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Abstract: 
 Copulas are simply equivalent structures to joint distribution functions. Then, we propose 

modified structures that depend on classical probability space and concepts with respect to copulas. Copulas 

have been presented in equivalent probability measure forms to the classical forms in order to examine any 

possible modern probabilistic relations. A probability of events was demonstrated as elements of copulas 

instead of random variables with a knowledge that each probability of an event belongs to [0,1]. Also, some 

probabilistic constructions have been shown within independent, and conditional probability concepts. A 

Bay's probability relation and its properties were discussed with respect to copulas. Moreover, an extension 

of multivariate constructions of each probabilistic copula has been presented. Finally, we have shown some 

examples that explain each relation of copula in terms of probability space instead of distribution functions. 
  

Key words: Conditionality, Copula Concepts, Independent Events, Probability Measure Theory, Statistical 

Concepts. 

 

Introduction: 
 Recently, copulas have played an 

essential role in many applications that their 

structures need a perfect statistical inference. Their 

role is central and valuable in statistics and even in 

probability measure theory because their features 

are highly rigid, smooth and various. 

 Nowadays, copulas are implemented in 

many different kinds of sciences like mechanics, 

financial analysis, physics, and others. In particular, 

copulas are used as an efficient statistical 

instrument to describe the dependence structures of 

random variables. One of the most important usage 

of copulas has firstly occurred in the study of 

finance, risk management, and insurance.  

Moreover, copula is a modern phenomenon in the 

world of statistics and especially in statistical 

inference of non-linear data. It is a better approach 

than linear correlation coefficient approach when 

our analysis is used to a set of data that cannot 

follow normal distribution.  

 Historically, copulas have explicitly been 

mentioned by many researchers and scientific 

literatures. In particular, we could firstly refer to the 

study of Frechet and Hoeffding, in the 1942, 

throughout their study of the extremes of t-norms, 

(1). They have derived a type of copulas without 

referring to the word copula. 

 Afterwards, in the 1959, an impressive 

article has been published by one brilliant 

statistician named Sklar. He has stated his essential 

well-known theorem which is known by Sklar's 

theorem. He has borrowed a Latin word "copula" to 

refer to its name that means the link or the join, (2). 

His theorem illustrates the base of many concepts of 

copulas and their structures, (3, 4). It extended the 

nature of describing and analyzing the dependence 

structure with respect to the joint distribution 

function and its marginal distribution functions, (5). 

Indeed, one should explain that the importance of 

this historical survey of copula is to demonstrate its 

important in various field of science and 

applications. 

 Moreover, there are several aspects of 

science that used copulas in their structures and one 

can mainly refer to the literature of Nelsen in 1986 

within his book entitled "introduction to copula". 
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 He has collected most related works to 

copulas, their constructions, and their properties, 

(1). In the last fifty years, the concern with copulas 

has a very wide impact in different aspects of life, 

especially in finance. One of the most popular 

results associated with the study of statistical 

inference of portfolio and analysis of assets has 

been shown in (6-8). There are some other results 

that generalized the notions of copulas and 

connected them to some algebras and quantum logic 

spaces, (9-12).   

 Indeed, this work is an attempt to 

demonstrate copulas in association with the 

classical probability space. This means that our 

concern focuses on the language of events as 

elements of assigned copulas rather than the 

language of random variables and distribution 

functions. Also, we look for testing the properties of 

classical probability space with respect to copulas 

and their different properties, formulas, and results. 

For instance, test the Bayesian probabilities in terms 

of copulas, and comparing their formulas and 

results to the classical. 

 Indeed, there are various copulas that have 

been built in terms of probabilistic events. Also, we 

have shown some examples that are relevant to the 

classical examples which are shown in many 

literatures, for details. 

 Eventually, we should refer to the structure of 

this study. In the next section, we have presented 

some basic concepts related to copulas and 

probability space. Section three is devoted to 

presenting the main constructions of our study. 

Finally, we have shown some conclusions and 

future studies. 

 
 Basic Concepts 
              In this section, we present the most 

common definitions, and properties related to 

probability space structure, copulas and their 

constructions. We begin with the essential 

definition of measure space: 

Definition 1: (12) Let (Ω, ℱ) be a measurable 

space. A map 𝜇: ℱ → [0, ∞] is called a 𝜎-measure, 

if the following conditions hold. 

1. 𝜇(𝐴) ≥ 0, for all 𝐴 ∈ ℱ;  

2. 𝜇(𝜙) = 0; 
3. If 𝐴1, 𝐴2, … ∈ ℱ, 𝐴𝑖 ∩ 𝐴𝑗 = 𝜙 for 𝑖 ≠ 𝑗. 

𝜇(⋃𝑖=1
∞ 𝐴𝑖) = ∑ 𝐴𝑖

∞
𝑖=1 .  

      We say that 𝜇 is 𝜎-additive. 

      A measure 𝜇 is called finite, if there is 𝑘 ∈
ℛ such that 𝜇(Ω) = 𝑘.  

Remark 1: If k = 1, then the measure μ is called a 

probability measure denoted by P. While the triple 

(Ω, ℱ, P) is well-known by probability space, where 

Ω ≠ ∅, ℱ  is a σ-algebra on Ω , and P is a 

probability measure, (4). 

Definition 2: (12) Let (Ω, ℱ, 𝑃) be a probability 

space. The 𝜎-algebra ℱ is the set of all subsets that 

are called random events, which are the set of 

outcomes of an experiment for which one can ask a 

probability. 

Note that, for any event 𝐴 ∈ ℱ, 𝑃(𝐴) 

belongs to [0,1]. In fact, this notion is essential in 

our constructed definitions. 

Moreover, we review the notions of 

bivariate copulas in order to use them in our future 

structures. Indeed, there are two main functions 

which are known by copula and co-copula. 

Definition 3: (1, 2, 4) A two-dimensional copula 

is a function 𝐶: [0,1]2 → [0,1] with the following 

conditions. 

1.  For each 𝑥 ∈ [0,1], 𝐶(𝑥, 0) = 𝐶(0, 𝑥) = 0; 

2.  For each 𝑥 ∈ [0,1], 𝐶(𝑥, 1) = 𝐶(1, 𝑥) = 𝑥; 

3.  Let 𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ [0,1]. If 𝑥1 ≤ 𝑥2, 𝑦1 ≤ 𝑦2, 

then 

  𝐶(𝑥1, 𝑦1) + 𝐶(𝑥2, 𝑦2) ≥ 𝐶(𝑥1, 𝑦2) + 𝐶(𝑥2, 𝑦1).  

Definition 4: (1, 2, 4) A two-dimensional co-copula 

is a function H: [0,1]2 → [0,1]that holds the 

following conditions. 

1. For each 𝑥 ∈ [0,1], 𝐻(𝑥, 0) = 𝐻(0, 𝑥) = 𝑥; 
2.  For each 𝑥 ∈ [0,1], 𝐻(𝑥, 1) = 𝐶(1, 𝑥) = 1; 
3.  Let 𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ [0,1]. If 𝑥1 ≤ 𝑥2, 𝑦1 ≤ 𝑦2, 

then 

 𝐻(𝑥1, 𝑦1) + 𝐻(𝑥2, 𝑦2) ≤ 𝐶(𝑥1, 𝑦2) + 𝐶(𝑥2, 𝑦1).  

Indeed, these notions were discussed in 

detail by Nelsen, (10). Any function with the 

properties that are grounded, 2-increasing, and 

𝐶(𝑎, 1) = 𝑎 simply leads to decide that the function 

is copula. While, the co-copula has a reverse 

properties that are 𝐻(𝑎, 0) = 𝑎, 𝐻(𝑎, 1) = 1, and 2-

nonincreasing property, (8). 

