Some Games Via $\mathfrak{I}$-Semi-$g$-Separation Axioms

M.A. Abdel Karim*  
A.I. Nasir

Department of Mathematics, College of Education for Pure Sciences Ibn Al-Haitham, University of Baghdad, Iraq.  
*Corresponding author: Maherjaleel89@yahoo.com, Ahmed_math06@yahoo.com  
'ORCID ID: https://orcid.org/0000-0001-6663-3327

Received 27/6/2019, Accepted 17/12/2019, Published 1/9/2020

This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract:

The research demonstrates new species of the games by applying separation axioms via $\mathfrak{I}$-semi-$g$-open sets, where the relationships between the various species that were specified and the strategy of winning and losing to any one of the players, and their relationship with the concepts of separation axioms via $\mathfrak{I}$-semi-$g$-open sets have been studied.

Key words: $\mathfrak{I}$sg-open set, $\mathfrak{I}$sg-closed set, $\mathfrak{I}$sg-function, $\mathfrak{I}$sg-continuous-function and game.

Introduction:

This previously connotation of ideals on a science of topology was proffered by Kuratowski in 1933(1) and Vaidynathasamy in 1945(2). An ideal $\mathfrak{I}$ on $X \neq \emptyset$ is a family of subsets of $X$ that encompass the two prerequisites finite additivity (A and B in $\mathfrak{I}$ implies $A \cup B$ in $\mathfrak{I}$) and heredity (A in $\mathfrak{I}$ and $B \subset A$ in $\mathfrak{I}$ implies $A$ in $\mathfrak{I}$) (1, 2). Let $(X, \tau)$ be a topological space, a subset $\mathfrak{U}$ of $X$ is a semi-open if $\mathfrak{U} \subseteq \text{int}(\text{cl}(\mathfrak{U})))$ (4). In a newly time, there are those who have insert a topic $\mathfrak{I}$-semi-$g$-closed set for the ideal spaces $(X, \tau, \mathfrak{I})$ by use the connotation of semi-open sets (3), if A,$\mathfrak{U}$ is semi-open in $(X, \tau, \mathfrak{I})$ where $\mathfrak{U}$ is semi-open in $(X, \tau, \mathfrak{I})$. Then, the set A be $\mathfrak{I}$-semi-$g$-closed set (artlessly, $\mathfrak{I}$sg-closed). So, the set A denotes $\mathfrak{I}$-semi-$g$-open (frugally, $\mathfrak{I}$sg-open) if $X$-$A$ is $\mathfrak{I}$sg-closed. And the symbol $\mathfrak{I}$sg-$\mathcal{C}(X)$ (respectively, $\mathfrak{I}$sg-$\mathcal{O}(X)$) is the family of all $\mathfrak{I}$sg-closed (respectively, $\mathfrak{I}$sg-open) sets in $(X, \tau, \mathfrak{I})$. Note that: every open set in $(X, \tau)$ is $\mathfrak{I}$sg-open in $(X, \tau, \mathfrak{I})$. The separation axioms via $\mathfrak{I}$sg-open sets were proffered by (5) and which include many definitions as follows:

i- A space $(X, \tau, \mathfrak{I})$ is $\mathfrak{I}$-semi-$g$-$T_0$-space (artlessly, $\mathfrak{I}$sg-$T_0$-space), if for any elements $c_1 \neq c_2$, there is an $\mathfrak{I}$sg-open set $\mathfrak{U}$ containing only one of them. For any ideal $\mathfrak{I}$ on $X$, the fact of a space $(X, \tau)$ $T_0$-space is enough to be the space $(X, \tau, \mathfrak{I})$ $\mathfrak{I}$sg-$T_0$-space.

ii- A space $(X, \tau, \mathfrak{I})$ is $\mathfrak{I}$-semi-$g$-$T_1$-space (artlessly, $\mathfrak{I}$sg-$T_1$-space), if for any elements $c_1 \neq c_2$, there are two $\mathfrak{I}$sg-open sets $\mathfrak{U}$ and $\mathfrak{V}$ such that $(c_1 \in \mathfrak{U}-\mathfrak{V})$ and $(c_2 \in \mathfrak{V}-\mathfrak{U})$. For any ideal $\mathfrak{I}$ on $X$, the fact of a space $(X, \tau)$ $T_1$-space is enough to be the space $(X, \tau, \mathfrak{I})$ $\mathfrak{I}$sg-$T_1$-space.

iii- A space $(X, \tau, \mathfrak{I})$ is $\mathfrak{I}$-semi-$g$-$T_2$-space (artlessly, $\mathfrak{I}$sg-$T_2$-space), if for any elements $c_1 \neq c_2$, there are two disjoint $\mathfrak{I}$sg-open sets $\mathfrak{U}$ and $\mathfrak{V}$ such that $c_1 \in \mathfrak{U}$ and $c_2 \in \mathfrak{V}$. Obviously, if $(X, \tau)$ is $T_2$-space, then $(X, \tau, \mathfrak{I})$ is $\mathfrak{I}$sg-$T_2$-space.

The relations among the different types of separation axioms that introduced above are discussed in (5), as the following scheme shows:

Scheme 1. The relations among the different types of separation axioms.
All games that are species in this research from a kind"Two-Zero-Sum Games", where the games will be defined between the two players Player I and Player II and there are choices; \(M_1, M_2, M_3, \ldots, M_r\) for each player, are called moves or options. If player chooses one move, then this process of it is called one step. When the game has more than one step, it is called a repeated or iterated game. This number of repetition of this game is finite or infinite. The player gets a certain reward after each step. The payoff for any one of the players equal to the loss of the other player (6,7).

These games have two types; alternating games and simultaneous games and the game is alternating if one of players (Player I) chooses one of the moves, then the other (Player II) chooses one of the other moves after that Player I know the move of the first player. In these alternating games we must note the player who will start for playing. The game is simultaneous if both players choose their moves in the same time, but none of them knows the choice of the other (6,7).

