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Abstract:

Copulas are simply equivalent structures to joint distribution functions. Then, we propose
modified structures that depend on classical probability space and concepts with respect to copulas. Copulas
have been presented in equivalent probability measure forms to the classical forms in order to examine any
possible modern probabilistic relations. A probability of events was demonstrated as elements of copulas
instead of random variables with a knowledge that each probability of an event belongs to [0,1]. Also, some
probabilistic constructions have been shown within independent, and conditional probability concepts. A
Bay's probability relation and its properties were discussed with respect to copulas. Moreover, an extension
of multivariate constructions of each probabilistic copula has been presented. Finally, we have shown some
examples that explain each relation of copula in terms of probability space instead of distribution functions.

Key words: Conditionality, Copula Concepts, Independent Events, Probability Measure Theory, Statistical
Concepts.

Introduction:

Recently, copulas have played an  study of Frechet and Hoeffding, in the 1942,
essential role in many applications that their  throughout their study of the extremes of t-norms,
structures need a perfect statistical inference. Their (1). They have derived a type of copulas without
role is central and valuable in statistics and even in referring to the word copula.
probability measure theory because their features Afterwards, in the 1959, an impressive
are highly rigid, smooth and various. article has been published by one brilliant

Nowadays, copulas are implemented in  statistician named Sklar. He has stated his essential
many different kinds of sciences like mechanics, well-known theorem which is known by Sklar's
financial analysis, physics, and others. In particular, theorem. He has borrowed a Latin word "copula” to
copulas are used as an efficient statistical refer to its name that means the link or the join, (2).
instrument to describe the dependence structures of His theorem illustrates the base of many concepts of
random variables. One of the most important usage copulas and their structures, (3, 4). It extended the
of copulas has firstly occurred in the study of  nature of describing and analyzing the dependence

finance, risk management, and insurance. structure with respect to the joint distribution
Moreover, copula is a modern phenomenon in the  function and its marginal distribution functions, (5).
world of statistics and especially in statistical Indeed, one should explain that the importance of

inference of non-linear data. It is a better approach this historical survey of copula is to demonstrate its

than linear correlation coefficient approach when important in various field of science and

our analysis is used to a set of data that cannot  applications.

follow normal distribution. Moreover, there are several aspects of
Historically, copulas have explicitly been  science that used copulas in their structures and one

mentioned by many researchers and scientific can mainly refer to the literature of Nelsen in 1986

literatures. In particular, we could firstly refer to the ~ within his book entitled "introduction to copula”.
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He has collected most related works to
copulas, their constructions, and their properties,
(1). In the last fifty years, the concern with copulas
has a very wide impact in different aspects of life,
especially in finance. One of the most popular
results associated with the study of statistical
inference of portfolio and analysis of assets has
been shown in (6-8). There are some other results
that generalized the notions of copulas and
connected them to some algebras and quantum logic
spaces, (9-12).

Indeed, this work is an attempt to
demonstrate copulas in association with the
classical probability space. This means that our
concern focuses on the language of events as
elements of assigned copulas rather than the
language of random variables and distribution
functions. Also, we look for testing the properties of
classical probability space with respect to copulas
and their different properties, formulas, and results.
For instance, test the Bayesian probabilities in terms
of copulas, and comparing their formulas and
results to the classical.

Indeed, there are various copulas that have
been built in terms of probabilistic events. Also, we
have shown some examples that are relevant to the
classical examples which are shown in many
literatures, for details.

Eventually, we should refer to the structure of
this study. In the next section, we have presented
some basic concepts related to copulas and
probability space. Section three is devoted to
presenting the main constructions of our study.
Finally, we have shown some conclusions and
future studies.

Basic Concepts
In this section, we present the most

common definitions, and properties related to
probability space structure, copulas and their
constructions. We begin with the essential
definition of measure space:
Definition 1: (12) Let (Q,F)be a measurable
space. A map w:F — [0, 0] is called a o-measure,
if the following conditions hold.
1. u(A)=0,forall A eF;
2. u(¢p)=0;
3. IfAL, Ay . €F, A NA;=¢fori+j.
1(UiZ14;) = XiZq A

We say that u is o-additive.

A measure wis called finite, if there is k €
R such that u(Q) = k.
Remark 1: If k = 1, then the measure p is called a
probability measure denoted by P. While the triple
(Q,F, P) is well-known by probability space, where
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Q#@, F is a o-algebra on Q, and P is a
probability measure, (4).