 

Copulas in Terms of Probability Space 

 The main aim of this section focuses on the 

structures of copulas and their conditions that we 

have proposed in terms of classical probability 

space. In other words, we propose constructions of 

copulas in terms of probability measure space 

instead of distributing functions (whether univariate 

or bivariate distribution functions). It is an approach 

that allows us to investigate the properties of those 

functions via probability measure space and test 

some characteristics that might differ from classical 

properties. We begin with the proposed definition of 

copula with respect to probability space (Ω, ℱ, 𝑃). 
Definition 5: A function 𝑃𝐶: [0,1]2 → [0,1] is said 

to be a bivariate probabilistic intersection copula, 

denoted by b.p.i.c, if the following conditions hold: 
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1. For each 𝐴 ∈ ℱ, 𝑃𝐶(𝑃(𝐴), 𝑃(∅)) =

𝑃𝐶(𝑃(∅), 𝑃(𝐴)) = 0; 

2. For each 𝐴 ∈ ℱ, 𝑃𝐶(𝑃(𝐴), 𝑃(Ω)) = 𝑃(𝐴); 

Similarly, for each 𝐵 ∈ ℱ, 𝑃𝐶(𝑃(Ω), 𝑃(𝐵)) =

𝑃(𝐵); 
3. Let 𝐴1, 𝐴2, 𝐵1, 𝐵2 ∈ ℱ, such that 𝑃(𝐴1) ≤ 𝑃(𝐴2),

𝑃(𝐵1) ≤ 𝑃(𝐵2). Then 

𝑃𝐶(𝑃(𝐴1), 𝑃(𝐵1)) + 𝑃𝐶(𝑃(𝐴2), 𝑃(𝐴2)) ≥

𝑃𝐶(𝑃(𝐴1), 𝑃(𝐵2)) + 𝑃𝐶(𝑃(𝐴2), 𝑃(𝐵1)).  
 

Example 1: Let (Ω, ℱ, 𝑃) be a probability space 

such that the sample space of an experiment for 

throwing a dice is Ω = {1,2,3,4,5,6} and let the 

events of Ω be 𝐴, 𝐵 ∈ ℱ that represent the events of 

even numbers, and the prime numbers, respectively. 

That means, 𝐴 = {2,4,6}, and 𝐵 = {1,2,3,5}. Now, 

suppose that  

𝑃𝐶(𝑃(𝐴), 𝑃(𝐵)) = 𝑃(𝐴)𝑃(𝐵), for all 𝐴, 𝐵 ∈ ℱ. 

Then, let us examine whether the conditions of 

b.p.i.c are satisfied or not. First of all, it is clear that 

𝑃(𝐴) = 0.5, whereas 𝑃(𝐵) =
2

3
 . Then 

1. For  𝐴, 𝐵 ∈ ℱ,   𝑃𝐶(𝑃(𝐴), 𝑃(∅)) = 𝑃(𝐴)𝑃(∅) =

0.5 ∗ 0 = 0; 

 Similarly, 𝑃𝐶(𝑃(∅), 𝑃(𝐵)) = 0 ∗
2

3
= 0; 

2. For 𝐴, 𝐵 ∈ ℱ. We have  

𝑃𝐶(𝑃(𝐴), 𝑃(Ω)) = 𝑃(𝐴)𝑃(Ω) = 0.5 ∗ 1 = 0.5

∈ [0,1]; 
    Similarly,  𝑃𝐶(𝑃(Ω), 𝑃(𝐵)) = 𝑃(Ω)𝑃(𝐴) = 1 ∗
2

3
=

2

3
∈ [0,1]; 

3.  Let 𝐴, 𝐵 ∈ ℱ, such that 𝑃(∅) ≤ 𝑃(𝐴), and 

𝑃(𝐵) ≤ 𝑃(Ω) ⟹ 0 ≤ 0.5,
2

3
≤ 1. Then 

  𝑃𝐶(𝑃(∅), 𝑃(𝐵)) + 𝑃𝐶(𝑃(𝐴), 𝑃(Ω))

− 𝑃𝐶(𝑃(∅), 𝑃(Ω)

− 𝑃𝐶(𝑃(𝐴), 𝑃(𝐵)) 

= 𝑃(∅)𝑃(𝐵) + 𝑃(𝐴)𝑃(Ω) − 𝑃(∅)𝑃(Ω)
− 𝑃(𝐴)𝑃(B) 

                             = 0 ∗
2

3
+ 0.5 ∗ 1 − 0 ∗ 1 − 0.5 ∗

2

3
=

1

6
≥ 0 

 Then PC satisfies the 2-increasing 

property. Since the given PC in this example fulfills 

the three conditions of copula, so it is simply a 

b.p.i.c. 

 Moreover, let’s propose a construction of 

the definition of dual copula that is: 

Definition 6: A function PC∗: [0,1]2 → [0,1] is said 

to be a bivariate probabilistic union copula, denoted 

by b.p.u.c, if the following conditions hold: 

1. For each A, B ∈ ℱ, PC∗(P(A), P(∅)) = P(A), 

similarly, PC∗(P(∅)P(B)) = P(B); 

2. For each A ∈ ℱ, PC∗(P(A), P(Ω)) =

PC∗(P(Ω), P(A)) = 1; 
3. Let A1, A2, 𝐵1, 𝐵2 ∈ ℱ, such that 𝑃(𝐴1) ≤ 𝑃(𝐴2),
𝑃(𝐵1) ≤ 𝑃(𝐵2). Then 

𝑃𝐶∗(𝑃(𝐴1), 𝑃(𝐵1)) + 𝑃𝐶∗(𝑃(𝐴2), 𝑃(𝐵2)) ≤

𝑃𝐶∗(𝑃(𝐴1), 𝑃(𝐵2)) + 𝑃𝐶∗(𝑃(𝐴2), 𝑃(𝐵1)).  
Example 2 Back to Example 1 and suppose that  

𝑃𝐶∗(𝑃(𝐴), 𝑃(𝐵)) = max (𝑃(𝐴), 𝑃(𝐵)). Again, let’s 

try to figure out whether 𝑃𝐶∗ fulfils the conditions 

of b.p.u.c or not. So, we can see that  

1.  Let 𝐴, 𝐵 ∈ ℱ, 𝑃𝐶∗(𝑃(𝐴), 𝑃(∅)) =

max(𝑃(𝐴), 𝑃(∅)) = max(0.5,0) = 0.5 = 𝑃(𝐴); 

Similarly, 

𝑃𝐶∗(𝑃(∅), 𝑃(𝐵)) = max(𝑃(∅), 𝑃(𝐵)) = 𝑃(𝐵) =
2

3
. 

2.  Let 𝐴, 𝐵 ∈ ℱ, 𝑃𝐶∗(𝑃(𝐴), 𝑃(Ω)) =

𝑃𝐶∗(𝑃(Ω), 𝑃(𝐵)) = max(𝑃(𝐴), 𝑃(Ω)) =

max(0.5,1) = max (1,
2

3
) = 1. 

3.  Suppose that 𝑃(∅) ≤ 𝑃(𝐴), and 𝑃(𝐵) ≤ 𝑃(Ω), 

implies that 0 ≤ 0.5,
2

3
≤ 1  

    Then 

max(𝑃(∅), 𝑃(𝐵)) + max(𝑃(𝐴), 𝑃(Ω)) ≤

 max(𝑃(∅), 𝑃(Ω)) + max(𝑃(𝐴), 𝑃(𝐵)) 

max (0,
2

3
) + 𝑚𝑎𝑥(0.5,1)

≤ 𝑚𝑎𝑥(0,1) + 𝑚𝑎𝑥 (0.5,
2

3
)

=
2

3
+ 1 ≤ 1 +

2

3
 

Since all the three conditions of Definition 5 are 

fulfilled, so PC∗ is b.p.u.c.  