A function \(S\) is a strategy for (Player I) define as follows; \(S = \{S_m: A_{m-1} \times B_{m-1} \rightarrow A_m, \text{ such that } (A_1, B_1, \ldots, A_{m-1}, B_{m-1}) = A_m\}.\) Similarly, a function \(T\) is a strategy for (Player II) define as follows; \(T = \{T_m: A_m \times B_{m-1} \rightarrow B_m, \text{ such that } (A_1, B_1, \ldots, A_{m-1}, B_{m-1}, A_m) = B_m\}.\) (6, 7).

Analytical study of games in ideal topological spaces

In this section, we insert new games by linking them with separation axioms via open (respectively, \(ls-g-open\)) sets. At the beginning of this explanation there are two entrants which are the first player (frugally, Player I) and second player (frugally, Player II). And in these games there are finite or infinite innings and every inning has two steps for the two players, first step and second step (6, 7). The players are playing an inning for each positive integer in the game. In these games we provide the winning strategy and the losing strategy for each player, we symbolize to the winning strategy by \(\succ\) and the losing strategy by \(\prec\) and we will symbolize by \(\times\) (respectively, \(\times\)) when a player does not have a winning strategy (respectively, losing strategy).

**Definition 1:** For an ideal space \((X, \tau, \mathcal{I})\), determine a game \(G(T_0, X)\)(respectively, \(G(T_0, X, \mathcal{I})\)) as follows: Player I and Player II are playing an inning for each positive integer in this game in the \(r-th\) inning: In the first step, Player I: Choose \(\epsilon_r \neq \nu_r\) where \(\epsilon_r, \nu_r \in X\). In second step, Player II: Choose \(\mathcal{U}_r\) an open (respectively, \(ls-g-open\)) set containing only one of the two elements \(\epsilon_r, \nu_r\).

Then Player II wins in the game \(G(T_0, X)\) (respectively, \(G(T_0, X, \mathcal{I})\)) if \(B = \{B_1, B_2, B_3, \ldots, B_r, \ldots\}\) be a collection of an open (respectively, \(ls-g-open\)) sets in \(X\) such that \(\forall \epsilon_r \neq \nu_r \in X, \exists B_r \in B\) containing only one of two elements \(\epsilon_r, \nu_r\). Otherwise, Player I wins.

**Example 1:** Consider the game \(G(T_0, X)\) (respectively, \(G(T_0, X, \mathcal{I})\)), where \(X = \{c, \nu, z\}, \tau = \{X, \phi \{c\}, \{z\}, \{c, z\}\}\) and \(I = \{\phi\}\) as follows:

Player I and Player II are playing for a three innings. Then the first inning is as follows:

Player I: Choose \(c \neq \nu\) where \(c, \nu \in X\)

Player II: Choose \(\mathcal{U}_1 = \{c\}\) is an open (respectively, \(ls-g-open\)) set containing only one of the two elements \(c, \nu\).

Then, the next inning (the second inning) is as follows:

Player I: Choose \(\nu \neq z\) where \(\nu, z \in X\)

Player II: Choose \(\mathcal{U}_2 = \{z\}\) is an open (respectively, \(ls-g-open\)) set containing only one of the two elements \(\nu, z\).

Then, the third inning is as follows:

Player I: Choose \(c \neq z\) where \(c, z \in X\)

Player II: Choose \(\mathcal{U}_3 = \{c\}\) is an open (respectively, \(ls-g-open\)) set containing only one of the two elements \(c, z\).

Then \(B = \{\mathcal{U}_1, \mathcal{U}_2\}\) is the winning strategy for Player II in \(G(T_0, X)\) (respectively, \(G(T_0, X, \mathcal{I})\)).

Hence, Player II \(\succ G(T_0, X)\) (respectively, \(G(T_0, X, \mathcal{I})\)).

**Remark 1:** For a space \((X, \tau, \mathcal{I})\):

i- If Player II \(\succ G(T_0, X)\), then Player II \(\not\preceq G(T_0, X, \mathcal{I})\). Therefore, Player II \(\prec G(T_0, X)\) then Player II \(\preceq G(T_0, X, \mathcal{I})\).

ii- If Player I \(\prec G(T_0, X, \mathcal{I})\), then Player I \(\not\succ G(T_0, X)\).

iii- If Player II \(\prec G(T_0, X)\) then Player II \(\not\preceq G(T_0, X, \mathcal{I})\).

**Proposition 1:**

i- A space \((X, \tau)\) is \(T_0\)-space if and only if, Player I \(\not\preceq G(T_0, X)\).

ii- A space \((X, \tau, \mathcal{I})\) is \(ls-g-T_0\)-space if and only if, Player I \(\not\preceq G(T_0, X, \mathcal{I})\).

**Proof:**

i- Necessity: Suppose that \((X, \tau)\) is \(T_0\)-space. For any choice \(\epsilon_1 \neq \epsilon_2\) in \(X\) of Player I, then Player II will be find an open set \(\mathcal{U}\) containing only one of them. Hence, Player II \(\not\preceq G(T_0, X)\).

Sufficient: If Player II \(\not\preceq G(T_0, X)\), this mean that for any choice \(\epsilon_1 \neq \epsilon_2\) in \(X\) of Player I, implies that Player II can be choose an open set \(\mathcal{U}\) containing only one of them. So, \((X, \tau)\) is \(T_0\)-space.
ii- Similar of proof (i).

Corollary 1: For a space \((X, \tau, \mathcal{I})\):

i- Player II \( \nabla G(T_0, X) \) if and only if \( \forall \, e_1 \neq e_2 \) in \( X \), \( \exists A \) is closed set where \( e_1 \in A \) and \( e_2 \notin A \).

ii- Player II \( \nabla G(T_0, X, \mathcal{I}) \) if and only if \( \forall \, e_1 \neq e_2 \) in \( X \), \( \exists B \) is isg-closed set where \( e_1 \in B \) and \( e_2 \notin B \).

Proof: Clearly, by using the concept of the complement and Proposition 1.

