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Abstract:

In this paper, a new technique is offered for solving three types of linear integral equations of the 2™
kind including Volterra-Fredholm integral equations (LVFIE) (as a general case), Volterra integral equations
(LVIE) and Fredholm integral equations (LFIE) (as special cases). The new technique depends on
approximating the solution to a polynomial of degree (m — 1) and therefore reducing the problem to a linear
programming problem(LPP), which will be solved to find the approximate solution of LVFIE. Moreover,
guadrature methods including trapezoidal rule (TR), Simpson 1/3 rule (SR), Boole rule (BR), and Romberg
integration formula (RI) are used to approximate the integrals that exist in LVFIE. Also, a comparison
between those methods is produced. Finally, for more explanation, an algorithm is proposed and applied for
testing examples to illustrate the effectiveness of the new technique.

Keywords: Linear Volterra-Fredholm integral equation of the 2™ kind (LVFIE), Linear programming
problem (LPP), Quadrature methods.

Introduction:

Integral equations occur naturally in many  optimal solution of the latest problem as an
fields of mechanics and mathematical physics. They  approximate one with a controllable error for the
also arise as representation formulas for the  original solution is obtained (6). Nazemi and Farahi
solutions of differential equations (1). in 2011 considered a numerical method for

From the last few years, there has been nonlinear Fredholm integral equations of the second
interest to use the linear and nonlinear programming kind with the continuous kernel by converting the
methods to find a numerical or approximate  integral equation problem into an optimization
solution for integral equations. AL-Nasir in 1999 problem (7). Skandari et al. in 2011 proposed a new
used the linear programming method to find approach for a class of optimal control problems to
numerical solution of Volterra integral equations of  solve Volterra integral equations which is based on
the 2™ kind (2). Also, Saed in 1999 used linear linear combination property of intervals (8).
programming method to find numerical solution of Erfanian and Mostahsan in 2011 considered two
Fredholm integral equations of the 1% kind (3). stages of approximation to find an approximate
While Kalwi in 1999 used the same procedure to  solution for a class of nonlinear Volterra integral
find numerical solution for Fredholm integral equations by: first convert the integral equation to a
equations of the 2" kind (4). Shua”a in 2005 moment problem, and then modify the new problem
calculated numerical solution for Volterra integral ~ to two classes of optimization problems (non-
equation using linear programming problem (5). constraint  optimization and optimal control
Kamyad et al. in 2010 proposed a new approach for problems) (9). Effati and Skandari in 2012
solving linear and nonlinear Volterra integral presented a new approach for linear Volterra
equations of the 1% and 2™ kinds first by defining a integral equations based on optimal control theory
new problem in calculus of variations, which is and some optimal control problems corresponding
equivalent to this kind of problem, then by using the Volterra integral equation are introduced which
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approximating the unknown function using a tensor
product (Algebraic or Chebyshev)-surface and
substituting it in the Volterra-Fredholm integral
equations, second apply least-square technique for
minimizing the error terms on the given domain,
and then obtain a system of linear algebraic
equations which solved using control points (11).
Chen and Jiang in 2012 used Taylor expansion
method to solve a mixed linear Volterra—Fredholm
integral equation of the 2™ kind (12). Ghanim in
2014 introduced numerical algorithms to find
numerical solution for linear Volterra — Fredholm
integral equation of the 2" kind using three
different kinds of Lagrange polynomials (13).
Mustafa and Harbi in 2014 used non-polynomial
spline function to find numerical solution for
Volterra integral equation of the 2™ kind (14).
Nemati et al. in 2015 proposed numerical solution
of linear mixed Volterra-Fredholm integral
equations in one space variable, the proposed
numerical algorithm combines the trapezoidal rule,
for the integration in time, with piecewise
polynomial  approximation, for the space
discretization (15). Chniti and Alhazmi in 2015
presented smoothing transformation, Legendre and
Chebyshev collocation method to solve numerically
the Volterra-Fredholm integral equations with
logarithmic kernel (16). Khan et al. in 2017
provided a numerical technique for obtaining
approximate solution of mixed Volterra-Fredholm
integral equations of 2" kind based on the
Bernstein’s approximation (17). Hasan et al. in
2017 proposed a fixed point method to solve a
system of LVFIE of the 2™ kind using fixed point
method (18).