 

Corollary 1: Let (Ω, ℱ, 𝑃) be a probability space, 

A, B ∈ ℱ,  and PC be a b.p.i.c. Then 

𝑃𝐶∗(𝑃(𝐴), 𝑃(𝐵)) = 1 − 𝑃𝐶(𝑃(𝐴𝑐), 𝑃(𝐵𝑐)) 

is a b.p.u.c 

Proof: 

We need to show that PC∗ in the relation above 

holds the conditions of being b.p.u.c. Thus 

1. 𝑃𝐶∗(𝑃(𝐴), 𝑃(∅)) = 1 − 𝑃𝐶(𝑃(𝐴𝑐), 𝑃(∅𝑐)) =

1 − 𝑃𝐶(𝑃(𝐴𝑐), 𝑃(Ω)) = 1 − 𝑃(𝐴𝑐) = 𝑃(𝐴)  

Similarly, 𝑃𝐶∗(𝑃(∅), 𝑃(𝐵)) = 𝑃(𝐵) 

2. 𝑃𝐶∗(𝑃(𝐴), 𝑃(Ω)) = 1 − 𝑃𝐶(𝑃(𝐴𝑐), 𝑃(Ω𝑐)) =

1 − 𝑃𝐶(𝑃(𝐴𝑐), 𝑃(∅)) = 1 = 𝑃𝐶∗(𝑃(Ω), 𝑃(B))  

3. To prove that 𝑃𝐶∗ holds third property of 

b.p.u.c, we suppose that 𝐴1, 𝐴2, 𝐵1, 𝐵2 ∈ ℱ, such 

that 𝐴1 ⊆ 𝐴2, 𝐵1 ⊆ 𝐵2,  implies that 𝑃(𝐴1) ≤
𝑃(𝐴2), 𝑃(𝐵1) ≤ 𝑃(𝐵2). Then, suppose that  
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𝑃𝐶∗(𝑃(𝐴1), 𝑃(B1)) + 𝑃𝐶∗(𝑃(𝐴2), 𝑃(B2))

− 𝑃𝐶∗(𝑃(𝐴1), 𝑃(B2))

− 𝑃𝐶∗(𝑃(𝐴2), 𝑃(B1)) ≥ 0 

Thus  

1 − 𝑃𝐶(𝑃(𝐴1
𝑐), 𝑃(B1

𝑐)) + 1 − 𝑃𝐶(𝑃(𝐴2
𝑐 ), 𝑃(B2

𝑐))

− [1 − 𝑃𝐶(𝑃(𝐴1
𝑐), 𝑃(B2

𝑐))]

− [1 − 𝑃𝐶(𝑃(𝐴2
𝑐 ), 𝑃(B1

𝑐))] ≥ 0 

Hence  

𝑃𝐶(𝑃(𝐴1
𝑐), 𝑃(B2

𝑐)) + 𝑃𝐶(𝑃(𝐴2
𝑐 ), 𝑃(B1

𝑐))

− 𝑃𝐶(𝑃(𝐴1
𝑐), 𝑃(B1

𝑐))

− 𝑃𝐶(𝑃(𝐴2
𝑐 ), 𝑃(B2

𝑐)) ≥ 0 

Or equivalently 

  𝑃𝐶(𝑃(𝐴1
𝑐), 𝑃(B2

𝑐)) + 𝑃𝐶(𝑃(𝐴2
𝑐 ), 𝑃(B1

𝑐))

≥ 𝑃𝐶(𝑃(𝐴1
𝑐), 𝑃(B1

𝑐))

+ 𝑃𝐶(𝑃(𝐴2
𝑐 ), 𝑃(B2

𝑐)) 

Therefore, 𝑃𝐶∗ is a b.p.u.c. 

 Another structure that combines copula to 

one of the well-known operations of probability 

space can be shown in the following definition. 

 Moreover, in the sense of probability space 

operations and according to Sklar's theorem (2), it is 

possible to show that the following relations are 

true: 

Proposition 1: Let (Ω, ℱ, 𝑃) be a probability space, 

A, B ∈ ℱ,  and PC be a b.p.i.c. Then the following 

relation is true  

𝑃𝐶(𝑃(𝐴), 𝑃(𝐵)) = 𝑃(𝐴 ∩ 𝐵) 

 Proof: 

The can prove easily be achieved by showing that 

the conditions of b.p.i.c. hold.  

Let 𝐴, 𝐵 ∈ ℱ, 𝑃𝐶(𝑃(𝐴), 𝑃(∅)) = 𝑃(𝐴 ∩ ∅), 

but𝐴 ∩ ∅ = ∅. Thus  𝑃(𝐴 ∩ ∅) = 𝑃(∅) = 0 =

𝑃𝐶(𝑃(∅), 𝑃(𝐵)) 

1. From probability space, it is well-known 

that 𝑃(Ω) = 1. Thus, 

𝑃𝐶(𝑃(𝐴), 𝑃(Ω)) = 𝑃(A ∩ Ω), but 𝐴 ∩ Ω = 𝐴, 

implies that 

 𝑃𝐶(𝑃(𝐴), 𝑃(Ω)) = 𝑃(𝐴 ∩ Ω) = 𝑃(𝐴). 

Similarly, 𝑃𝐶(𝑃(Ω), 𝑃(𝐵)) = 𝑃(𝐵); 
3. Further, we are obliged to prove the 2-increasing 

property. Let 𝐴1, 𝐴2, 𝐵1, 𝐵2 ∈ ℱ , such that 𝐴1 ⊆ 𝐴2,
𝐵1 ⊆ 𝐵2 implies that 𝑃(𝐴1) ≤ 𝑃(𝐴2), 𝑃(𝐵1) ≤
𝑃(𝐵2) respectively. Then 

𝑃𝐶(𝑃(𝐴1), 𝑃(𝐵1)) + 𝑃𝐶(𝑃(𝐴2), 𝑃(𝐵2))

− 𝑃𝐶(𝑃(𝐴1), 𝑃(𝐵2))

− 𝑃𝐶(𝑃(𝐴1), 𝑃(𝐵1)) ≥ 0 

But 

𝑃𝐶(𝑃(𝐴1), 𝑃(𝐵1)) =

𝑃(𝐴1 ∩ 𝐵1), 𝑃𝐶(𝑃(𝐴2), 𝑃(𝐵2)) = 𝑃(𝐴2 ∩ 𝐵2) 

, 𝑃𝐶(𝑃(𝐴1), 𝑃(𝐵2)) = 𝑃(𝐴1 ∩ 𝐵2), and 

𝑃𝐶(𝑃(𝐴2), 𝑃(𝐵1)) = 𝑃(𝐴2 ∩ 𝐵1). Thus 

𝑃(𝐴1 ∩ 𝐵1) + 𝑃(𝐴2 ∩ 𝐵2) − 𝑃(𝐴1 ∩ 𝐵2) −
𝑃(𝐴2 ∩ 𝐵1) ≥ 0, and since 𝑃 is monotone and 

increasing, then the relation above has 2-increasing 

property. Hence, 𝑃𝐶 has already the 2-increasing 

property.  

 In fact, there is another way that we could 

propose to show that property three (2-increasing) is 

true. Suppose that A1, A2, B1, B2 ∈ ℱ such that 

A1 ≤ A2, B1 ≤ B2. Now, if  A2 ⊆ B1 implies that  

P(A2) ≤ P(B1). Then  

PC(P(A1), P(B1)) + PC(P(A2), P(B2))

− PC(P(A1), P(B2))

− PC(P(A2), P(B1)) 

= P(A1 ∩ B1) + P(A2 ∩ B2) − P(A1 ∩ B2)
− P(A2 ∩ B1) 

                       = P(A1) + P(A2) − P(A1) −
P(A2) = 0 

Similarly, if B2 ⊆ A1, implies that P(B2) ≤ P(A1). 

Then  

PC(P(A1), P(B1)) + PC(P(A2), P(B2))

− PC(P(A1), P(B2))

− PC(P(A2), P(B1)) 

= P(B1) + P(B2) − P(B2) − P(B1 ) = 0 

Therefore, 𝑃𝐶 is b.p.i.c and thus the proof is 

complete. 

Proposition 2: Let  (Ω, ℱ, P) be a probability space, 

A, B ∈ ℱ,  and PC∗ be a b.p.u.c. Then the following 

relation is true  

PC∗(P(A), P(B)) = P(A ∪ B) 

 The proof is similar to the prove of Proposition 1. 

Proposition 3: Let  (Ω, ℱ, 𝑃) be a probability space, 

A, B ∈ ℱ,  and PC∗ be a b.p.u.c. Then  

𝑃𝐶(𝑃(𝐴), 𝑃(𝐵)) = 𝑃𝐶∗(𝑃(𝐴), 𝑃(𝐴)) +

𝑃𝐶∗(𝑃(𝐵), 𝑃(𝐵)) − 𝑃𝐶∗(𝑃(𝐴), 𝑃(𝐵))           (1)       

is a b.p.i.c. 

The proof involves showing that 𝑃𝐶 satisfies the 

conditions of b.p.i.c under the relation above. 

Therefore, the proof is clear. 