Corollary 2:

i- A space \((X, \tau)\) is \( T_0\)-space if and only if, Player I \( \nabla G(T_0, X) \).

ii- A space \((X, \tau, \mathcal{I})\) is isg-\( T_0\)-space if and only if, Player I \( \nabla G(T_0, X, \mathcal{I}) \).

Proof:

i- Necessity; Suppose that \((X, \tau)\) is \( T_0\)-space. If Player I \( \nabla G(T_0, X) \), then there are two elements \( e_1 \neq e_2 \) in \( X \) such that there is no open set \( U \) containing only one of them. This is a contradiction.

Sufficient; Suppose that Player I \( \nabla G(T_0, X) \). If a space \((X, \tau)\) is not \( T_0\)-space, then there are two elements \( e_1 \neq e_2 \) in \( X \) such that there is no open set \( U \) containing only one of them. So, Player I can choose these two elements \( e_1 \) and \( e_2 \) and winning the game. This is a contradiction.

ii- Similar of proof (i).

Proposition 2:

i- A space \((X, \tau)\) is not \( T_0\)-space if and only if Player I \( \nabla G(T_0, X) \).

ii- A space \((X, \tau, \mathcal{I})\) is not isg-\( T_0\)-space if and only if Player I \( \nabla G(T_0, X, \mathcal{I}) \).

Proof:

i- Necessity; Suppose that \((X, \tau)\) is not \( T_0\)-space, then there are two elements \( e_1 \neq e_2 \) in \( X \) such that \( \forall \, e_1 \neq e_2 \), \( \exists A \in U \) be a collection of an open (respectively, isg-open) sets such that \( e_1 \in A \) and \( e_2 \notin A \). Otherwise, Player I wins in the game \( G(T_0, X, \mathcal{I}) \).

Sufficient; If Player I \( \nabla G(T_0, X) \), this means that there is a choice \( e_1 \neq e_2 \) in \( X \) of Player I, such that Player II cannot be choose an open set \( U \) containing only one of them. Hence, \((X, \tau)\) is not \( T_0\)-space.

ii- Similar of proof (i).

Corollary 3:

i- A space \((X, \tau)\) is not \( T_0\)-space if and only if Player II \( \nabla G(T_0, X) \).

ii- A space \((X, \tau, \mathcal{I})\) is not isg-\( T_0\)-space if and only if Player II \( \nabla G(T_0, X, \mathcal{I}) \).

Proof:

i- Necessity; Suppose that \((X, \tau)\) is not \( T_0\)-space, if Player II \( \nabla G(T_0, X) \), then for any two elements \( e_1 \neq e_2 \) in \( X \), there is an open set \( U \) containing only one of them. This is a contradiction.

Sufficient; Suppose that Player II \( \nabla G(T_0, X) \). If \((X, \tau)\) is \( T_0\)-space, then for any two elements \( e_1 \neq e_2 \) in \( X \), there is an open set \( U \) containing only one of them. So, Player II will be win the game. This is a contradiction.

ii- Similar of proof (i).

Definition 2: For an ideal space \((X, \tau, \mathcal{I})\), determine a game \( G(T_1, X, \mathcal{I}) \) as follows; Player I and Player II are play an inning with each natural numbers in this game in the \( r\)-th inning:

In the first step, Player I : Choose \( e_1 \neq e_2 \) where \( e_1, e_2 \in X \).

In second step, Player II : Choose \( U_r, V_r \) are two open (respectively, isg-open ) set such that \( e_1 \in U_r \) and \( e_2 \notin V_r \).

Then Player II wins in the game \( G(T_1, X, \mathcal{I}) \) (respectively, \( G(T_1, X, \mathcal{I}) \)) if \( B = \left\{ \{A_1, B_1\}, \{A_2, B_2\}, \{A_3, B_3\}, \ldots, \{A_r, B_r\}, \ldots \right\} \) be a collection of an open (respectively, isg-open) sets in \( X \) such that \( \forall \, e_1 \neq e_2 \), \( \exists A \in B \) be a collection of two elements \( e_1 \) and \( e_2 \). Otherwise, Player I wins in the game \( G(T_1, X, \mathcal{I}) \) (respectively, \( G(T_1, X, \mathcal{I}) \)).

Example 2: Consider the game \( G(T_1, X, \mathcal{I}) \) (respectively, \( G(T_1, X, \mathcal{I}) \)) where \( X = \{x, y, z\} \), \( \tau = P(X) \) and \( I = \{\emptyset\} \) as follows:

Player I and Player II are playing for three innings in this game. Then the first inning is as follows:

Player I: Choose \( e \neq \emptyset \) where \( e, \emptyset \in X \).

Player II: Choose \( U_1 = \{e\}, \, V_1 = \{\emptyset\} \) which are open (respectively, isg-open) sets, such that \( e \in U_1 \) and \( \emptyset \notin V_1 \).

Then the next inning (the second inning) is as follows:

Player I: Choose \( v \neq z \) where \( v, z \in X \).

Player II: Choose \( U_2 = \{v\}, \, V_2 = \{z\} \) which are open (respectively, isg-open) sets, such that \( v \notin U_2 \) and \( z \in V_2 \).

Then the next inning (the third inning) is as follows:

Player I: Choose \( c \neq z \) where \( c, z \in X \).

Player II: Choose \( U_3 = \{c\}, \, V_3 = \{z\} \) which are open (respectively, isg-open) sets, such that \( c \in U_3 \) and \( z \notin V_3 \).

Then \( B = \left\{ \{U_1, V_1\}, \{U_2, V_2\}, \{U_3, V_3\} \right\} \) is the winning strategy for Player II in the game \( G(T_1, X, \mathcal{I}) \) (respectively, \( G(T_1, X, \mathcal{I}) \)).

Hence, Player II \( \nabla G(T_1, X, \mathcal{I}) \) (respectively, Player II \( \nabla G(T_1, X, \mathcal{I}) \)).