Definition 2: (12) Let (Q,F,P)be a probability
space. The g-algebra F is the set of all subsets that
are called random events, which are the set of
outcomes of an experiment for which one can ask a
probability.

Note that, for any event A€ F, P(A)
belongs to [0,1]. In fact, this notion is essential in
our constructed definitions.

Moreover, we review the notions of
bivariate copulas in order to use them in our future
structures. Indeed, there are two main functions
which are known by copula and co-copula.
Definition 3: (1, 2, 4) A two-dimensional copula
is a function C:[0,1]?> - [0,1] with the following
conditions.

1. For each x € [0,1],C(x,0) = €(0,x) = 0;
2. Foreachx € [0,1],C(x,1) = C(1,x) = x;
3. Let xq,x5,y1,¥2 €[0,1]. If x4 < x3,y1 < Yo,
then

C(xliyl) + C(xZ'yZ) = C(xllyZ) + C(xZ'yl)'
Definition 4: (1, 2, 4) A two-dimensional co-copula
is a function H:[0,1]2 - [0,1]that holds the
following conditions.
1.Foreachx € [0,1], H(x,0) = H(0,x) = x;
2. Foreachx € [0,1],H(x,1) = C(1,x) = 1;
3. Let xq,x5,y1,¥2 €[0,1]. If x1 < x3,y1 < Yo,
then

H(xy,y1) + H(xz,¥2) < C(xq,¥2) + C(xz,y1)-

Indeed, these notions were discussed in
detail by Nelsen, (10). Any function with the
properties that are grounded, 2-increasing, and
C(a,1) = a simply leads to decide that the function
is copula. While, the co-copula has a reverse
properties that are H(a,0) = a,H(a,1) = 1, and 2-
nonincreasing property, (8).

Copulas in Terms of Probability Space

The main aim of this section focuses on the
structures of copulas and their conditions that we
have proposed in terms of classical probability
space. In other words, we propose constructions of
copulas in terms of probability measure space
instead of distributing functions (whether univariate
or bivariate distribution functions). It is an approach
that allows us to investigate the properties of those
functions via probability measure space and test
some characteristics that might differ from classical
properties. We begin with the proposed definition of
copula with respect to probability space (Q, F, P).
Definition 5: A function PC:[0,1]? - [0,1] is said
to be a bivariate probabilistic intersection copula,
denoted by b.p.i.c, if the following conditions hold:
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1.For each
PC(P(®),P(4)) =0;
2.Foreach 4 € F, PC(P(A),P(Q)) = P(A);
Similarly, for each B eF, PC(P(Q),P(B))=
P(B);

3.Let A;,A,, By, B, € F,such that P(4,) < P(4,),
P(B;) < P(B;). Then

PC(P(A1),P(By)) + PC(P(A,),P(4y)) =
PC(P(A4),P(By)) + PC(P(A,), P(By)).

A€eF, PC(P(A),P(D)) =

Example 1: Let (Q,F,P) be a probability space
such that the sample space of an experiment for
throwing a dice is Q = {1,2,3,4,5,6} and let the
events of Q be A, B € F that represent the events of
even numbers, and the prime numbers, respectively.
That means, A = {2,4,6},and B = {1,2,3,5}. Now,
suppose that

PC(P(A),P(B)) = P(A)P(B),forall 4,B € F.
Then, let us examine whether the conditions of
b.p.i.c are satisfied or not. First of all, it is clear that
P(A) = 0.5, whereas P(B) = % . Then
1.For A,B€F, PC(P(A),P(®))=P(A)P(®) =
0.5%x0=0;

Similarly, PC(P(),P(B)) = 0 *§

2.For A, B € F.We have

PC(P(A),P(Q)) =P(AP(Q) =05%1=05

€ [0,1];

Similarly, PC(P(Q),P(B)) = P(Q)P(A) =1x
2 2
5 = 5 € [0,1],
3. Let A, B€F, such that P(®) < P(4), and
P(B) < P(Q) = 0 <05, =< 1.Then

PC(P(),P(B)) + PC(P(A), P(2))
— PC(P(9),P(Q)
— PC(P(A),P(B))
= P(®)P(B) + P(A)P(Q) — P(D)P(Q)
— P(A)P(B)
=0*§+0.5*1—0*1—0.5*

0;

=320

Then PC satisfies the 2-increasing
property. Since the given PC in this example fulfills
the three conditions of copula, so it is simply a
b.p.i.c.