Remark 2: In terms of the relation in (1), there is a 

corresponding formula to that relation. That is  

𝑃𝐶∗(𝑃(𝐴), 𝑃(𝐵)) = 𝑃𝐶(𝑃(𝐴), 𝑃(𝐴)) +

𝑃𝐶(𝑃(𝐵), 𝑃(𝐵)) − 𝑃𝐶(𝑃(𝐴), 𝑃(𝐵))              (2) 

We notice that  𝑃𝐶∗ in equation (2) is simply a 

b.p.u.c.  

 

Associating with the concept of independent events, 

we can build the constructions of b.p.i.c, and 

b.p.u.c, respectively by the following two main 

ways 

Proposition 4: Let  (Ω, ℱ, 𝑃) be a probability space, 

A, B ∈ ℱ, and PC be a b.p.i.c. If 𝐴, 𝐵 are two 

independent, then 

PC(P(A), P(B)) = P(A)P(B)  

Proof: 
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Let 𝐴, 𝐵 be two independent events. Then 

PC(P(A), P(B)) = 𝑃(𝐴 ∩ 𝐵) 

But, 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵) (𝐴, 𝐵 are independent) 

Therefore, PC(P(A), P(B)) = 𝑃(𝐴)𝑃(𝐵) 

Note that, if A, B ∈ ℱ  are independent, then the 

following statements are true 

1. PC(P(Ac), 𝑃(𝐵𝑐)) = 𝑃(𝐴𝑐)𝑃(𝐵𝑐); 

2. PC(P(Ac), 𝑃(𝐵)) = 𝑃(𝐴𝑐)𝑃(𝐵); 

3. PC(P(A), P(Bc)) = 𝑃(𝐴)𝑃(𝐵𝑐). 

Corollary 2: Let  (Ω, ℱ, 𝑃) be a probability space, 

A, B ∈ ℱ ∋ A, 𝐵 are independents and 𝑃𝐶∗ be 

bivariate b.p.u.c. Then 

𝑃𝐶∗(𝑃(𝐴), 𝑃(𝐵)) = 1 − 𝑃(𝐴𝑐)𝑃(𝐵𝑐) 

Proof: 

From Proposition 2, we have shown that 

𝑃C∗(P(A), P(B)) = P(A ∪ B) 

But, 𝑃(𝐴 ∪ 𝐵) = 1 − 𝑃((𝐴 ∪ 𝐵)𝑐) = 1 − 𝑃(𝐴𝑐 ∩
𝐵𝑐). Hence  

𝑃C∗(P(A), P(B)) = 1 − 𝑃(𝐴𝑐 ∩ 𝐵𝑐) 

But, from classical probability space, we know that, 

when 𝐴, and 𝐵 are independent, then 

𝑃(𝐴𝑐 ∩ 𝐵𝑐) = 𝑃(𝐴𝑐)𝑃(𝐵𝑐) 

Therefore,  𝑃C∗(P(A), P(B)) = 1 − 𝑃(𝐴𝑐)𝑃(𝐵𝑐). 

This complete the proof. 

Proposition 5: Let  (Ω, ℱ, 𝑃) be a probability space. 

Then for any two events A, B ∈ ℱ with b.p.i.c, and 

b.p.u.c the following properties are true 

1. 𝑃𝐶(𝑃(𝐴), 𝑃(𝐴)) = 𝑃𝐶(𝑃(𝐴), 𝑃(Ω)) =

𝑃𝐶(𝑃(Ω), 𝑃(𝐴)); 

2. 𝑃𝐶∗(𝑃(𝐴), 𝑃(𝐴)) = 𝑃𝐶(𝑃(𝐴), 𝑃(∅)) =

𝑃𝐶(𝑃(∅), 𝑃(𝐴)); 

3. If 𝐴, 𝐵 ∈ ℱ are independents, then  

a. 𝑃𝐶(𝑃(𝐴), 𝑃(𝐵)) =

𝑃𝐶(𝑃(𝐴), 𝑃(Ω))𝑃𝐶(𝑃(Ω), 𝑃(𝐵)); 

b. 𝑃𝐶∗(𝑃(𝐴), 𝑃(𝐵)) =

1 − 𝑃𝐶∗(𝑃(𝐴𝑐), 𝑃(∅))𝑃𝐶∗(𝑃(∅), 𝑃(𝐵𝑐)). 

Proof: 

1.  From Proposition 1, we have shown that 

𝑃𝐶(𝑃(𝐴), 𝑃(𝐴)) = 𝑃(𝐴 ∩ 𝐴) 

But, from the properties of events on probability 

space, we know that  

 𝑃(𝐴 ∩ 𝐴) = 𝑃(𝐴 ∩ Ω) = 𝑃(Ω ∩ 𝐴)  

But 𝑃(𝐴 ∩ Ω) = 𝑃𝐶(𝑃(𝐴), 𝑃(Ω)), and similarly 

𝑃(Ω ∩ 𝐴) = 𝑃𝐶(𝑃(Ω), 𝑃(𝐴)) 

Therefore, 𝑃𝐶(𝑃(𝐴), 𝑃(𝐴)) = 𝑃𝐶(𝑃(𝐴), 𝑃(Ω)) =

𝑃𝐶(𝑃(Ω), 𝑃(𝐴)); 
2.  The proof is similar to the proof of first point. 

3.  Let 𝐴, 𝐵 be independent events. 

a.    𝑃𝐶(𝑃(𝐴), 𝑃(𝐵)) = 𝑃(𝐴 ∩ 𝐵), implies that 

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵).  

        But, 𝑃(𝐴) = 𝑃(𝐴 ∩ Ω), similarly, 

𝑃(𝐵) = 𝑃(Ω ∩ 𝐵).  

        Thus  𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴 ∩ Ω) 𝑃(Ω ∩
𝐵). Hence  

        𝑃𝐶(𝑃(𝐴), 𝑃(𝐵)) =  𝑃(𝐴 ∩

Ω) 𝑃(Ω ∩ 𝐵) 

         But once again, 𝑃(𝐴 ∩ Ω) =

 𝑃𝐶(𝑃(𝐴), 𝑃(Ω)), and 

        𝑃(Ω ∩ 𝐵) = 𝑃𝐶(𝑃(Ω), 𝑃(𝐵)) 

        Therefore 𝑃𝐶(𝑃(𝐴), 𝑃(𝐵)) =

𝑃𝐶(𝑃(𝐴), 𝑃(Ω))𝑃𝐶(𝑃(Ω), 𝑃(𝐵)) 

b. 𝑃𝐶∗(𝑃(𝐴), 𝑃(𝐵)) = 𝑃(𝐴 ∪ 𝐵) = 1 −

𝑃[(𝐴 ∪ 𝐵)𝑐] = 1 − 𝑃(𝐴𝑐 ∩ 𝐵𝑐)  

But, 𝐴, and 𝐵 are independent, then  𝑃(𝐴𝑐 ∩ 𝐵𝑐) =
𝑃(𝐴𝑐)𝑃(𝐵𝑐), implies that 

𝑃(𝐴𝑐) = 𝑃(𝐴𝑐 ∪ ∅), 𝑃(𝐵𝑐) = 𝑃(∅ ∪ 𝐵𝑐), and 

𝑃(𝐴𝑐 ∪ ∅) = 𝑃𝐶∗(𝑃(𝐴𝑐), 𝑃(∅)), 𝑃(∅ ∪ 𝐵𝑐) =

𝑃𝐶∗(𝑃(∅), 𝑃(𝐵𝑐))  

Hence 

𝑃𝐶∗(𝑃(𝐴), 𝑃(𝐵)) =

1 −  𝑃𝐶∗(𝑃(𝐴𝑐), 𝑃(∅)) 𝑃𝐶∗(𝑃(∅), 𝑃(𝐵𝑐)) 

Proposition 6: Let (Ω, ℱ, 𝑃) be a probability space, 

A, B ∈ ℱ be a probability space, with PC, PC∗  be 

the b.p.i.c., and b.p.u.c, respectively. Then the 

following function  

PC ∗ PC∗(P(A), P(B))

= PC(P(A), P(B))PC∗(𝑃(𝐴), 𝑃(𝐵)) 

is a b.p.i.c. 