Remark 2: For a space \((X, \tau, \mathcal{I})\):

i- If Player II \( \nabla G(T_1, X, \mathcal{I}) \), then Player II \( \nabla G(T_1, X, \mathcal{I}) \). Therefore, Player II \( \nabla G(T_1, X, \mathcal{I}) \) then Player II \( \nabla G(T_1, X, \mathcal{I}) \).
ii- If Player I $\not\succ G(T_1, X, \bar{T})$, then Player I $\not\succ G(T_1, X)$.

iii- If Player II $\not\prec G(T_1, X)$, then Player II $\not\prec G(T_1, X, \bar{T})$.

**Proposition 3:** For a space $(X, \tau, \bar{T})$:

i- A space $(X, \tau)$ is $T_1$-space if and only if Player II $\not\prec G(T_1, X)$.

ii- A space $(X, \tau, \bar{T})$ is $Isg-T_1$-space if and only if Player II $\not\prec G(T_1, X, \bar{T})$.

**Proof:**

i- Necessity: Suppose that $(X, \tau)$ is $T_1$-space. For any choice $c_1 \neq c_2$ in $X$ of Player I, then Player II will find two open sets $U$ and $V$, such that $c_1 \in U \setminus V$ and $c_2 \in V \setminus U$. Hence, Player II $\not\prec G(T_1, X)$.

Sufficient: If Player II $\not\prec G(T_1, X)$, this mean that for any choice $c_1 \neq c_2$ in $X$ of Player I, implies that Player II can be choose two open sets $U$ and $V$, such that $c_1 \in U \setminus V$ and $c_2 \in V \setminus U$. Hence, $(X, \tau)$ is $T_1$-space.

ii- Similar of proof (i).

**Corollary 4:** For a space $(X, \tau, \bar{T})$:

i- Player II $\not\prec G(T_1, X)$ if $\forall$ $c_1 \neq c_2$ in $X \exists U, V$ two closed sets where $c_1 \in U \setminus V$ and $c_2 \in V \setminus U$.

ii- Player II $\not\prec G(T_1, X, \bar{T})$ if $\forall$ $c_1 \neq c_2$ in $X \exists U, V$ is $Isg$-closed set where $c_1 \in U \setminus V$ and $c_2 \in V \setminus U$.

**Proof:** Clearly, by using the concept of the complement and Proposition 3.

**Corollary 5:**

i- A space $(X, \tau)$ is $T_1$-space if and only if Player I $\not\times G(T_1, X)$.

ii- A space $(X, \tau, \bar{T})$ is $Isg-T_1$-space if and only if Player I $\not\times G(T_1, X, \bar{T})$.

**Proof:** Similar of proof Corollary 2.

**Proposition 4:**

i- A space $(X, \tau)$ is not $T_1$-space if and only if Player I $\not\succ G(T_1, X)$.

ii- A space $(X, \tau, \bar{T})$ is not $Isg-T_1$-space if and only if Player I $\not\succ G(T_1, X, \bar{T})$.

**Proof:**

i- Necessity: Suppose that $(X, \tau)$ is not $T_1$-space, then there are two elements $c_1 \neq c_2$ in $X$ such that there are not two open sets $U$ and $V$, where $c_1 \in U \setminus V$ and $c_2 \in V \setminus U$. So, that the two elements $c_1 \neq c_2$ will be the choice of Player I, then Player II cannot be find two open sets $U$ and $V$, where $c_1 \in U \setminus V$ and $c_2 \in V \setminus U$. Hence, Player I $\not\succ G(T_1, X)$.

Sufficient; If Player I $\not\succ G(T_1, X)$, this mean that there is a choice $c_1 \neq c_2$ in $X$ of Player I, such that Player II cannot be choose two open sets $U$ and $V$, where $c_1 \in U \setminus V$ and $c_2 \in V \setminus U$. Hence, $(X, \tau)$ is not $T_1$-space.

ii- Similar of proof (i).

**Corollary 6:**

i- A space $(X, \tau)$ is not $T_1$-space if and only if Player II $\not\times G(T_1, X)$.

ii- A space $(X, \tau, \bar{T})$ is not $Isg-T_1$-space if and only if Player II $\not\times G(T_1, X, \bar{T})$.

**Proof:** Similar of proof Corollary 2.

So, by the same way of Definition 2, the game $G(T_2, X)$ (respectively, $G(T_2, X, \bar{T})$) is such us the game $(T_1, X)$ (respectively, $G(T_1, X, \bar{T})$) except $U, V$ are two disjoint open (respectively, $Isg$-open) sets and $B$ be a collection of a disjoint open (respectively, $Isg$-open) sets in $X$, and it has the same remarks, propositions an corollaries in the game $(T_1, X)$ (respectively, $G(T_1, X, \bar{T})$).

**Remark 3:** For a space $(X, \tau, \bar{T})$:

i- If Player II $\not\succ G(T_{i+1}, X)$ (respectively, $G(T_{i+1}, X, \bar{T})$ ); $i = \{0, 1\}$, then Player II $\not\succ G(T_i, X)$ (respectively, $G(T_i, X, \bar{T})$).

ii- If Player II $\not\prec G(T_i, X)$; $i = \{0, 1, 2\}$, then Player II $\not\prec G(T_i, X, \bar{T})$.

The following scheme clarifies what exactly Remark 3, refer to.

![Scheme 2. Diagram of the implication in Remark 3.](image-url)
The proof of the meaning conclusion in the above diagram is given by the meaning of figure (3) and Propositions 1, 2, 3, 4 and there corollaries.

**Remark 4:** For a space \((X, \tau, \tilde{Y})\):

i- If Player I \(\not\supseteq G(T_i, X)\) (respectively, \(G(T_i, X, \tilde{Y})\)); \(i = \{0,1\}\) then Player I \(\not\supseteq G(T_{i+1}, X)\) (respectively, \(G(T_{i+1}, X, \tilde{Y})\)).

ii- If Player I \(\not\supseteq G(T_i, X)\); \(i = \{0,1,2\}\) then Player I \(\not\supseteq G(T_i, X, \tilde{Y})\).