Moreover, let’s propose a construction of

the definition of dual copula that is:
Definition 6: A function PC*:[0,1]? - [0,1] is said
to be a bivariate probabilistic union copula, denoted
by b.p.u.c, if the following conditions hold:
1.For  eachA,B€F, PC*(P(A),P(0)) = P(A),

similarly, PC*(P(#)P(B)) = P(B);
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2.For each
PC*(P(Q),P(A)) = 1;
3.Let A;,A,, By, B, € F,such that P(4,) < P(4,),
P(By) < P(B3). Then

PC*(P(A4),P(By)) + PC*(P(A,),P(By)) <
PC*(P(A1),P(By)) + PC*(P(A2), P(By)).
Example 2 Back to Example 1 and suppose that
PC*(P(A),P(B)) = max(P(A), P(B)). Again, let’s
try to figure out whether PC* fulfils the conditions
of b.p.u.c or not. So, we can see that

1. LetA,B€F, PC*(P(A),P(D)) =

max(P(A), P(®)) = max(0.5,0) = 0.5 = P(4);
Similarly,

PC*(P(9),P(B)) = max(P(®),P(B)) = P(B) =
2

AeF, PC*(P(A),P(Q) =

3. LetA,B € F, PC*(P(A),P(Q)) =
PC*(P(Q),P(B)) = max(P(4),P(Q)) =
max(0.5,1) = max (1,2) =1.
3. Suppose that P(@) < P(A),and P(B) < P(Q),
implies that 0 < 0.5, =< 1

Then
maX(P((Z)),P(B)) + max(P(A), P(Q))
max(P(®), P(2)) + max(P(A), P(B))

2
max (O, §) + max(0.5,1)

2
< max(0,1) + max (O.S,g)

2+1<1+2
3 - 3

Since all the three conditions of Definition 5 are
fulfilled, so PC* is b.p.u.c.

Corollary 1: Let (Q,F, P) be a probability space,

A,B € F, and PC be a b.p.i.c. Then
PCc*(P(A4),P(B)) = 1— PC(P(A°),P(BY))

isab.p.u.c

Proof:

We need to show that PC* in the relation above

holds the conditions of being b.p.u.c. Thus

1. PC*(P(A),P(®)) = 1 — PC(P(A°), P(9°)) =

1—PC(P(A%),P(Q)) =1—P(A°) = P(4)

Similarly, PC*(P(®),P(B)) = P(B)

2. PC*(P(A),P(Q)) =1—PC(P(A%),P(Q°)) =

1—PC(P(A%),P(®)) =1 =PC*(P(Q),P(B))

3. To prove that PC* holds third property of

b.p.u.c, we suppose that A,,A,,B;,B, € F, such

that A, € A,,B; € B,, implies that P(4;) <

P(A3),P(B1) < P(B5). Then, suppose that
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PC*(P(A,),P(By)) + PC*(P(4,),P(By))
— PC*(P(4,),P(By))
—PC*(P(A2),P(By)) =0
Thus
1—PC(P(AS),P(BY)) + 1 — PC(P(4S),P(BY))
—[1—Pc(P(4S),P(BS))]
—[1-Pc(P(45),P(BS))] = 0
Hence
PC(P(A9),P(BS)) + PC(P(4%),P(BY))
— PC(P(49),P(BY))
— PC(P(45),P(BS)) =0
Or equivalently
PC(P(A9),P(BS)) + PC(P(AS), P(BY))
> PC(P(AS),P(BY))
+ PC(P(A%),P(BY))
Therefore, PC* is a b.p.u.c.

Another structure that combines copula to
one of the well-known operations of probability
space can be shown in the following definition.