Proof: 

We have to show that PC ∗ PC∗(P(A), P(B)) 

satisfies the conditions of being a b.p.i.c. Thus  

1. 𝑃𝐶 ∗ 𝑃𝐶∗(𝑃(𝐴), 𝑃(∅)) =

𝑃𝐶(𝑃(𝐴), 𝑃(∅))𝑃𝐶∗(𝑃(𝐴), 𝑃(∅)) = 0. 𝑃(𝐴) = 0; 

Similarly, 𝑃𝐶 ∗ 𝑃𝐶∗(𝑃(∅), 𝑃(𝐵)) = 0  

2. 𝑃𝐶 ∗ 𝑃𝐶∗(𝑃(𝐴), 𝑃(𝛺)) =

𝑃𝐶(𝑃(𝐴), 𝑃(𝛺))𝑃𝐶∗(𝑃(𝐴), 𝑃(𝛺)) = 𝑃(𝐴). 1 =

𝑃(𝐴); 

Similarly, 𝑃𝐶 ∗ 𝑃𝐶∗(𝑃(𝛺), 𝑃(𝐵)) = 𝑃(𝐵) 

3. To prove 2-inceasing, let 𝐴1, 𝐴2, 𝐵1, 𝐵2 ∈ ℱ, 
such that 𝑃(𝐴1) ≤ 𝑃(𝐴2), 𝑃(𝐵1) ≤ 𝑃(𝐵2). Then, 

we need to prove that   

𝑃𝐶 ∗ 𝑃𝐶∗(𝑃(𝐴1), 𝑃(𝐵1)) + 𝑃𝐶

∗ 𝑃𝐶∗(𝑃(𝐴2), 𝑃(𝐵2)) − 𝑃𝐶

∗ 𝑃𝐶∗(𝑃(𝐴1), 𝑃(𝐵2)) − 𝑃𝐶

∗ 𝑃𝐶∗(𝑃(𝐴2), 𝑃(𝐵1)) ≥ 0 

But,  

𝑃𝐶 ∗ 𝑃𝐶∗(𝑃(𝐴1), 𝑃(𝐵1)) =

𝑃𝐶(𝑃(𝐴1), 𝑃(𝐵1))𝑃𝐶∗(𝑃(𝐴1), 𝑃(𝐵1)) 

        

𝑃𝐶 ∗ 𝑃𝐶∗(𝑃(𝐴2), 𝑃(𝐵2)) =

𝑃𝐶(𝑃(𝐴2), 𝑃(𝐵2))𝑃𝐶∗(𝑃(𝐴2), 𝑃(𝐵2))   
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𝑃𝐶 ∗ 𝑃𝐶∗(𝑃(𝐴1), 𝑃(𝐵2))

= 𝑃𝐶(𝑃(𝐴1), 𝑃(𝐵2))𝑃𝐶∗(𝑃(𝐴1), 𝑃(𝐵2)) 

                    𝑃𝐶 ∗ 𝑃𝐶∗(𝑃(𝐴2), 𝑃(𝐵1)) =

𝑃𝐶(𝑃(𝐴2), 𝑃(𝐵1))𝑃𝐶∗(𝑃(𝐴2), 𝑃(𝐵1)) 

  Thus, 

         𝑃𝐶(𝑃(𝐴1), 𝑃(𝐵1))𝑃𝐶∗(𝑃(𝐴1), 𝑃(𝐵1)) +

𝑃𝐶(𝑃(𝐴2), 𝑃(𝐵2))𝑃𝐶∗(𝑃(𝐴2), 𝑃(𝐵2)) −

   𝑃𝐶(𝑃(𝐴1), 𝑃(𝐵2))𝑃𝐶∗(𝑃(𝐴1), 𝑃(𝐵2)) −

𝑃𝐶(𝑃(𝐴2), 𝑃(𝐵1))𝑃𝐶∗(𝑃(𝐴2), 𝑃(𝐵1)) 

 Now, let 𝐴2 ⊆ 𝐵1, implies that 𝑃(𝐴2) ≤
𝑃(𝐵1). Hence  

𝑃𝐶(𝑃(𝐴1), 𝑃(𝐵1))𝑃𝐶∗(𝑃(𝐴1), 𝑃(𝐵1))
= 𝑃(𝐴1)𝑃(𝐵1) 

 Similarly, we obtain that  

𝑃𝐶(𝑃(𝐴2), 𝑃(𝐵2))𝑃𝐶∗(𝑃(𝐴2), 𝑃(𝐵2)) =
𝑃(𝐴2)𝑃(𝐵2), 

𝑃𝐶(𝑃(𝐴1), 𝑃(𝐵2))𝑃𝐶∗(𝑃(𝐴1), 𝑃(𝐵2))
= 𝑃(𝐴1)𝑃(𝐵2) 

𝑃𝐶(𝑃(𝐴2), 𝑃(𝐵1))𝑃𝐶∗(𝑃(𝐴2), 𝑃(𝐵1))

= 𝑃(𝐴2)𝑃(𝐵1) 
 Then, we have 

 𝑃(𝐴1)𝑃(𝐵1) + 𝑃(𝐴2)𝑃(𝐵2) −
𝑃(𝐴1)𝑃(𝐵2) − 𝑃(𝐴2)𝑃(𝐵1) 

= −𝑃(𝐴1)[𝑃(𝐵2) − 𝑃(𝐵1)]
+ 𝑃(𝐴2)[𝑃(𝐵2) − 𝑃(𝐵1)] 

                            = [𝑃(𝐴2) − 𝑃(𝐴1)][𝑃(𝐵2) −
𝑃(𝐵1)] 
 Since, 𝑃(𝐴1) ≤ 𝑃(𝐴2), and 𝑃(𝐵1) ≤
𝑃(𝐵2) are given 

 Hence [𝑃(𝐴2) − 𝑃(𝐴1)][𝑃(𝐵2) −
𝑃(𝐵1)] ≥ 0 

 If, we suppose that 𝐵2 ≤ 𝐴1, then this 

also yields the same result above. 

 Therefore, 𝑃𝐶 ∗ 𝑃𝐶∗ has the 2-increasing 

property, and this is directly yield that  

    𝑃𝐶 ∗ 𝑃𝐶∗ is a b.p.i.c.  

Proposition 7: Let  (Ω, ℱ, 𝑃) be a probability space, 

A, B ∈ ℱ, and let PC, PC∗ be a b.p.i.c., and b.p.u.c, 

respectively. Then the following function  

PC ∗ PC∗(P(A), P(B))

= 1 − PC(P(Ac), P(Bc))PC∗(𝑃(𝐴𝑐), 𝑃(𝐵𝑐)) 

is a b.p.u.c. 

The proof is clear and similar to the proof of 

Proposition 6 

 

Multivariate Representations of Probability 

Measure Functions 

 This section is dedicated to show an 

extension of the most common definitions, 

propositions, relations and properties of bivariate 

functions that have been shown in terms of 

probability space. 

Definition 7: A function 𝑃𝐶: [0,1]𝑛 → [0,1] is 

called a multivariate probability intersection copula, 

denoted by m.p.i.c, if the following conditions hold: 

1. If there exists 𝐴𝑖 ∈ ℱ ∋ 𝐴𝑖 = ∅, 𝑖 = 1, … , 𝑛, then  

𝑃𝐶(𝑃(𝐴1), … , 𝑃(𝐴𝑖), … , 𝑃(𝐴𝑛)) = 0;  
2. For any 

𝐴𝑖 ∈ ℱ,

𝐴𝑖 ≠ Ω, 𝑖 =

1, … , 𝑛    𝑃𝐶(𝑃(Ω), … , 𝑃(𝐴𝑖), … , 𝑃(Ω)) = 𝑃(𝐴𝑖); 

3. Let 𝐴𝑖, 𝐵𝑖 ∈ ℱ, 𝑖 = 1, … , 𝑛  such that 𝐴𝑖 ⊆ 𝐵𝑖 ⟹

𝑃(𝐴𝑖) ≤ 𝑃(𝐵𝑖). Then 

△𝑃(𝐴1)
𝑃(𝐵1)

△𝑃(𝐴2)
𝑃(𝐵2)

… △𝑃(𝐴𝑛)
𝑃(𝐵𝑛)

 𝑃𝐶(𝑃(𝑈1), 𝑃(𝑈2), … , 𝑃(𝑈𝑛)) ≥

0  
 From (8), it has been shown that any copula 

of volume ℬ with forward difference operation is 

non-decreasing. Then the property number three in 

the above definition is absolutely true. 