The following Scheme clarifies what exactly Remark 4, refer to.

**Scheme 3. Diagram of the implication in Remark 4.**

**Some open functions with games**

In this portion we will review some sorts of functions which presented by Abdel Karim and Nasir (3) and study their impact on the games that was previously defined.

**Definition 3 (3):** The function \(\mathcal{F} : (X, \tau, \tilde{Y}) \rightarrow (Y, \mathcal{F}, \mathcal{I})\) is:

i- **L-semi-open function,** note as \(\text{Is}_g\)-function, if \(\mathcal{F}(U)\) is \(\text{Is}_g\)-open set in \(X\) whenever \(U\) is an \(\text{Is}_g\)-open set in \(X\).

ii- **I*'-semi-open function,** note as \(\text{I}'\)-function, if \(\mathcal{F}(U)\) is \(\text{Is}_g\)-open set in \(X\) whenever \(U\) is an open set in \(X\).

iii- **I*''-semi-open function,** note as \(\text{Is}_g\)-function, if \(\mathcal{F}(U)\) is open in \(Y\) whenever \(U\) is an \(\text{Is}_g\)-open set in \(X\).

**Example 3:** The function \(\mathcal{F} : (X, \tau, \tilde{Y}) \rightarrow (X, \tau, \tilde{Y})\) where \(\mathcal{F}(e_1) = e_2, \mathcal{F}(e_2) = e_1\) and \(\mathcal{F}(e_3) = e_3\) such that \(X = \{e_1, e_2, e_3\}, \tau = \{X, \phi, \{e_1\}\}\), \(\tilde{Y} = \{\phi\}, J = \{\phi, \{e_2\}, \{e_3\}\}\). Then \(\mathcal{F}\) is \(\text{Is}_g\)-function and \(\text{I}'\)-function which is not \(\text{I}'\)-function and not open function.

**Example 4:** The identity function \(\mathcal{F} : (X, \tau, \tilde{Y}) \rightarrow (X, \tau, \tilde{Y})\); \(\mathcal{F}(\epsilon) = \epsilon\) for all \(\epsilon \in X\), where \(X = \{e_1, e_2, e_3\}, \tau = \{X, \phi, \{e_1\}\}\), \(\tilde{Y} = \{\phi\}\), \(\{\phi, \{e_2\}, \{e_3\}\}\) and \(J = \{\phi\}\). It is possible to see that \(\mathcal{F}\) is open function and \(\text{I}'\)-function which is not \(\text{Is}_g\)-function and not \(\text{I}'\)-function.

**Proposition 5:** Let \(\mathcal{F} : (X, \tau, \tilde{Y}) \rightarrow (Y, \mathcal{F}, \mathcal{I})\) be an open (respectively, \(\text{I-semi-g-open}\)), surjective function "onto-function" and Player II \(\not\supseteq G(T_i, X)\) (respectively, \(G(T_i, X, \tilde{Y})\)); \(i = \{0,1,2\}\). Then Player II \(\not\supseteq G(T_i, X'')\) (respectively, \(G(T_i, X', \tilde{Y})\)).

**Proof:**

If \(i = 0\): Player I in \(G(T_0, X)\) (respectively, \(G(T_0, X')\)) choose \(e_1 \neq v_1\) where \(e_1, v_1 \in Y\), Player II in \(G(T_0, Y)\) will hold account \(F^{-1}(e_1) \neq F^{-1}(v_2)\) where \(F^{-1}(e_1), F^{-1}(v_2) \in X\), but Player II \(\not\supseteq G(T_0, X)\) (respectively, \(G(T_0, X', \tilde{Y})\)), \(\exists U_1\) open (respectively, \(\text{I-semi-g-open}\)) set; \(U_1\) contains one of the two elements \(F^{-1}(e_1), F^{-1}(v_2)\) and since \(\mathcal{F}\) is open (respectively, \(\text{I-semi-g-open}\)) function, then \(\mathcal{F}(U_1)\) open (respectively, \(\text{I-semi-g-open}\)) set; then Player II in \(G(T_0, Y)\) choose \(\mathcal{F}(U_1)\) contains one of the two elements \(e_1, v_1\) and the next inning Player I in \(G(T_0, Y)\) (respectively, \(G(T_0, Y')\)) choose \(e_2 \neq v_2\) where \(e_2, v_2 \in Y\) Player II in \(G(T_0, Y)\) will hold account \(F^{-1}(e_2) \neq F^{-1}(v_2)\) where \(F^{-1}(e_2), F^{-1}(v_2) \in X\), but Player II \(\not\supseteq G(T_0, X)\) (respectively, \(G(T_0, X', \tilde{Y})\)), \(\exists U_2\) open (respectively, \(\text{I-semi-g-open}\)) set; \(U_2\) contains one of the two elements \(F^{-1}(e_2), F^{-1}(v_2)\) then \(F(U_2)\) open (respectively, \(\text{I-semi-g-open}\)) set, then for Player II in \(G(T_0, Y)\) choose \(\mathcal{F}(U_2)\) which contains one of the two elements \(e_2, v_2\).

And in the r-th inning Player I in \(G(T_0, Y)\) (respectively, \(G(T_0, Y')\)) choose \(e_r \neq v_r\) where \(e_r, v_r \in Y\), Player II in \(G(T_0, Y)\) will hold account \(F^{-1}(e_r) \neq F^{-1}(v_r)\) where \(F^{-1}(e_r), F^{-1}(v_r) \in X\), but Player II \(\not\supseteq G(T_0, X)\) (respectively, \(G(T_0, X', \tilde{Y})\)), \(\exists U_r\) open (respectively, \(\text{I-semi-g-open}\)) set; \(U_r\) contains one of the two elements \(F^{-1}(e_r), F^{-1}(v_r)\), \(r = 1, 2, \ldots\), then \(\mathcal{F}(U_r)\) open (respectively, \(\text{I-semi-g-open}\)) set, then Player II in \(G(T_0, Y)\) choose \(\mathcal{F}(U_r)\) which contains one of the two elements \(e_r, v_r\), \(r = 1, 2, \ldots\).