Moreover, in the sense of probability space
operations and according to Sklar's theorem (2), it is
possible to show that the following relations are
true:

Proposition 1: Let (Q, F, P) be a probability space,
A,B€F, and PC be a b.p.i.c. Then the following
relation is true
PC(P(A),P(B)) = P(ANB)
Proof:
The can prove easily be achieved by showing that
the conditions of b.p.i.c. hold.
Let A,B€eF, PC(P(A),P(®)) =P(AND),
butdAn @ = . Thus P(AN®) =P(@) =0=
PCc(P(9),P(B))
1. From probability space, it is well-known
that P(Q)) = 1. Thus,
PC(P(A),P(Q)) =P(ANQ),
implies that
PC(P(A),P(Q)) =P(ANQ) = P(A).
Similarly, PC(P(Q), P(B)) = P(B);
3. Further, we are obliged to prove the 2-increasing
property. Let A;, A,, By, B, € F,suchthat A; € A,,
B; € B, implies that P(4;) < P(4,),P(By) <
P(B,) respectively. Then
PC(P(A1),P(By)) + PC(P(A,),P(By))
— PC(P(A1),P(By))
— PC(P(A1),P(B)) =0

but AnQ=A4,

But

PC(P(A,),P(By)) =

P(A; N B1)'PC(P(A2)'P(BZ)) = P(A; N By)
,PC(P(4,),P(B;)) = P(A; N By),
PC(P(A,),P(B,)) = P(A, N By). Thus

and
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P(A;NB;y)+P(A, N B;) —P(A; NBy) —
P(A,NnB;) =0, and since P is monotone and
increasing, then the relation above has 2-increasing
property. Hence, PC has already the 2-increasing
property.

In fact, there is another way that we could
propose to show that property three (2-increasing) is
true. Suppose that A,,A,,B;,B, € F such that
Ay < A,,B; <B,. Now, if A, € B; implies that
P(A;) < P(B;). Then

PC(P(A1),P(B;)) + PC(P(A2),P(By))
— PC(P(A,), P(B,))
— PC(P(A2), P(By))
=P(A; NB;) +P(A, NB,) —P(A; NB,)
—P(A, NBy)
=P(A;1) +P(Ay) —P(Ay) —
P(A,) =0
Similarly, if B, € A;, implies that P(B,) < P(A;).
Then
PC(P(A;),P(B;)) + PC(P(A2),P(By))
— PC(P(A1),P(By))
— PC(P(A,),P(By))
= P(B;) + P(B;) —P(B;) —P(B;) =0
Therefore, PC is b.p.i.c and thus the proof is
complete.
Proposition 2: Let (Q,F, P) be a probability space,
A,B € F, and PC* be a b.p.u.c. Then the following
relation is true
PC*(P(A),P(B)) = P(AUB)
The proof is similar to the prove of Proposition 1.
Proposition 3: Let (Q,F, P) be a probability space,
A,B € F, and PC* be ab.p.u.c. Then
PC(P(A),P(B)) = PC*(P(A),P(A)) +
PC*(P(B),P(B)) — PC*(P(A),P(B))
isab.p.i.c.
The proof involves showing that PC satisfies the
conditions of b.p.i.c under the relation above.
Therefore, the proof is clear.
Remark 2: In terms of the relation in (1), there is a
corresponding formula to that relation. That is
PC*(P(A),P(B)) = PC(P(A),P(A)) +
PC(P(B),P(B)) — PC(P(A),P(B)) (2)
We notice that PC* in equation (2) is simply a
b.p.u.c.

1)

Associating with the concept of independent events,
we can build the constructions of b.p.i.c, and
b.p.u.c, respectively by the following two main
ways
Proposition 4: Let (Q,F, P) be a probability space,
A,BeF, and PC be a b.p.i.c. If A B are two
independent, then

PC(P(A),P(B)) = P(A)P(B)
Proof:
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Let A, B be two independent events. Then
PC(P(A),P(B)) = P(AN B)

But, P(An B) = P(A)P(B) (A, B are independent)
Therefore, PC(P(A), P(B)) = P(4)P(B)

Note that, if A,B € F are independent, then the
following statements are true

1. PC(P(A%),P(B€)) = P(A)P(B®);

2. PC(P(A®),P(B)) = P(A)P(B);

3. PC(P(A),P(B%)) = P(A)P(BO).

Corollary 2: Let (Q,F, P) be a probability space,

A,BeF 3 A B are independents and PC* be
bivariate b.p.u.c. Then

PC*(P(4),P(B)) = 1— P(A°)P(B®)
Proof:
From Proposition 2, we have shown that

PC*(P(A),P(B)) =P(AUB)
But, P(AUB) =1—P((AUB)°) =1—P(A°n
B¢). Hence
PC*(P(A),P(B)) = 1— P(A° N BY)
But, from classical probability space, we know that,
when 4, and B are independent, then