 For instance, suppose that 𝑛 = 3 , and let's 

see how it would look the elements of the 2-

increasing property of 𝑃𝐶. Hence 

△𝑃(𝐴1)
𝑃(𝐵1)

△𝑃(𝐴2)
𝑃(𝐵2)

△𝑃(𝐴𝑛)
𝑃(𝐵𝑛)

𝑃𝐶(𝑃(𝑈1), 𝑃(𝑈2), 𝑃(𝑈3))

= 𝑃𝐶(𝑃(𝐵1), 𝑃(𝐵2), 𝑃(𝐵3))

− 𝑃𝐶(𝑃(𝐵1), 𝑃(𝐵2), 𝑃(𝐴3))

− 𝑃𝐶(𝑃(𝐵1), 𝑃(𝐴2), 𝑃(𝐵3))

+ 𝑃𝐶(𝑃(𝐵1), 𝑃(𝐴2), 𝑃(𝐴3))

− 𝑃𝐶(𝑃(𝐴1), 𝑃(𝐵2), 𝑃(𝐵3))

+ 𝑃𝐶(𝑃(𝐴1), 𝑃(𝐵2), 𝑃(𝐴3))

+ 𝑃𝐶(𝑃(𝐴1), 𝑃(𝐴2), 𝑃(𝐵3))

− 𝑃𝐶(𝑃(𝐴1), 𝑃(𝐴2), 𝑃(𝐴3)) ≥ 0 

Another main extension that can be proposed is 

related to the definition of b.p.u.c, that is: 

Definition 8: A function 𝑃𝐶∗: [0,1]𝑛 → [0,1] is 

called multivariate probability union copula, 

denoted by m.p.u.c, if the following conditions 

hold: 

1. For any 

𝐴𝑖 ∈ ℱ ∋ 𝐴𝑖 ≠

∅,    𝑃𝐶∗(𝑃(∅), … , 𝑃(𝐴𝑖), … , 𝑃(∅)) = 𝑃(𝐴𝑖);  

2. For any  

𝐴𝑖 ∈ ℱ ∋ 𝐴𝑖 =

Ω,    𝑃𝐶∗(𝑃(𝐴1), … , 𝑃(Ω), … , 𝑃(𝐴𝑛)) = 1; 

3. Let 𝐴𝑖, 𝐵𝑖 ∈ ℱ, 𝑖 = 1, … , 𝑛  such that 𝐴𝑖 ⊆ 𝐵𝑖 ⟹

𝑃(𝐴𝑖) ≤ 𝑃(𝐵𝑖). Then 

△𝑃(𝐴1)
𝑃(𝐵1)

△𝑃(𝐴2)
𝑃(𝐵2)

… △𝑃(𝐴𝑛)
𝑃(𝐵𝑛)

 𝑃𝐶∗(𝑃(𝑈1), 𝑃(𝑈2), … , 𝑃(𝑈𝑛)) ≤

0  
 Another extension that can be made is related 

to the m.p.i.c, and m.p.u.c with their relationships 

through probability of intersection, probability of 

union, respectively. 
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Proposition 8: Let (Ω, ℱ, 𝑃) be a probability space, 

 A1, … , An ∈ ℱ, and let 𝑃𝐶 be a m.p.i.c. Then the 

following relation is true 

𝑃𝐶(𝑃(𝐴1), … , 𝑃(𝐴𝑛)) = 𝑃 (⋂ 𝐴𝑖

𝑛

𝑖=1

) 

The proof is similar to the proof of Proposition 1 

Propositio 9: Let (Ω, ℱ, 𝑃) be a probability space, 

A1, … , An ∈ ℱ, and be PC∗  be a m.p.u.c. Then the 

following relation is true  

𝑃𝐶∗(𝑃(𝐴1), … , 𝑃(𝐴𝑛)) = 𝑃 (⋃ 𝐴𝑖

𝑛

𝑖=1

) 

The proof is the similar to the proof of Proposition 

2 

Corollary 3: Let  (Ω, ℱ, 𝑃) be a probability space, 

𝐴1, … , 𝐴𝑛 ∈ ℱ,  PC be a m.p.i.c, and PC∗ a m.p.u.c . 

If 𝐴1, … , 𝐴𝑛 are called independents if, and only if  

1. 𝑃𝐶(𝑃(𝐴1), … , 𝑃(𝐴𝑛)) = ∏ 𝑃(𝐴𝑖)𝑛
𝑖=1  

2. 𝑃𝐶∗(𝑃(𝐴1), … , 𝑃(𝐴𝑛)) = 1 − ∏ 𝑃(𝐴𝑖
𝑐)𝑛

𝑖=1  

The proof is similar to the proofs of Proposition 6, 

Corollary 1, and Corollary 2. 

 These multivariate representations can also 

be demonstrated with respect to infinite number of 

events. This is certainly a situation of continuous 

case and according to Sklar’s theorem leads to a 

unique copula, see (2). 

  

Conditional Probability and Copulas 

 One of the basic concepts of probability 

space theory is the concept of conditional events. 

The  essential formula of conditional probability of 

an event 𝐴 with respect to the given event 𝐵 is  

  𝑃(𝐴 ∣ 𝐵) =
𝑃(𝐴∩𝐵)

𝑃(𝐵)
                     (3) 

According to this essential formula of conditional 

probability in equation (3), it is possible to propose 

a definition of bivariate conditional probability 

copula. The definition can be constructed by the 

following way: 

Definition 9: Let (Ω, ℱ, 𝑃) be a probability space, 

𝐴, 𝐵 ∈ ℱ, and 𝑃𝐶 be the a b.p.i.c. Then a bivariate 

conditional probability copula, denoted by b.c.p.c is 

a function 𝑃𝐶𝑐: [0,1]2 → [0,1] that has the 

following formula 

 

𝑃𝐶𝑐(𝑃(𝐴1), 𝑃(𝐴2) ∣ 𝑃(𝐵))

=
𝑃𝐶(𝑃(𝐴1), 𝑃(𝐴2), 𝑃(𝐵))

𝑃𝐶(𝑃(Ω), 𝑃(Ω), 𝑃(B))
 

(4) 

In order to make sure that the relation in equation 

(4) is true, it is strictly important to prove that the 

function 𝑃𝐶𝑐 satisfies the properties of being b.p.i.c. 

1.  Let 𝐴1, 𝐴2, 𝐵 ∈ ℱ. Then 𝑃𝐶𝑐(𝑃(𝐴1), 𝑃(∅) ∣

𝑃(𝐵)) =
𝑃𝐶(𝑃(A1),𝑃(∅),𝑃(B))

𝑃𝐶(𝑃(Ω),𝑃(Ω),𝑃(B))
= 0 =

𝑃𝐶(𝑃(∅), 𝑃(A2), 𝑃(B)); 
2.  Let 𝐴1, 𝐴2, 𝐵 ∈ ℱ. Then  

𝑃𝐶𝑐(𝑃(𝐴1), 𝑃(Ω) ∣ 𝑃(𝐵))

=
𝑃𝐶(𝑃(A1), 𝑃(Ω), 𝑃(B))

𝑃𝐶(𝑃(Ω), 𝑃(Ω), 𝑃(B))

= 𝑃𝐶𝑐(𝑃(𝐴1), 𝑃(A1) ∣ 𝑃(𝐵)) 

Similarly, 𝑃𝐶𝑐(𝑃(Ω), 𝑃(𝐴2) ∣ 𝑃(𝐵)) =

𝑃𝐶𝑐(𝑃(𝐴2), 𝑃(𝐴2) ∣ 𝑃(𝐵)) 

3.  Let 𝐴1, 𝐴2, 𝐵1, 𝐵2 ∈ ℱ such that 𝐴1 ⊆ 𝐴2, 𝐵1 ⊆
𝐵2 , implies that 𝑃(𝐴1) ≤ 𝑃(𝐴2), 𝑃(𝐵1) ≤ 𝑃(𝐵2). 

Then the proof is clear because 𝑃𝐶 is b.p.i.c. Hence, 

𝑃𝐶𝑐 is 2-increasing.  