Then \(B = \{\mathcal{F}(U_1), \mathcal{F}(U_2), \mathcal{F}(U_3), \ldots, \mathcal{F}(U_r), \ldots\}\) is the winning strategy for Player II in \(G(T_0, Y)\).

Hence

Player II \(\not\supseteq G(T_0, Y)\) (respectively, \(G(T_0, Y')\)).
If \( i = 1 \): In the r-th inning of the game \( G(T_1, \bar{Y}) \) (respectively, \( G(T_1, \hat{Y}) \)) Player I in \( G(T_1, \bar{Y}) \) (respectively, \( G(T_1, \hat{Y}) \)) choose \( c_r \neq \psi_r \) where \( c_r, \psi_r \in \bar{Y}, \ r = 1,2, \ldots \). Player II in \( G(T_1, \bar{Y}) \) (respectively, \( G(T_1, \hat{Y}) \)) will hold account \( F^{-1}(c_r) \neq F^{-1}(\psi_r) \) where \( F^{-1}(c_r), F^{-1}(\psi_r) \in X \), but Player II \( G(T_1, X) \) (respectively, \( G(T_1, X, \bar{Y}) \)), \( \exists \mathcal{U}_r \) open (respectively, \( l\text{-semi-g-open} \)) set; \( \mathcal{U}_r, \mathcal{V}_r \) are two open (respectively, \( l\text{-sg-open} \)) sets such that \( F^{-1}(c_r) \in \mathcal{U}_r \text{-} \text{open} \) and \( F^{-1}(\psi_r) \in \mathcal{V}_r \text{-} \text{open} \) and since \( F \) is open (respectively, \( l\text{-semi-g-open} \)) function then \( F(\mathcal{U}_r), F(\mathcal{V}_r) \) are two open (respectively, \( l\text{-semi-g-open} \)) sets, then for Player II in \( G(T_1, \bar{Y}) \) choose \( F(\mathcal{U}_r), F(\mathcal{V}_r) \) are two open (respectively, \( l\text{-sg-open} \)) sets such that \( \psi_r \in F(\mathcal{U}_r)-F(\mathcal{V}_r) \) and \( \psi_r \in F(\mathcal{V}_r)-F(\mathcal{U}_r) \), \( r = 1,2, \ldots \).

Then \( \mathcal{B} = \{ F(\mathcal{U}_1), F(\mathcal{V}_1) \}; \{ F(\mathcal{U}_2), F(\mathcal{V}_2) \}; \{ F(\mathcal{U}_3), F(\mathcal{V}_3) \}; \ldots \) is the winning strategy for Player II in \( G(T_1, \bar{Y}) \).

Hence Player II \( G(T_1, \bar{Y}) \) (respectively, \( G(T_1, \hat{Y}) \)).

If \( i = 2 \): By the same method as above then Player II \( G(T_2, \bar{Y}) \) (respectively, \( G(T_2, \hat{Y}) \)) except \( \mathcal{U}_j, \mathcal{V}_j \) are two disjoint open (respectively, \( l\text{-sg-open} \)) sets; \( \mathcal{B} = \{ F(\mathcal{U}_1), F(\mathcal{V}_1) \}; \{ F(\mathcal{U}_2), F(\mathcal{V}_2) \}; \{ F(\mathcal{U}_3), F(\mathcal{V}_3) \}; \ldots \) is the winning strategy for Player II in \( G(T_2, \bar{Y}) \).

Hence Player II \( G(T_2, \bar{Y}) \) (respectively, \( G(T_2, \hat{Y}) \)).

**Proposition 6:** Let \( F : (X, \tau, \bar{Y}) \rightarrow (\bar{Y}, \mathcal{J}) \) be an \( l\text{-semi-g-open} \), surjective function and Player II \( G(T_i, X) ; \ i = \{ 0,1,2 \} \). Then Player II \( G(T_i, Y) \).

**Proof:** Similar of proof of Proposition 5.

**Corollary 7:** Let \( F : (X, \tau, \bar{Y}) \rightarrow (\bar{Y}, \mathcal{J}) \) be an open and surjective function and Player II \( G(T_i, X) ; \ i = \{ 0,1,2 \} \). Then Player II \( G(T_i, Y) \).

**Proposition 7:** Let \( F : (X, \tau, \bar{Y}) \rightarrow (\bar{Y}, \mathcal{J}) \) be an \( l\text{-semi-g-open} \) and surjective function, where Player II \( G(T_i, X) ; \ i = 0,1,2 \). Then Player II \( G(T_i, Y) \).

**Proof:** Similar of proof of Proposition 5.

Some continuous functions with games

**Definition 4:** The function \( F : (X, \tau, \bar{Y}) \rightarrow (\bar{Y}, \mathcal{J}) \) is:

i- **\( l\text{-semi-g-continuous function} \)**, denoted by \( l\text{-sg-continuous function} \), if \( F^{-1}(U) \) is \( l\text{-sg-open} \) set in \( X \) for every \( U \) open in \( Y \).

ii- **Strongly-\( l\text{-semi-g-continuous function} \)**, denoted by \( \text{strongly-\( l\text{-sg-continuous function} \)} \), if \( F^{-1}(U) \) is \( l\text{-sg-open} \) set in \( X \) for every \( U \) \( l\text{-sg-open} \) in \( Y \).

iii- **\( l\text{-semi-g-irresolute function} \)**, denoted by \( l\text{-sg-irresolute function} \), if \( F^{-1}(U) \) is \( l\text{-sg-open} \) set in \( X \) for every \( U \) \( l\text{-sg-open} \) in \( Y \).