In this paper, LVFIE of the 2™ kind of the
following form are considered:

g(x) =

FOO) + [Xwy (e, 0g(@©)dt + [ w,(x, gD de

, X €la,b] ... (1)

where g(x) is the unknown function to be
determined, f(x),wy(x,t) and w,(x, t) are
continuous known functions. Therefore an

approximate solution depending on a polynomial of
degree (m — 1) is proposed, which has the form:
9o = gm(®) = I cxt ()

where ¢ ,c¢y, ... ¢, are arbitrary constants to be
determined. Next using numerical integration
includes (TR, SR, BR, and RI) to find an
approximate solution for the integral parts in Eq.1,
after that using LPP to find an approximate
solution to this problem. This paper is well ordered
as follows: section (2) includes basic definitions,
section (3) contains transforms Eq.1 to the LPP, in
section (4), the algorithm for solving LVFIE is
proposed, section (5) includes test examples.
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Finally, section (6) gives conclusions and
recommendations.
Basic Definitions:
Definition 1: An integral equation can be

recognized as equations in which the indefinite
function g(x) to be specific appear under the
integral sign. A standard formula of an integral
equation in g(x) is:
c()g(x) = F(0) + A [0 wlx, Dg(e) dt
[a(x),b(x)] ... (3)
where c(x), f(x)and w(x,t) are given continuous
functions, w(x,t) is known as the kernel of the
integral Eqg. 3, and a(x)and b(x) are the limits of
integration, A is a constant parameter (19). Also, Eq.
3 is called ‘Volterra integral equation’ (VIE), if b(X)
= x and a(x)=a, and it is called ‘Fredholm integral
equation’ (FIE), if b(x) = b and a(x) = a, where a
and b are constants.
Note that, for Eg. 1 when w; (x, t) is equal to

zero Eq. 1 becomes FIE, furthermore when w, (x, t)
is equal to zero Eq. 1 becomes VIE. And it is called
VFIE if the both integral appear at one time. In this
paper Eqg. 1 is taken as a general form to improve
that the proposed method is effective for the three
kinds of equations.
Definition 2: The general form for LPP can be
expressed mathematically as follows (20):
minimize or maximize z = Z;-;l cjx; )

Subject to
Yy aix (S,=,2) by, 1,2, ...

Xj 2 0, j=12,..,n
where ¢; (j = 1,...,n) are real number called cost
coefficients, b; (i =1,..,m)are real number
called stipulations, a;j(i=12,..m;j=
1,2, ...,n) are constants called structural coefficients
and x;'s are called decision variables for (j =
1,2,..,n).

, X €

P = m .. (4)

Transform the LVFIE’s of the 2" Kind to LPP:
The solution of LVFIE of the 2™ kind can

be founded by substituting g,,(x) in the Eq. 2

instead of the unknown function in Eq. 1 yields:

Y oxttt

FGO+ [T wiCo ) Ty ittt dt +

f; wo(x, ) X, ittt dt + e(x)

where €e(x) is the approximate error, then we get:

e(x) =

fOO) =2y x4 [T wy (o, ) I ¢t de +
b .

J, wa (6, O Ty ittt de ... (5)

Simplification of Eq. 5, to obtain:



Open Access
2020, 17(1) Supplement (March):342-347

Baghdad Science Journal

P-1SSN: 2078-8665
E-ISSN: 2411-7986

e(x) =
f) —Eitia [xi_l - f; wy (x, )t tdt —

[y wa e, O)ti1de|... (6)
Suppose
P;(0) = 27— [FTwy (x, Ot e -

[ wy (e 0tdt Li=12,.,m ... (7)
Now, substituting Eg. 7 in Eq. 6 yields:
€)= f(x) = Xy cpi(x) .. (8)
and dividing the interval [a, b] into n subintervals
to get the points x;=a+(G—1)xh, j=
1,2,..,n+ 1 where h = bn;a y Xy =a, and X1 =
b . Hence, after substituting x =x;,forj=
1,2,..,n+1 in Eq. 7, the following formula is
obtained:
¥i(x)) =

xt - fab wi(x;, t)ttde
X = [Ywy (x, )t de — [P wy(x, )t e, if2<i<m

j=12,.,n+1 ..(9

Therefore, substituting x = x; forj=12,..,n+
1, Eqg. 8 becomes:
e(x) =1f(x) - 2P cvi(x), j=12,..,n+1
...(10)
Now, define y as:
y =X e(x)) (11)
Therefore, Eg. 1 can be written in the following