Lemma 1: Let (Ω, ℱ, 𝑃) be a probability space,  

𝐴, 𝐵 ∈ ℱ, 𝑃𝐶, and 𝑃𝐶∗be a b.p.i.c, and b.p.u.c, 

respectively. A bivariate conditional dual copula to 

b.c.p.c, denoted by b.c.d.c. is a function 𝑃𝐶𝑐
∗ , that 

has the following formula 

𝑃𝐶𝑐
∗(𝑃(𝐴1), 𝑃(𝐴2) ∣ 𝑃(𝐵))

= 1 − 𝑃𝐶𝑐(𝑃(𝐴1
𝑐), 𝑃(𝐴2

𝑐 ) ∣ 𝑃(𝐵)) 

 and satisfies the conditions of b.p.u.c. 

The proof of Lemma 1 is equivalent to the proof of 

Corollary 1 

 

Bayesian’s Notions and Copulas 

 An important result that directly flows 

from the definition of b.c.p.c is the definition of 

what we proposed and named as bay's copula. The 

formula of such copula essentially depends on the 

bay's theorem.The essential assertion of the theorem 

is that for any two events 

𝐴, 𝐵 ∈ ℱ, 𝑃(𝐴 ∣ 𝐵) =
𝑃(𝐴)𝑃(𝐵∣𝐴)

𝑃(𝐴)𝑃(𝐵∣𝐴)+𝑃(𝐴𝑐)𝑃(𝐵∣𝐴𝑐)
     (5) 

With respect to the relation in equation (5), it can be 

constructing an equivalent relation to the Bay's 

relation above with respect to the b.c.p.c by the 

following way: 

 Definition 10: Let (Ω, ℱ, 𝑃) be a probability space, 

, 𝐵 ∈ ℱ , 𝑃𝐶 be a b.p.i.c, and 𝑃𝐶𝑐 be a b.c.p.c. A 

Bay’s    copula is a function that has the following 

formula  

 

𝑃𝐶𝑐(𝑃(𝐴1), 𝑃(𝐴2) ∣ 𝑃(𝐵)) =
𝑃𝐶(𝑃(𝐴1), 𝑃(𝐴2))𝑃𝐶𝑐(𝐵 ∣ 𝑃(𝐴1), 𝑃(𝐴2))

𝑃𝐶(𝑃(𝐴1), 𝑃(𝐴2))𝑃𝐶𝑐(𝐵 ∣ 𝑃(𝐴1), 𝑃(𝐴2)) + 𝑃𝐶(𝑃(𝐴1
𝑐), 𝑃(𝐴2

𝑐 ))𝑃𝐶𝑐(𝐵 ∣ 𝑃(𝐴1
𝑐), 𝑃(𝐴2

𝑐 ))
 

 

and satisfies the following conditions  1. For each 𝐴1, 𝐴2, 𝐵 ∈ ℱ, 𝑃𝐶𝑐(𝑃(𝐴1), 𝑃(∅) ∣

𝑃(𝐵)) = 0 = 𝑃𝐶𝑐(𝑃(∅), 𝑃(𝐴2) ∣ 𝑃(𝐵)) ; 
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2. For each 𝐴1, 𝐴2, 𝐵 ∈ ℱ, 𝑃𝐶𝑐(𝑃(𝐴1), 𝑃(Ω) ∣

𝑃(𝐵)) = 1 = 𝑃𝐶𝑐(𝑃(Ω), 𝑃(𝐴2) ∣ 𝑃(𝐵)) ; 
3. 𝑃𝐶𝑐 with Bay’s condition is 2-increasing 

 

It is important to show that property number three 

of the definition above is true. Let 𝐶 ∈ ℱ be a given 

event and 𝐴1 ⊆ 𝐴2, 𝐵1 ⊆ 𝐵2 implies that 𝑃(𝐴1) ≤

𝑃(𝐴2), 𝑃(𝐵1) ≤ 𝑃(𝐵2). Then it is obvious that we 

need to prove that  

𝑃𝐶𝑐(𝑃(𝐴1), 𝑃(𝐵1) ∣ 𝑃(𝐶))

+ 𝑃𝐶𝑐(𝑃(𝐴2), 𝑃(𝐵2) ∣ 𝑃(𝐶))

− 𝑃𝐶𝑐(𝑃(𝐴1), 𝑃(𝐵2) ∣ 𝑃(𝐶))

− 𝑃𝐶𝑐(𝑃(𝐴2), 𝑃(𝐵1) ∣ 𝑃(𝐶)) ≥ 0 

Thus  

𝑃𝐶𝑐(𝑃(𝐴1), 𝑃(𝐵1) ∣ 𝑃(𝐶))

=
𝑃𝐶(𝑃(𝐴1), 𝑃(𝐵1))𝑃𝐶𝑐(𝑃(𝐶) ∣ 𝑃(𝐴1), 𝑃(𝐵1))

𝑃𝐶(𝑃(𝐴1), 𝑃(𝐵1))𝑃𝐶𝑐(𝑃(𝐶) ∣ 𝑃(𝐴1), 𝑃(𝐵1)) + 𝑃𝐶(𝑃(𝐴1
𝑐), 𝑃(𝐵1

𝑐))𝑃𝐶𝑐(𝑃(𝐶) ∣ 𝑃(𝐴1
𝑐), 𝑃(𝐵1

𝑐))
 

 

𝑃𝐶𝑐(𝑃(𝐴2), 𝑃(𝐵2) ∣ 𝑃(𝐶))

=
𝑃𝐶(𝑃(𝐴2), 𝑃(𝐵2))𝑃𝐶𝑐(𝑃(𝐶) ∣ 𝑃(𝐴2), 𝑃(𝐵2))

𝑃𝐶(𝑃(𝐴2), 𝑃(𝐵2))𝑃𝐶𝑐(𝑃(𝐶) ∣ 𝑃(𝐴2), 𝑃(𝐵2)) + 𝑃𝐶(𝑃(𝐴2
𝑐 ), 𝑃(𝐵2

𝑐))𝑃𝐶𝑐(𝑃(𝐶) ∣ 𝑃(𝐴2
𝑐 ), 𝑃(𝐵2

𝑐))
 

 

𝑃𝐶𝑐(𝑃(𝐴1), 𝑃(𝐵2) ∣ 𝑃(𝐶))

=
𝑃𝐶(𝑃(𝐴1), 𝑃(𝐵2))𝑃𝐶𝑐(𝑃(𝐶) ∣ 𝑃(𝐴1), 𝑃(𝐵2))

𝑃𝐶(𝑃(𝐴1), 𝑃(𝐵2))𝑃𝐶𝑐(𝑃(𝐶) ∣ 𝑃(𝐴1), 𝑃(𝐵2)) + 𝑃𝐶(𝑃(𝐴1
𝑐), 𝑃(𝐵2

𝑐))𝑃𝐶𝑐(𝑃(𝐶) ∣ 𝑃(𝐴1
𝑐), 𝑃(𝐵2

𝑐))
 

 

𝑃𝐶𝑐(𝑃(𝐴1), 𝑃(𝐵1) ∣ 𝑃(𝐶))

=
𝑃𝐶(𝑃(𝐴2), 𝑃(𝐵1))𝑃𝐶𝑐(𝑃(𝐶) ∣ 𝑃(𝐴2), 𝑃(𝐵1))

𝑃𝐶(𝑃(𝐴2), 𝑃(𝐵1))𝑃𝐶𝑐(𝐶 ∣ 𝑃(𝐴2), 𝑃(𝐵1)) + 𝑃𝐶(𝑃(𝐴2
𝑐 ), 𝑃(𝐵1

𝑐))𝑃𝐶𝑐(𝑃(𝐶) ∣ 𝑃(𝐴2
𝑐 ), 𝑃(𝐵1

𝑐))
 

By using the following technique, the proof goes 

faster and easier. Let’s consider the following case: 

Let 𝐴2 ⊆ 𝐵1. Then  

𝑃𝐶𝑐(𝑃(𝐴1), 𝑃(𝐵1) ∣ 𝑃(𝐶))

=
𝑃𝐶(𝑃(𝐶), 𝑃(𝐴1))

𝑃𝐶(𝑃(𝐶), 𝑃(𝐴1)) + 𝑃𝐶(𝑃(𝐶), 𝑃(𝐵1
𝑐))