**Example 5:** The function \( F : (X, \tau, \bar{Y}) \rightarrow (X, \tau, \bar{Y}) \) such that \( F(c_1) = e_2, \ F(c_2) = e_1, \ F(c_3) = e_3 \) where \( X = \{ c_1, c_2, c_3 \} \), \( \tau = \{ \{ e_1, e_2, e_3 \} \} \), \( \mathcal{I} = \{ \emptyset \} \) and \( \mathcal{J} = \{ \emptyset, \{ e_2 \}, \{ e_3 \}, \{ c_2, e_3 \} \} \). It is possible to see clearly that \( F \) is continuous and \( l\text{-semi-g-irresolute function} \) which is not \( l\text{-sg-irresolute function} \).

**Example 6:** The function \( F : (X, \tau, \bar{Y}) \rightarrow (X, \tau, \bar{Y}) \) such that \( F(c) = c \) for every \( c \in X \) where \( X = \{ c_1, c_2, c_3 \} \), \( \tau = \{ \{ e_1, e_2, e_3 \} \} \), \( \mathcal{I} = \{ \emptyset \} \) and \( \mathcal{J} = \{ \emptyset, \{ e_2 \}, \{ e_3 \}, \{ c_2, e_3 \} \} \).

**Proof:**

If \( i = 0 \): Player I in \( G(T_0, X) \) choose \( e_1 \neq \psi_1 \) where \( e_1, \psi_1 \in X \). Player II in \( G(T_0, X) \) (respectively, \( G(T_0, X) \)) will hold account \( F(e_1) \neq F(\psi_1) \) where \( F(e_1), F(\psi_1) \in \bar{Y} \), but Player II \( G(T_0, \bar{Y}) \) (respectively, \( G(T_0, \hat{Y}) \)) , \( \exists \mathcal{U}_1 \) open (respectively, \( l\text{-semi-g-open} \)) in \( \bar{Y} \); \( \mathcal{U}_1 \) contains one of the two elements \( F(e_1), F(\psi_1) \) and since \( F \) is continuous (respectively, \( l\text{-semi-g-irresolute function} \)) function, then \( F^{-1}(U_1) \) open (respectively, \( l\text{-semi-g-open} \)). For Player II in \( G(T_0, X) \) (respectively, \( G(T_0, X) \)) choose \( F^{-1}(U_1) \) contains one of the two elements \( e_1, \psi_1 \).

In the next inning Player I in \( G(T_0, X) \) (respectively, \( G(T_0, X) \)) choose \( e_2 \neq \psi_2 \) where \( e_2, \psi_2 \in X \). Player II in \( G(T_0, X) \) (respectively, \( G(T_0, X) \)) will hold account \( F(e_2) \neq F(\psi_2) \) where \( F(e_2), F(\psi_2) \in Y \), but Player II \( G(T_0, \bar{Y}) \) (respectively, \( G(T_0, \hat{Y}) \)) , \( \exists \mathcal{U}_2 \) open (respectively, \( l\text{-semi-g-open} \)) in \( \bar{Y} \); \( F^{-1}(U_2) \) contains one of the two elements \( F(e_2), F(\psi_2) \), so \( F^{-1}(U_2) \) open (respectively, \( l\text{-semi-g-open} \)). For Player II in \( G(T_0, \bar{Y}) \) choose \( F^{-1}(U_2) \) which contains one of the two elements \( e_2, \psi_2 \).
And in the r-th inning of the game \( G(T_0, X) \) (respectively, \( G(T_0, Y) \)) Player I in \( G(T_0, X) \) (respectively, \( G(T_0, Y) \)) choose \( c_r \neq v_r \) where \( c_r, v_r \in X, r = 1, 2, \ldots \). Player II in \( G(T_0, X) \) (respectively, \( G(T_0, Y) \)) will hold account \( F(c_r) \neq F(v_r) \) where \( F(c_r), F(v_r) \in Y \), but Player II \( \not\rightharpoonup G(T_0, Y) \) (respectively, \( G(T_0, Y) \)), \( \exists U_r \) open (respectively, \( l\text{-semi-open} \)) set in \( Y \); \( U_r \) contains one of the two elements \( F(c_r), F(v_r) \) and since \( F \) is \( l\text{-semi-continuous} \) function, then \( F^{-1}(U_r) \) \( l\text{-semi-open} \). For Player II in \( G(T_0, X) \) (respectively, \( G(T_0, Y) \)) choose \( F^{-1}(U_r) \) which contains one of the two elements \( c_r, v_r \). Then

\[ B = \{ F^{-1}(U_1), F^{-1}(U_2), F^{-1}(U_3), \ldots, F^{-1}(U_r), \ldots \} \]

is the winning strategy for Player II in \( G(T_0, X) \) (respectively, \( G(T_0, Y) \)). Hence Player II \( \rightharpoonup G(T_0, X) \) (respectively, \( G(T_0, Y) \)).

**If \( i = 1 \):** In the r-th inning of the game \( G(T_1, X) \) Player I in \( G(T_1, X) \) (respectively, \( G(T_1, Y) \)) Player I \( \not\rightharpoonup G(T_1, X) \) (respectively, \( G(T_1, Y) \)) choose \( c_r \neq v_r \) where \( c_r, v_r \in X, r = 1, 2, \ldots \). Player II in \( G(T_1, X) \) (respectively, \( G(T_1, Y) \)) will hold account \( F(c_r) \neq F(v_r) \) where \( F(c_r), F(v_r) \in Y \), but Player II \( \rightharpoonup G(T_1, Y) \) (respectively, \( G(T_1, Y) \)), \( \exists U_r \) open (respectively, \( l\text{-semi-open} \)), sets in \( Y \); \( F(c_1) \in U_r \cdot V_r \) and \( F(v_1) \in V_r \cdot U_r \) then \( F^{-1}(U_r), F^{-1}(V_r) \) are two open (respectively, \( l\text{-semi-open} \)) sets, then Player II in \( G(T_1, X) \) (respectively, \( G(T_1, Y) \)) choose \( c_r \in F^{-1}(U_r) \cdot F^{-1}(V_r) \) and \( v_r \in F^{-1}(V_r) \cdot F^{-1}(U_r) \).