ifi=1

LPP form:
miny = Y €(x;)
s.t

Yrievi(x) — v < £(x)
-2 cilpi(x]-) —y < —f(xj) Sj=1,..,n+1

....(12)

where ¢;’s are unrestricted in sign, ybi(xj)’s can be
estimated numerically as shown in the following
subsection. Hence, the values of ¢;’s are used to get
the approximate solution g,,(x) in Eqg. 2, which is
the approximate solution of LVFIE of the 2™ kind
[i.e. Eq. 1].

Calculate ;(x;) Using Numerical Integration

Formulas:
In this subsection, the numerical

computation of the integral part in ;(x;) is shown
using quadrature methods including (TR, SR, BR,
and RI). For this purpose, the following notation is

used: ffll w(x;,t)t""*dt for denotation of the
integral part in y;(x;), j = 1,2,..,n + 1.

Suppose aq =t <ty; < <tp,=by , tp=t; +
(k=Dh k=12,..n+1andh =22

1. Using TR:

f;’ll w(x;, t)t"tdt = %[W(xj, ap)ai™t +

2¥0-, w(xj, tk)t};_l + w(xj, b, )bi1]

2. Using SR:

f;ll w(x;, t)t "t dt = 2 [w(xj,a;)al™ +
dw(xj, t) et + 2w(x, t3) ekt + dw(xg, 6,47 +
ot dw(xj, ty) e + w(xg, by )BT L (14)

3. Using BR:

f:ll w(x;, )t dt = % [7w(xj, a;)al™ +

32w(xj, t) it + 12w(xj, t3)tit +

32w(xj, ty)tht +

14w(xj, ts)tE ™ + -+ 32w(x;, t )th +
7w(x;, by )bi™'] ... (15)
4. Using RI:

f;ll w(x;, t)tt dt = g[w(xj, ay)ai™t +

252 w(ay + 2k — 1) = hy, ty )tk +

w(x;, by)bi~t] ... (16)

The Algorithm for Solving LVFIE of the 2™
kind:

The following steps are used to find an
approximate solution of LV/FIE of the 2" kind:
Step 1. Select two positive integers m andn,
(where m represent the number of terms of series in
EqQ. 2, n represent the number of subinterval for the
closed interval [a,b]).

Step 2. Calculate f(x;), j=1ln+1.

Step 3. Using numerical integration to calculate
Yi(x;) in Egq. 8 for each i=12,...m;j=
1,2,...,n+ 1, which are (TR, SR, BR, and RI).

i. TR, byusing Eqg. 13.

ii. SR, by using Eqg. 14.

iii. BR, by using Eq. 15.

iv. RI, by using Eq. 16.

Step 4. Compute y from Eq. 11.

Step 5. Construct the LP model Eq. 12.

Step 6. Using generalized simplex method to find
the optimal approximation of ¢; ,i = 1,2, ..., m.
Step 7. Determine the approximate solution of Eq. 1
by substituting the values of ¢;,i =1,2,..,m in
Eq. 2.

Note that in this paper MATLAB R2018a is used
for implementation of the algorithm.

...(13)

Numerical Test Examples:

In this section, some of the numerical test
examples are given to illustrate the proposed
method for solving the LV/FIE of the 2™ kind. In all
the test examples g(x) is chosen in such a way that
we know the exact solution. The exact solution is
used only to show that the numerical solution
obtained with our method is true. Then, in these test
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examples the absolute error are calculated in all

points.

Test Example 1: Consider the LVFIE of 2™ kind

@an:

X

1

gx)=x—2e*+e*+1+ f te*g(t)dt + f e*ttg(t)de

0

for which the exact solution is g(x) = e™. Table 1
shows the absolute error obtained by using (TR, SR,
BR, and RI) for h = 0.1,n = 10,m = 10, where m
is the degree of approximate polynomial g(x) appear
in Eq. 2 and ||err||, iS the maximum absolute
error, for x € [0,1].