P(A€ N BS) = P(A°)P(B®)
Therefore, PC*(P(A),P(B)) = 1 — P(A°)P(B®).
This complete the proof.
Proposition 5: Let (Q,F, P) be a probability space.
Then for any two events A, B € F with b.p.i.c, and
b.p.u.c the following properties are true
1. PC(P(A),P(A)) = PC(P(A),P(Q)) =
PC(P(Q),P(A));
2. PC*(P(A),P(A)) = PC(P(A),P()) =
PC(P(2),P(A));
3. If A, B € F are independents, then
a. PC(P(A),P(B)) =
PC(P(A),P(Q))PC(P(Q), P(B));
b. PC*(P(4),P(B)) =
1—PC*(P(A°),P(®))PC*(P(®), P(B°)).
Proof:
1. From Proposition 1, we have shown that
PC(P(A),P(A)) = P(AN A)
But, from the properties of events on probability
space, we know that
P(ANA)=PANQ)=PQNA)
But P(A N Q) = PC(P(A), P()), and similarly
P(Q N A) =PC(P(Q),P(A))
Therefore, PC(P(A),P(4)) = PC(P(A),P(Q)) =
PC(P(Q),P(A));
2. The proof is similar to the proof of first point.
3. Let 4, B be independent events.
a. PC(P(A),P(B)) =P(ANB),
P(ANB) = P(A)P(B).

implies  that
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But, P(A) =P(ANQ), similarly,
P(B) = P(Q N B).

Thus P(ANB)=P(ANQ) PN
B). Hence

PC(P(4),P(B)) = P(An
Q) P(QN B)

But
PC(P(A),P()), and
P(QnB) = PC(P(Q),P(B))
Therefore PC(P(A),P(B)) =
PC(P(A),P(Q))PC(P(),P(B))
b. PC*(P(A),P(B)) =P(AUB)=1—
P[(AUB)] =1—P(A° N B°)
But, 4, and B are independent, then P(A¢ N B°) =
P(AC)P(B®), implies that
P(A°) = P(A° U @), P(BS) = P(® U B°), and
P(A° U @) = PC*(P(A°),P(D)), P(@uUB®) =
PC*(P(D),P(B“))
Hence
PC*(P(A),P(B)) =
1— PC*(P(A),P(9)) PC*(P(®), P(B®))
Proposition 6: Let (Q,F, P) be a probability space,
A,B € F be a probability space, with PC,PC* be
the b.p.i.c., and b.p.u.c, respectively. Then the
following function
PC « PC*(P(A),P(B))
= PC(P(A),P(B))PC*(P(4),P(B))
isab.p.i.c.
Proof:
We have to show that PCxPC*(P(A),P(B))
satisfies the conditions of being a b.p.i.c. Thus
1. PC = PC*(P(A), P(®)) =
PC(P(A), P(8))PC*(P(A), P(8)) = 0.P(A) = 0;
Similarly, PC * PC*(P(9),P(B)) = 0
2. PC+PC*(P(A),P()) =
PC(P(A),P(2)PC*(P(A),P(2)) = P(A).1=
P(4);
Similarly, PC * PC*(P(2),P(B)) = P(B)
3. To prove 2-inceasing, let A;,A,,B;,B; €F,
such that P(A4;) < P(A4,),P(B,) < P(B;). Then,
we need to prove that
PC « PC*(P(Ay),P(By)) + PC
* PC*(P(A,),P(B,)) — PC
* PC*(P(Ay),P(By)) — PC
x PC*(P(4,),P(By)) = 0

once again, P(ANQ)=

But,
PC « PC*(P(A1),P(By)) =
PC(P(A,), P(By))PC*(P(A1),P(By))

PC « PC*(P(A,),P(By)) =
PC(P(A;),P(B,))PC*(P(A,), P(By))
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PC * PC*(P(4,),P(B,))
= PC(P(A,),P(B,))PC*(P(A1), P(By))
PC + PC*(P(A3),P(By)) =
PC(P(A;),P(B1))PC*(P(A2),P(By))
Thus,
PC(P(A,),P(By))PC*(P(4,),P(By)) +
PC(P(A,),P(By))PC*(P(A,),P(By)) —
PC(P(A,),P(By))PC*(P(A1),P(By)) —
PC(P(A;),P(B1))PC*(P(A2),P(By))
Now, let A, < B, implies that P(4,) <
P(B;). Hence
PC(P(Ay),P(By))PC*(P(A;), P(By))
= P(A1)P(B1)
Similarly, we obtain that
PC(P(A,),P(By))PC*(P(A,),P(By)) =
P(A2)P(B),
PC(P(A1),P(By))PC*(P(A1), P(By))
= P(A1)P(By)
PC(P(Ay),P(B,))PC*(P(A2),P(By))
= P(4;)P(By)
Then, we have
P(A1)P(By) + P(A4,)P(B;) —
P(A,)P(B;) — P(A2)P(By)
—P(A)[P(By) — P(By)]
+ P(43)[P(B;) — P(B1)]
= [P(42) — P(ADIIP(B2) —