Then

\[ B = \{ F^{-1}(U_1), F^{-1}(U_2), F^{-1}(U_3), \ldots, F^{-1}(U_r), \ldots \} \]

is the winning strategy for Player II in \( G(T_1, X) \) (respectively, \( G(T_1, Y) \)). Hence Player II \( \rightharpoonup G(T_1, X) \) (respectively, \( G(T_1, Y) \)).

**If \( i = 2 \):** By the same method as above then Player II \( \rightharpoonup G(T_2, X) \) (respectively, \( G(T_2, Y) \)) except \( U_j, V_j \) are two disjoint open (respectively, \( l\text{-semi-open} \)) sets in \( Y \); \( j = \{ 1, \ldots, r \} \)

So

\[ B = \{ F^{-1}(U_1), F^{-1}(V_1), F^{-1}(U_2), F^{-1}(V_2), F^{-1}(U_3), \ldots, F^{-1}(U_r), F^{-1}(V_r), \ldots \} \]

is the winning strategy for Player II in \( G(T_1, X) \) (respectively, \( G(T_1, Y) \)).

**Proposition 9:** Let \( F : (X, \tau, \bar{Y}) \to (Y, \mathcal{Y}) \) be an \( l\text{-semi-continuous} \), injective function and Player II \( \rightharpoonup G(T_1, Y) \) then Player II \( \rightharpoonup G(T_1, X) \).

**Proof:**

**If \( i = 0 \):** Player I in \( G(T_0, X) \) choose \( c_1 \neq v_1 \) where \( c_1, v_1 \in X \), Player II in \( G(T_0, X) \) will hold account \( F(c_1) \neq F(v_1) \) where \( F(c_1), F(v_1) \in Y \), but Player II \( \rightharpoonup G(T_0, Y) \), \( \exists U_1 \) open in \( Y \); \( U_1 \) contains one of the two elements \( F(c_1), F(v_1) \) and since \( F \) is \( l\text{-semi-continuous} \) function, then \( F^{-1}(U_1) \) \( l\text{-semi-open} \). For Player II in \( G(T_0, X) \) choose \( F^{-1}(U_1) \) which contains one of the two elements \( c_1, v_1 \). In the next inning Player I in \( G(T_0, X) \) choose \( c_2 \neq v_2 \) where \( c_2, v_2 \in X \), Player II in \( G(T_0, X) \) will hold account \( F(c_2) \neq F(v_2) \) where \( F(c_2), F(v_2) \in Y \), but Player II \( \rightharpoonup G(T_0, Y) \), \( \exists U_2 \) open in \( Y \); \( U_2 \) contains one of the two elements \( F(c_2), F(v_2) \) then \( F^{-1}(U_2) \) \( l\text{-semi-open} \), then Player II in \( G(T_0, X) \) choose \( F^{-1}(U_2) \) which contains one of the two elements \( c_2, v_2 \).

And in the r-th inning of the game \( G(T_0, X) \) Player I in \( G(T_0, X) \) choose \( c_r \neq v_r \) where \( c_r, v_r \in X, r = 1, 2, \ldots \). Player II in \( G(T_0, X) \) will hold account \( F(c_r) \neq F(v_r) \) where \( F(c_r), F(v_r) \in Y \), but Player II \( \rightharpoonup G(T_0, Y) \), \( \exists U_r \) open in \( Y \); \( U_r \) contains one of the two elements \( F(c_r), F(v_r) \) and since \( F \) is \( l\text{-semi-continuous} \) function, then \( F^{-1}(U_r) \) \( l\text{-semi-open} \). For Player II in \( G(T_0, X) \) choose \( F^{-1}(U_r) \) which contains one of the two elements \( c_r, v_r \) then Player II \( \rightharpoonup G(T_0, X) \) (respectively, \( G(T_0, Y) \)). Hence Player II \( \rightharpoonup G(T_0, X) \) (respectively, \( G(T_0, Y) \)).
$F^{-1}\{V_r^1\}$. \ldots \} is the winning strategy for Player II in $G(T_2, X, T)$. Hence Player II $\not\succeq G(T_2, X, T)$.

**Proposition 10:** Let $F : (X, \tau, T) \to (Y, J, T)$ be a *Strongly-$I$-semi-$g$-continuous*, injective function and Player II $\not\succeq G(T_i, Y, J)$; $i = \{0, 1, 2\}$. Then Player II $\not\succeq G(T_i, X, J)$.

**Corollary 8:** Let $F : (X, \tau, T) \to (Y, J, T)$ be a *Strongly-$I$-semi-$g$-continuous*, injective function and Player II $\not\succeq G(T_i, Y, J)$; $i = \{0, 1, 2\}$. Then Player II $\not\succeq G(T_i, X, J)$.

**Conclusion:**

The conclusion of the study is to define many of the matches using the groups under study and using topological properties. The winning strategies were identified which any of the participants can follow in the match. Also, the losing strategies were identified, and they are a warning that they are not followed if possible during the course of the matches. Among these matches is: $G(T_0, X)$ and $G(T_0, X, T)$ when $i = \{0, 1, 2\}$.

**Authors’ declaration:**

- Conflicts of Interest: None.

**References:**


**Authors:**

MAHAR SHAHID NAZAR

MAHER ABDEL JALIL ABD AL KREEM

Department of Mathematics, College of Education for Pure Sciences Ibn Al-Haytham, University of Baghdad, Baghdad, Iraq.

**Abstract:**

This paper introduces a new type of match by using the concepts of $I$-$semi$-$g$-closed sets and $I$-$semi$-$g$-continuous functions. The study defines the winning strategies and the losing strategies for each player in the match. The winning strategies are followed by any player, while the losing strategies are to be avoided if possible during the course of the matches. Among these matches is $G(T_0, X)$ and $G(T_0, X, T)$ when $i = \{0, 1, 2\}$.

**Keywords:** $I$-$semi$-$g$-closed set, $I$-$semi$-$g$-continuous function.