0
Table 1. The absolute error of test example 1

x Error using TR Error using SR Error using BR Error using RI
0 0.000102493241609158  2.49109375349832e-08  2.01430538915304e-10  2.27079022252497¢-10
0.1 0.000113451577860246  2.77139680093796e-08  1.86916038202867e-10  2.15425566274519e-10
0.2 0.000124537294404647  3.11356900262183e-08  1.98265071027492e-10  2.30316765659211e-10
0.3 0.000133715127830891  3.68140724571475e-08  1.37722810933383e-09  1.34068800505815e-09
0.4 0.000138651792887523  3.9765073456266e-08 1.18836496199037e-10  1.60952806638193e-10
0.5 0.00013651617237409  4.35975450185921e-08  1.32601707392155e-10  1.81023751544274e-10
0.6 0.000123448433075213  4.56720178343417e-08  7.85884357590305e-10  7.32290228455668e-10
0.7 9.37002095329209e-05 3.9269196672187e-08 1.74255054830041e-11  6.94454493910257e-11
0.8 3.80499682491875e-05  1.93316483931838e-08  7.09133862741851e-11  1.00750630060986€-10
0.9 5.94811463363598e-05  2.88283432681169e-08  7.03646030331129%e-11  2.69834155020021e-11
1 0.000228347336972523  1.32361363092137e-07  6.38649244599776e-10  4.09659972611109e-10
llerr|l, 0.000228347336972523  1.32361363092137e-07  1.37722810933383e-09  1.34068800505815e-09

Table 2 shows the maximum absolute error of test
example 1 by using Rl with 10 columns for

comparing with the minimum error in (17) obtained
using Bernstein polynomials.

,n=>5,10,..,30 and m=5,10,...,20 and
Table 2. Maximum absolute error by using RI with 10 columns
- _ _ _ Minimum
m=5 m=10 m=15 m=20 error in (17)
n=5  1.80466052200901e-05 1.73236324783055¢-05 0.000139531997039199  0.00048852860377735
n=10  1.29375330428783e-05 1.34068800505815¢-09  2.30496499664667e-09  2.08972145032682¢-07
n=15  1.2817840279622e-05  1.83188264557543¢-09  5.94055804548077e-10  3.00607217784687e-07  7.071067812*
n=20  1.17171123399373e-05 1.86609017127637e-09  4.58927396085329e-09  1.19387566610563e-07 0™
n=25  1.12564382384051e-05 2.68936872771519e-09  3.24708193666368e-09  1.97195315632115¢-09
n=30  1.11584049335978e-05 1.78146986051786e-09  5.00741970110852e-09  1.49425165574257¢-08

Test Example 2: Consider the FIE of the 2™ kind

(21): g(x) = sin(x) —x + f:/z xtg(t)dt
for which the exact solution is g(x) = sin(x).

Table 3 shows the absolute error obtained by using
(TR, SR, BR, and RI) for h = 0.1,n = 10,m = 10,

and x € [0,7].

Table 3. The absolute error of test example 2

Error using TR

Error using SR

Error using BR

Error using RI

0
0.000275096664244356

0.000550193328488546

0.000825955324154082

0.00110038665697776

0.00137482378285103

0.00165057998546692

0.00192639040596387

0.00220077331395585

0.00247586997820104

0.00275024709314409
0.00275024709314409

0
3.46922592708854e-07

6.84035879827682e-07

1.0238570866683e-06

1.3680717573239e-06

1.7118563248042¢-06

2.05210763648545¢-06

2.39212967390046e-06

2.73614351353757e-06

3.07816145295181e-06

3.41770074263614e-06
3.41770074263614e-06

0
3.93723234570764e-09

1.93483751242951e-09

5.09898773204398e-09

3.86967580201514e-09

3.070467546884e-09

5.80451475773458e-09

8.76783445846741e-09

7.73935204811949¢-09

8.70677108189e-09

1.21528355156997e-08
1.21528355156997¢-08

0
5.28284549439206e-09

7.5638911800624¢e-10

1.06214725903442¢-09

1.51277890214629e-09

3.65760144394045e-09

2.26916840873059e-09

6.5146210648237e-10

3.02555758224798e-09

3.40375128082826e-09

1.30330013448088e-09
5.28284549439206e-09
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Table 4 shows the maximum absolute error of test
example 2 by using Rl with 10 columns for

comparing with the minimum error in (21) using A
wavelet based method.