P(By)]

Since, P(A;) <P(A,), and P(By) <
P(B;) are given

Hence [P(A2) — P(AD]IP(B2) —
P(B))] =0

If, we suppose that B, < A, then this
also yields the same result above.
Therefore, PC * PC* has the 2-increasing
property, and this is directly yield that
PC x PC* isab.p.i.c.
Proposition 7: Let (Q,F, P) be a probability space,
A,B € F, and let PC,PC* be a b.p.i.c., and b.p.u.c,
respectively. Then the following function
PC « PC*(P(A),P(B))
= 1 — PC(P(A®), P(B®))PC*(P(A°), P(BY))
isab.p.u.c.
The proof is clear and similar to the proof of
Proposition 6

Multivariate Representations
Measure Functions

This section is dedicated to show an
extension of the most common definitions,
propositions, relations and properties of bivariate
functions that have been shown in terms of
probability space.

of Probability
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Definition 7: A function PC:[0,1]™ - [0,1] is
called a multivariate probability intersection copula,
denoted by m.p.i.c, if the following conditions hold:
1. Ifthereexists A; e F3A; =0,i =1,..,n,then
PC(P(Ay),...,P(4), ..,P(4,)) = 0;
2. For

A; €F,

A #0,i=

1,..,n PC(P(Q),..,P(4),...,P(Q) = P(4;);

3. LetA4;,B;e F,i=1,..,n such that 4; € B, =
P(A;) < P(B;). Then

P(By) A P(By) P(By)
Apa)Briay) = Lpan)

0

any

From (8), it has been shown that any copula
of volume B with forward difference operation is
non-decreasing. Then the property number three in
the above definition is absolutely true.

For instance, suppose that n = 3, and let's
see how it would look the elements of the 2-
increasing property of PC. Hence

AP AED AL PC(P(UL), P(US), P(Us))

= PC(P(By), P(B;),P(B3))

— PC(P(B,),P(B,), P(43))

— PC(P(By), P(42), P(B3))

+ PC(P(B,), P(A,), P(43))

— PC(P(44),P(By), P(B3))

— PC(P(A1),P(A,),P(43)) =0
Another main extension that can be proposed is
related to the definition of b.p.u.c, that is:
Definition 8: A function PC*:[0,1]™ — [0,1] is
called multivariate probability union copula,
denoted by m.p.u.c, if the following conditions
hold:

1. For any
A EFIA #+

®, PC*(P(®),..,P(A), .., P(®)) = P(A);

2. For any

A EF2A; =

Q, PC*(P(Ay),..,P(Q),..,P(A)) =1;

3. LetA4;,B; € F,i =1,...,n such that A; € B; =
P(A;) < P(B;). Then

P(B1) A P(B2) P(By)
Apa)Lriay) = Lpiay)

0

Another extension that can be made is related
to the m.p.i.c, and m.p.u.c with their relationships
through probability of intersection, probability of
union, respectively.

PC(P(Uy),P(Uy),...,P(Uy)) =

PC*(P(U), P(Uy), -, P(Uy)) <
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Proposition 8: Let (Q, F, P) be a probability space,
A, ...,A, €F, and let PC be a m.p.i.c. Then the
following relation is true

PC(P(Ay),..,P(4)) =P (ﬂ Al-)

i=1
The proof is similar to the proof of Proposition 1
Propositio 9: Let (Q,F, P) be a probability space,
A4, ...,A, €F, and be PC* be a m.p.u.c. Then the
following relation is true

PC*(P(Ay), .., P(A)) =P (U Ai>

i=1
The proof is the similar to the proof of Proposition
2

Corollary 3: Let (Q,F, P) be a probability space,
A4, ...,A, €F, PCheam.p.i.c,and PC* am.p.u.c.
If A4, ..., A, are called independents if, and only if
1. PC(P(Al), ---;P(An)) = H?=1P(Ai)

2. PC*(P(Ay), .., P(4y) = 1—TIL, P(AD)

The proof is similar to the proofs of Proposition 6,
Corollary 1, and Corollary 2.

