ut a u®
(88 0)G)=(5) o ¢(3)=(7)
Where the vector u®, matrixes &, and B, are
defined as:
u® = (uq,uy, ..,uy) ¥
Ko =
( A1(s1,t1)

Ay(sy,t1) .o AN(Slrtl)\
Ai(spty)  Ay(spty) oo An(szty)

Ai(sytn)  Ka(syotn) o An(Snotn) 7/ yan
(11)
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B, =

Bi(sy,t1)  By(syty) ... By(syty)

| Bi(s2,tz)  By(sytz) ... Buy(sy ty) |

\ Bi(sn,ty)  Ba(sy,tw) - Bu(sn, ty) /NxM
The matrix £, is symmetric because the distance
is directionless, therefore

Aie(sity) = Ki(spe, t). ) _

If ¢ invertible matrix, a unique solution obtained

ay _ -1 (u® _
()= ()= a )
The interpolation finally expressed as
e
us) = (47 BT (s 0)e ()=
?(s,t) A (13)
Where shape functions @ (s, t) is defined by
@
(S,t) = ( Q)l(S,t) Q)Z(S't) "'®N(Slt) ) (14)
in which
0u(s ) = (Ki(s) BiGsD)  (15)
The shape functions would depend only on
the scattered nodes position when the Radial Basis

Functions been calculated, only when the inverse
of matrix ¢ is obtained.

Solution of (MVFIES) by (RPIM)

When considering the following 2 -
dimension Mixed Volterra - Fredholm integral
equation (MVFIE):

u(s,t) =
f(s,t) +

fot Jo K(stx,y,ulx,y))dxdy  (s,) €1 =
Qx[0,T]

In our method, the form Point Interpolation Method
(PIM) approximating function (Eq.13) is firstly
obtained from a set of points. Then it calculated in a
straight forward by differentiating such a closed
form (RBF). That can be explained as below:
u(s,t) 2uy (s,) = ¥V, a4 (s, t) +

Zj‘-”ﬂ b;B(s,t) = 07 (s,)4, (16)

Substituting Eg. (16) into (1), we have

o7 (s,t)A =
f(s,t) + fot JoK(s,t,x,5,0" (x,y)A) dxdy
17)
Herein, we collocate Eq. (17) at point {(s;, t;)}¥,
as
BF (spt)A = f(sit) +
foti Jo Koty xi, ¥, 87 (x5, ¥)A) dxdy (18)

Then (Eq. 18) residual function Res(s;,t;)
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Res(s;, t;) = =07 (s t)A + f(si,t) +

t
Jo' Jo K (sinti, xi, v, 87 (x, y)A) dxdy  (19)
The coefficients {a;}}_, are obtained by

equalizing Eq. (19) to zero at N interpolate nodes.
By applying the mean square error law to study

behavior of the RPIM to get...
MSE = T, (ulsy ty) —un (s, t)
N
Algorithm

The algorithm is
following steps:
1. Chooses N points {(s;, t;)})_, from the domain
set (a,b) X (a,b).

implemented as the

2. Approximate u(s,t) as uy (s,t) =
ol (s, A
3. Create residual function Res(s,t)from

Substituting u (s, t) into the main problem.
4. Create the N equations from Substitute points
{(s;, t)}YL, intothe Res(s,t).

5. Find coefficients of members of A numerical
solution solving the N equations with N unknown
by inverse matrix method (eq.12)

6. Applied the mean square error (MSE) law to
study behavior of the RPIM.

Numerical Examples

Consider the following examples to
investigate the reliability of radial point
interpolation method (RPIM) to solve (MVFIE) in
addition to justify the efficiency and the accuracy
of our proposed method . In all examples, use

(MQ.) (RBF).
Example 1:
Consider the following (MVFIE) .
243
u(s,t) =sz2+e3 4+ 4
s2t” t 1 5.3
—— — Jo Jo sPtPulx,y)dx dy  (20)

With the exact solution below
u(s,t) =s?+1t3
Table (1) demonstrates MSE obtained from applying our
method on Equation (20) for different values of M.