,n=>510,..,30 and m =5,10,...,20 and
Table 4. Maximum absolute error of test example 2
m=5 m=10 m=15 m=20 Minimum
error in (21)
n=5  0.000250532304200357  0.00204524171715315  0.00700937506399091  0.00299344393818657  4.87051*10"
n=10  0.000150493052866185 5.28284549439206e-09  2.95809066130914e-09  1.36430372665863¢-07
n=15  0.000126432937772925 1.25692456443005¢-10  3.26260370886455¢-07  2.07978079203031e-12
n=20  0.000122723915813472  9.42873719211867e-07  5.11214459653075e-09  7.28038746622417¢-07
n=25  0.000134526659284484  1.53481720666093¢-08  3.21489566856847e-07  5.01681764353279¢-07
n=30  0.000130829048964776  7.12419012671717e-11  3.28022662254845e-07  6.90780765921772¢-13

Test Example 3: Consider the VIE of the 2™ kind.
(22)

gx) = x°— x78 + f(fxtg(t)dt for which the exact
solution is g(x) = x°. Table 5 shows the absolute

error obtained by using (TR, SR, BR, and RI) for
h=0.1,n=10,m = 10, and x € [0,1].

Table 5: The absolute error of test example 3

Error using BR

Error using RI

x Error using TR Error using SR
0 0 0
0.1 4.07240313671209e-08 8.24038275934354e-08
0.2 5.14835299653517e-08 1.63159514236203e-07
0.3 1.0280117092613e-07 2.34026355174985e-07
0.4 8.117302906889e-07 2.73578518049725e-07
0.5 4.94217156043336e-06 2.40612479093794e-07
0.6 2.14923150374663e-05 6.75544593181643e-08
0.7 7.45893556647337e-05 3.46132139256161e-07
0.8 0.000220789721384063 1.1405392973951e-06
0.9 0.000579980666897018 2.50190694273122¢-06
1 0.00138699622275107 4.66921551289801e-06
llerr || 0.00138699622275107 4.66921551289801e-06

0

4.7171878984503e-10

9.34002835088679%¢-10
1.33967841290869¢e-09
1.56609384314998e-09
1.37738051173009e-09
3.86713883138157e-10
1.98142546814495e-09
6.52899079245373e-09
1.43221082771205e-08
2.6728815827326e-08

2.6728815827326e-08

0

3.3881317890172e-21

1.0842021724855¢-19
8.67361737988404e-19
3.46944695195361e-18
1.38777878078145¢e-17
2.77555756156289¢-17
5.55111512312578e-17
1.11022302462516e-16
3.33066907387547e-16
4.44089209850063e-16
4.44089209850063e-16

Table 6 shows the maximum absolute error of test
example 3 by using RI with 10 columns with

comparing with the minimum error in (22) using
analytical techniques for a numerical solution.

,n=>510,..,30 and m =5,10,...,20 and
Table 6. Maximum absolute error of test example 3
m=5 m=10 m=15 m=20 Minimum

error in (22)

n=5  0.00344432832521402  3.33066907387547e-16  0.00859839736540469  0.0236481084743722 4.63*10"°

n=10  0.00210910706319622  4.44089209850063¢-16  1.0191847366058%-13  2.28582959427293¢-06

n=15  0.00219352883926544  8.21565038222616e-15 5.77315972805081e-15  4.37383462781327¢-12

n=20  0.00203247879180546  1.38222766565832¢-13  7.21644966006352e-15  1.09923181668137¢-12

n=25  0.00206776701090695  7.105427357601e-14  7.7715611723761e-15  5.313527395856e-13

n=30  0.00199598890700549  3.84636766881385¢-13  5.46229728115577e-14  4.3310910413652¢-12

Conclusions: programming method. Also, it is supposed that the

This paper presents a method of finding the
solution of LVFIE of the 2" kind using the LPP.
The polynomial of degree m — 1 is used to convert
the LVFIE of the 2" kind into LPP. TR, SR, BR
and RI are proposed for computing the integral part
and the comparison between those methods is made.
The accuracy of the method has been shown by
applying different test examples and comparing the
results with the exact solution. The results for the
LPP are improved using RI instead of the other
methods to evaluate the integrals within linear

346

best result can be obtained by increasing both the
number of basic functions (m) and the number of
constraints (n) with keeping (n > m). For future
work, we suggest using this method for solving
“Volterra- Fredholm integro-differential equations’,
by using suitable approximation for derivatives part.

Conflicts of Interest: None.
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