 

 

𝑃𝐶𝑐(𝑃(𝐴2), 𝑃(𝐵2) ∣ 𝑃(𝐶))

=
𝑃𝐶(𝑃(𝐶), 𝑃(𝐴2))

𝑃𝐶(𝑃(𝐶), 𝑃(𝐴2)) + 𝑃𝐶(𝑃(𝐶), 𝑃(𝐵2
𝑐))

 

 

𝑃𝐶𝑐(𝑃(𝐴1), 𝑃(𝐵2) ∣ 𝑃(𝐶))

=
𝑃𝐶(𝑃(𝐶), 𝑃(𝐴1))

𝑃𝐶(𝑃(𝐶), 𝑃(𝐴1)) + 𝑃𝐶(𝑃(𝐶), 𝑃(𝐵2
𝑐))

 

 

𝑃𝐶𝑐(𝑃(𝐴2), 𝑃(𝐵1) ∣ 𝑃(𝐶))

=
𝑃𝐶(𝑃(𝐶), 𝑃(𝐴2))

𝑃𝐶(𝑃(𝐶), 𝑃(𝐴2)) + 𝑃𝐶(𝑃(𝐶), 𝑃(𝐵1
𝑐))

 

Hence 

𝑃𝐶(𝑃(𝐶), 𝑃(𝐴1))

𝑃𝐶(𝑃(𝐶), 𝑃(𝐴1)) + 𝑃𝐶(𝑃(𝐶), 𝑃(𝐵1
𝑐))

+
𝑃𝐶(𝑃(𝐶), 𝑃(𝐴2))

𝑃𝐶(𝑃(𝐶), 𝑃(𝐴2)) + 𝑃𝐶(𝑃(𝐶), 𝑃(𝐵2
𝑐))

 

−
𝑃𝐶(𝑃(𝐶), 𝑃(𝐴1))

𝑃𝐶(𝑃(𝐶), 𝑃(𝐴1)) + 𝑃𝐶(𝑃(𝐶), 𝑃(𝐵2
𝑐))

−
𝑃𝐶(𝑃(𝐶), 𝑃(𝐴2))

𝑃𝐶(𝑃(𝐶), 𝑃(𝐴2)) + 𝑃𝐶(𝑃(𝐶), 𝑃(𝐵1
𝑐))

 

=
[𝑃𝐶(𝑃(𝐶), 𝑃(𝐴1)) + 𝑃𝐶(𝑃(𝐶), 𝑃(𝐵2

𝑐)) − 𝑃𝐶(𝑃(𝐶), 𝑃(𝐴1)) − 𝑃𝐶(𝑃(𝐶), 𝑃(𝐵1
𝑐))]𝑃𝐶(𝑃(𝐶), 𝑃(𝐴1))

[𝑃𝐶(𝑃(𝐶), 𝑃(𝐴1)) + 𝑃𝐶(𝑃(𝐶), 𝑃(𝐵1
𝑐))][𝑃𝐶(𝑃(𝐶), 𝑃(𝐴1)) + 𝑃𝐶(𝑃(𝐶), 𝑃(𝐵2

𝑐))]
 

+
[𝑃𝐶(𝑃(𝐶), 𝑃(𝐴2)) + 𝑃𝐶(𝑃(𝐶), 𝑃(𝐵1

𝑐)) − 𝑃𝐶(𝑃(𝐶), 𝑃(𝐴2)) − 𝑃𝐶(𝑃(𝐶), 𝑃(𝐵2
𝑐))]𝑃𝐶(𝑃(𝐶), 𝑃(𝐴2))

[𝑃𝐶(𝑃(𝐶), 𝑃(𝐴2)) + 𝑃𝐶(𝑃(𝐶), 𝑃(𝐵2
𝑐))][𝑃𝐶(𝑃(𝐶), 𝑃(𝐴2)) + 𝑃𝐶(𝑃(𝐶), 𝑃(𝐵1

𝑐))]
 

(

6

) 

 

By rearranging equation (6), we obtain  

[𝑃𝐶(𝑃(𝐶), 𝑃(𝐴2))

− 𝑃𝐶(𝑃(𝐶), 𝑃(𝐴1))][𝑃𝐶(𝑃(𝐶), 𝑃(𝐵1
𝑐))

− 𝑃𝐶(𝑃(𝐶), 𝑃(𝐵2
𝑐))] 

and since 

𝑃𝐶(𝑃(𝐶), 𝑃(𝐵2
𝑐)) ≤

𝑃𝐶(𝑃(𝐶), 𝑃(𝐵1
𝑐)), 𝑃𝐶(𝑃(𝐶), 𝑃(𝐴1)) ≤

𝑃𝐶(𝑃(𝐶), 𝑃(𝐴2)), because 𝐵2
𝑐 ⊆ 𝐵1

𝑐 , 𝐴1 ⊆ 𝐴2.  

Therefore 

[𝑃𝐶(𝑃(𝐶), 𝑃(𝐴2))

− 𝑃𝐶(𝑃(𝐶), 𝑃(𝐴1))][𝑃𝐶(𝑃(𝐶), 𝑃(𝐵1
𝑐))

− 𝑃𝐶(𝑃(𝐶), 𝑃(𝐵2
𝑐))] ≥ 0 

Similarly, if we consider that 𝐵2 ⊆ 𝐴1, then we 

absolutely obtain the same result. Therefore, 𝑃𝐶𝑐 is 

b.c.p.c and fulfills the Bay's conditional probability. 
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Conclusions: 
                 As a summary to this study one could 

mention that each copula can be written in terms of 

classical probability space. There are several results 

that may have modified forms to each type of 

copula function with respect to intersection, and 

union, respectively. Associating with probability 

space definitions, the relations of copulas with 

respect to independent events property have the 

same properties to the classical with modified 

representations. Indeed, these representations of 

independent events in terms of probability space 

and copulas are unique. The examples show various 

successful results that demonstrate copulas with 

respect to probability space calculations. Moreover, 

the extension to multivariate events has shown that 

the constructions are much complicated and still has 

the same properties to bivariate events. The 

representation of bay’s probability within copula 

corresponds to the classical Bay’s probability. 

There are several different future studies need to be 

investigated. For example, generalize the concepts 

in terms of Bay’s theorem so that we could 

reconstruct copulas of union with respect to 

conditional probability. Examine the relationships 

of some algebraic systems like MV-algebra, lattices, 

and others algebraic systems with copula 

constructions in probability sense.  
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 دوال الكوبله بدلالة فضاء الاحتماليه

 

احمد العادلي 
1 

زين العابدين عبدالصمد        
2  

سامر ثعبان الشبلي        
1 

 
1  

 العراق ،نجف ،الكوفةجامعة   ،كلية التربية ،قسم الرياضيات
2  

 العراق ،نجف ،جامعة الكوفة ،كلية التربية ،قسم الحاسوب

 

 الخلاصة:

دوال الكوبلة بشكل مبسط بناءات مكافئة لدوال التوزيع المشتركة. في هذه الدراسة اقترحنا بناءات معدلة تعتمد على الاحتمالية            

احتمالية  التقليدية ومفاهيم بدلالة دوال الكوبلة. قدُمت دوال الكوبلة بصيغ قياسية احتمالية مكافئة للصيغ التقليدية من اجل اختبار أي علاقات

ترة دة. قمنا بتقديم الاحتمالية للاحداث كعناصر لدالة الكوبلة بدلا من المتغيرات العشوائية مع المعرفة بان كل احتمالية لحدث تنتمي للفجدي

ة . كذلك، تم اثبات بعض البناءات الاحتمالية من خلال مفاهيم الاحتمالية الاستقلالية والشرطية. ناقشت الدراسة علاقة بيز الاحتمالي[0,1]

تي بينت كل وخواصها بالنسبة لدوال الكوبلة. بالإضافة الى ذلك، قدُم التوسع للبناءات المتعددة لكل دالة كوبلة. أخيرا، وضحنا عدد من الأمثلة ال

 علاقة للكوبلة بدلالة الفضاء الاحتمالي بدلا من دوال التوزيع.

 

 الاحداث المستقلة، نظرية القياس الاحتمالية، المفاهيم الإحصائية.   الشرطية، مفاهيم الكوبلة، الكلمات المفتاحية:

 

 
 