These multivariate representations can also
be demonstrated with respect to infinite number of
events. This is certainly a situation of continuous
case and according to Sklar’s theorem leads to a
unique copula, see (2).

Conditional Probability and Copulas

One of the basic concepts of probability
space theory is the concept of conditional events.
The essential formula of conditional probability of
an event A with respect to the given event B is

P(ANB
P41 B) =402 3)

According to this essential formula of conditional
probability in equation (3), it is possible to propose
a definition of bivariate conditional probability
copula. The definition can be constructed by the
following way:

Definition 9: Let (Q,F, P) be a probability space,
A,B € F, and PC be the a b.p.i.c. Then a bivariate
conditional probability copula, denoted by b.c.p.c is
a function PC.:[0,1]> - [0,1] that has the
following formula

PC.(P(A1),P(42) | P(B))
_ PC(P(41),P(4;), P(B)) @)
PC(P(Q),P(Q),P(B))

PC.(P(4,),P(A,) | P(B)) =

In order to make sure that the relation in equation
(4) is true, it is strictly important to prove that the
function PC, satisfies the properties of being b.p.i.c.
1. Let Ay, Ay, B€F. Then PC.(P(A.),P(®) |
PC(P(A,),P(),P(B)

P(B)) = PC((P(Q),P(Q),P(B))) =0=
PC(P(9),P(A;),P(B));
2. LetA;,A,,B € F.Then
PC.(P(A)), P(Q) | P(B))

_ Pc(P(A1),P(Q),P(B))

PC(P(Q),P(),P(B))

= PC(P(4,),P(A)) | P(B))
Similarly, PC.(P(Q),P(A) | P(B)) =
PC.(P(42),P(A;) | P(B))
3. Let A;,A,,B;,B, € F such that A; € A,,B; &
B, , implies that P(A;) < P(A,),P(B;) < P(B,).
Then the proof is clear because PC is b.p.i.c. Hence,
PC, is 2-increasing.
Lemma 1: Let (Q,F,P)be a probability space,
A,B€F, PC, and PC*be a b.p.i.c, and b.p.u.c,
respectively. A bivariate conditional dual copula to
b.c.p.c, denoted by b.c.d.c. is a function PC; , that
has the following formula
PC:(P(A1),P(42) | P(B))

= 1-PC(P(AS),P(43) | P(B))
and satisfies the conditions of b.p.u.c.
The proof of Lemma 1 is equivalent to the proof of
Corollary 1

Bayesian’s Notions and Copulas

An important result that directly flows
from the definition of b.c.p.c is the definition of
what we proposed and named as bay's copula. The
formula of such copula essentially depends on the
bay's theorem.The essential assertion of the theorem
is that for any two events

P(A)P(BlA)

ABEF,PAIB)= P(A)P(BIA)+P(AC)P(BIAS) ©)
With respect to the relation in equation (5), it can be
constructing an equivalent relation to the Bay's
relation above with respect to the b.c.p.c by the
following way:

Definition 10: Let (Q, F, P) be a probability space,
,BE€ZF , PC beab.p.i.c, and PC. be a b.cp.c. A
Bay’s  copula is a function that has the following
formula

PC(P(A,), P(A;))PC.(B | P(Ay),P(4,))

and satisfies the following conditions

PC(P(A,), P(A2))PC.(B | P(Ay),P(A,)) + PC(P(AS), P(A5))PC.(B | P(AS), P(AY))

1. For each A;,4, B € F,PC.(P(A1),P(®) |
P(B)) =0 =PC.(P(®),P(4) | P(B));
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P(A,),P(B;) < P(B,). Then it is obvious that we
need to prove that
PC(P(41),P(B1) | P(C))
+ PC.(P(A2),P(By) | P(C))
— PC.(P(A1), P(B2) | P(C))
—PC.(P(A,),P(B)) | P(C)) =0