Table 1. MSE between exact & (RPIM) solution with ¢ = 0.1 in Example (1)

s t N=8 | M=3 N=8 | M=5 N=8 | M=7
| Exact-RPIM | | Exact-RPIM | | Exact-RPIM |
0.980 0.00 1.11e-16 0.00e-00 0.00e-00
0.898 0.05 1.12e-06 1.31e-06 1.12e-06
0.763 0.10 1.56e-05 1.68e-05 1.56e-05
0.592 0.15 5.43e-05 5.59¢-05 5.43e-05
0.408 0.20 8.74e-05 8.88e-05 8.75e-05
0.237 0.25 7.39¢-05 7.49¢-05 7.39-05
0.102 0.3 2.84e-05 2.87e-05 2.84e-05
0.199 0.4 2.03e-06 2.04e-05 2.03e-06
MSE 2.25 e-009 2.22e-009 2.14e-009
Example 2: (21)

Let the following (MVFIE)
u(s,t) = sin(st) — %tz cos(s)
+ cos(s) — cos(s) cos(t)

+ f; f01 t? cos(s) u(x,y)dxdy
With the below exact solution:
u(s,t) = sin(st)
Also, Table (2) demonstrates MSE obtained from applying
our method on Eq. (21) for different values of M .

Table 2. MSE between Exact & (RPIM) solution with ¢ = 0.1 in Example (2)

s t N=5 | M=2 N=5 | M=3 N=5 | M=5
| Exact-RPIM | | Exact-RPIM | | Exact-RPIM |
0.953 0.00 2.95e-17 0.00e-00 3.69¢-18
0.769 0.05 5.96e-07 6.73e-06 4.33e-07
0.500 0.10 1.76e-06 1.29e-05 1.73e-06
0.231 0.15 8.10e-06 3.67e-05 1.38e-05
0.469 0.20 5.81e-05 8.80e-05 6.55e-05
MSE 6.88e-10 1.86e-09 8.96 e-10
4
Example 3: u?(x,y)dx dy = st _523 %

Mixed nonlinear Volterra - Fredholm integral
equation is following

u(s,t) — fofo (s —

(22)
With exact solution:
u(s,t) = st
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Table (3) demonstrates MSE obtained from applying our

method on Equation. (22) for different values of M.

Table 3. MSE between Exact & (RPIM) solution with ¢ = 0.1 in Example (3)

S t N=20 & M=8 N=20 & M=6 N=20 & M=5
| Exact-RPIM | | Exact-RPIM | | Exact-RPIM |
0.003 0.00 1.56e-17 2.78e-17 3.47e-17
0.127 0.20 6.46e-05 6.48e-05 6.48e-05
0.386 0.40 9.23e-05 9.39%e-05 9.31e-05
0.687 0.60 1.47e-03 1.52e-03 1.41e-03
0.920 0.80 2.19e-03 2.42e-03 1.54e-03
0.996 1.00 5.84e-04 7.59e-04 7.77e-05
MSE 1.39e-006 1.64e-006 8.97e-007
Conclusion:
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that could associate in collocation methods is on non-rectangular regions using meshless methods.
overcome by involving the radial basis functions. J. Line.Top.Alg. 2015. 4, 289-304.

Many examples are solved by our method for 3. Nemati S, Lima P, Ordokhani Y. Numerical Method
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with the exact solution and the accuracy of RPIM 4. Shahooth M. Numerical Solution for Mixed Volterra
results is in positive relationship with the — Fredholm Integral Equations of the sacond kind by
numbers term  (N) of RBF and ( M ) of using Bernstein Polynomials Method. Math.Theo.
. .. . and Model. 2015. 5, 154-162.
polynomial ( P ).The eff|C|e_n'§ of RPIM method is 5. Babolian E . A numerical method for solving
excellent and of high precision . In general the Fredholm-Volterra integral equations in  two-
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