2. For each Ay, A,,B €F,PC(P(A1),P(Q) |
P(B)) = 1= PC.(P(Q),P(4;) | P(B));
3. PC. with Bay’s condition is 2-increasing

It is important to show that property number three
of the definition above is true. Let C € F be a given
event and A; € A,,B; € B, implies that P(A4;) <
Thus
PC.(P(A1), P(By) | P(C))
PC(P(A),P(By))PC.(P(C) | P(A1),P(By))

- PC(P(A1),P(B1))PC.(P(C) | P(A1),P(By)) + PC(P(AS), P(BY))PC.(P(C) | P(AS), P(BY))

PC.(P(4;),P(B,) | P(C))
_ PC(P(4,), P(B;))PC(P(C) | P(A2), P(By))
PC(P(A3),P(By))PC.(P(C) | P(A3),P(By)) + PC(P(AS), P(BS))PC.(P(C) | P(AS), P(BY))

PC.(P(A1),P(B;) | P(0))
_ PC(P(41), P(B;))PC,(P(C) | P(A1), P(By))
PC(P(A1), P(By))PC.(P(C) | P(A1),P(By)) + PC(P(AS), P(BS))PC.(P(C) | P(AD), P(BY))

PC.(P(Ay),P(By) | P(C))
_ PC(P(4,),P(B1))PC.(P(C) | P(A;),P(By))
PC(P(4), P(B1))PC.(C | P(A,), P(By)) + PC(P(AS), P(BS))PC.(P(C) | P(4S), P(BY))

By using the following technique, the proof goes PCc(P(C),P(4y))

faster and easier. Let’s consider the following case:
Let A, € B;. Then

PC.(P(41),P(B1) | P(O))

3 PC(P(C),P(4y))

~ PC(P(C), P(Ay)) + PC(P(C), P(Bf))

PC.(P(43), P(B) | P(C))
_ PC(P(C),P(4y))
PC(P(C),P(A3)) + PC(P(C),P(BY))

PC.(P(A1), P(By) | P(C))
_ PC(P(C),P(A,))
PC(P(C),P(4,)) + PC(P(C),P(BY))

PC.(P(A2),P(By) | P(C))
_ PC(P(C),P(4))
PC(P(C),P(Ay)) + PC(P(C),P(BY))
Hence

PC(P(C),P(4y))
PC(P(C),P(A;)) + PC(P(C), P(BY))
PC(P(C),P(Ay))
+
PC(P(C),P(43)) + PC(P(C), P(BY))

PC(P(C),P(4,)) + PC(P(C), P(BY))
_ PC(P(C),P(4y))
PC(P(C),P(A3)) + PC(P(C),P(BY))
_[Pc(P(C),P(Ay)) + PC(P(C),P(BS)) — PC(
B [PC(P(C),P(A))) + PC(P(C), P(Bf é
[PC(P(C),P(A,)) + PC(P(C),P(BY)) — PC(. )

[Pc(P(C),P(A;)) + PC(P(C), P(BS

By rearranging equation (6), we obtain

[Pc(P(C), P(A))

— PC(P(C),P(Ay)][PC(P(C),P(BY))

— PC(P(C),P(BS))]
and since
PC(P(C),P(BS)) <
PC(P(C),P(BY)),PC(P(C),P(Ay) <
PC(P(C),P(A)), because BS < B, A; S A,.
Therefore

[Pc(P(C), P(A))

— PC(P(C),P(A)][PC(P(C),P(BY))

—PC(P(C),P(BS))] =0
Similarly, if we consider that B, € A,, then we
absolutely obtain the same result. Therefore, PC, is
b.c.p.c and fulfills the Bay's conditional probability.
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Conclusions:

As a summary to this study one could
mention that each copula can be written in terms of
classical probability space. There are several results
that may have modified forms to each type of
copula function with respect to intersection, and
union, respectively. Associating with probability
space definitions, the relations of copulas with
respect to independent events property have the
same properties to the classical with modified
representations. Indeed, these representations of
independent events in terms of probability space
and copulas are unique. The examples show various
successful results that demonstrate copulas with
respect to probability space calculations. Moreover,
the extension to multivariate events has shown that
the constructions are much complicated and still has
the same properties to bivariate events. The
representation of bay’s probability within copula
corresponds to the classical Bay’s probability.
There are several different future studies need to be
investigated. For example, generalize the concepts
in terms of Bay’s theorem so that we could
reconstruct copulas of union with respect to
conditional probability. Examine the relationships
of some algebraic systems like MV-algebra, lattices,
and others algebraic systems with copula
constructions in probability sense.
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