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Abstract: 
  In this paper, the Normality set 𝑁𝐴 will be investigated. Then, the study highlights some concepts 

properties and important results. In addition, it will prove that every operator with normality set has non 

trivial invariant subspace of  ℋ. 
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Introduction: 

 The Normality set of linear operators can be 

defined in the following form: 𝑁𝐴 = {𝑇 ∈
𝔓(ℋ): 𝐴𝑇∗ = 𝑇∗𝐴}, which is in non-empty set and 

contains restricted normal operators. This set has 

many of the properties of which we reviewed some 

with some important relationships. Through them 

we will try to solve the problem of the invariant 

subspace which is still not yet solved and thus we 

discussed in section 5. Many researchers have 

studied the properties on the normal operators. 

Fuglede B. (1950) introduced the famous theorem 

which is proved for any two bounded operators 𝐴, 𝐵 

commute and 𝐵 is normal then also commute with 

adjoint of operator 𝐵 )1(. Putnam CR. (1951) 

extended the Fuglede’s theorem for two operators 

(2(. The authors )3, 4( showed that the invariant 

subspace problem is incompletely unresolved 

problem asking whether every bounded operator on 

a complex Banach space sends some non-

trivial closed subspaces to itself. The first form of 

the problem as posed by P. Halmos was the first 

example of an operator without an invariant 

subspace and constructed by P. Enflo. (For Hilbert 

spaces, the non-trivial invariant subspace (Briefly 

n.i.s.) problem remains open). Enflo. Proposed a 

counterexample to the invariant subspace problem 

in 1975. The aim of this research is to study the 

Normality set of 𝐴 ∈ 𝔓(ℋ) also we prove every 

operator 𝐴: 𝔓(ℋ) →  𝔓(ℋ) has (n.i.s). 

Furthermore, in this research, first; we recall the 

properties and other concepts, second; give some 

important results on the Normality set and 

relationships it. In Section 5 we try proved the set 

𝑁𝐴 has (n.i.s) for the operator A. 

Preliminaries 

In this section, we recall basic properties 

and other concepts. 

Definition 1 (4, 5): For any operator T in 𝔓(ℋ). 

The adjoint of 𝑇 ∈ 𝔓(ℋ) is denoted by 𝑇∗. The 

operator 𝑇 ∈ 𝔓(ℋ) is said to be self adjoint, if 

𝑇∗ = 𝑇, normal if 𝑇𝑇∗ = 𝑇∗𝑇, and unitary if 

𝑇𝑇∗ = 𝑇∗𝑇 = 𝐼. 

Definition 2 )4(: If ℳ is closed subspace of ℋ, and 

𝑇(ℳ) ⊆ ℳ, then ℳ will be invariant subspace for 

𝑇. Also a subspace ℳ is a reduced subspace for 𝑇, 

if both ℳ and ℳ⊥, where ℳ⊥ is the orthogonal 

complement of ℳ, are invariant under 

𝑇(equivalently, if ℳ is invariant for both 𝑇 and 𝑇∗). 

ℳ is a hyper-invariant subspace for 𝑇, if it is 

invariant for every operator that commutes with 𝑇. 

Remark 1 )4(: It is easily evidenced that ℳ is 

invariant subspace for 𝑇, if and only if ℳ⊥ is 

invariant subspace for 𝑇∗. 

Definition 3 (6(: If 𝐴, 𝐵 ∈ 𝔓(ℋ), then 𝐴 is similar 

to 𝐵, if there exists invertible operator 𝑇 ∈ 𝔓(ℋ), 

such that 𝐴T = T𝐵. This is denoted by 𝐴 ≈ 𝐵, 

when 𝐴 is similar to 𝐵. 

Definition 4(6(: If ℋ1, ℋ2 are Hilbert spaces, and  

𝐴 ∈ 𝔓(ℋ1) and 𝐵 ∈ 𝔓(ℋ2), then 𝐴 is quasi-similar 

to 𝐵, if there exists two injective with dense range 

bounded operators 𝑇1 from ℋ1 to ℋ2 and 𝑇2from  

ℋ2 to ℋ1, such that  𝑇1𝐴 = 𝐵𝑇1 and 𝐴𝑇2 = 𝑇2𝐵. 

This is denoted by 𝐴 ≃ 𝐵, when 𝐴 is quasi-similar 

to 𝐵. 
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Definition 5 )6(: Linear operators 𝐴, 𝐵 ∈ 𝔓(ℋ) are 

unitarily equivalent (denoted by 𝐴 ≅ 𝐵), if there 

exists  unitary operator 𝑈 ∈ 𝔓(ℋ), where 𝑈𝐴 =
𝐵𝑈; that is, 𝐴 = 𝑈∗𝐵𝑈 or equivalently 𝐵 = 𝑈𝐴𝑈∗. 

Theorem 1 )1(: Let 𝑁 be a normal operator on ℋ, 

for any bounded linear operator 𝐴 if 𝐴𝑁 =  𝑁𝐴, 

then 𝐴𝑁∗  =  𝑁∗𝐴. 

 

Main Results: 
Definition 6: For each operator 𝐴 in 𝔓(ℋ), we 

defined new set is the Normality set of 𝐴 is denoted 

by 𝑁𝐴 = {𝑇 ∈ 𝔓(ℋ): 𝐴𝑇∗ = 𝑇∗𝐴}. It is clear that it 

is non-empty set, since 𝑂, 𝐼 ∈ 𝑁𝐴 and 𝑁𝛼𝐼 =  𝑁𝑂 =
𝔓(ℋ), for every complex number 𝛼, where O, I is 

the zero,  unity operator on ℋ, respectively. 

The following proposition shows that the normality 

set is closed on 𝔓(ℋ). 

Proposition 2: The operator 𝐴 ∈ 𝔓(ℋ), then 𝑁𝐴 is 

a closed linear subspace of 𝔓(ℋ). 

Proof: let 𝑋, 𝑌 ∈ 𝑁𝐴 and 𝛼, 𝛽 ∈ ℂ. So that 𝐴𝑋∗ =
𝑋∗𝐴 and 𝐴𝑌∗ = 𝑌∗𝐴. 

Hence, 𝐴(𝛼𝑋 + 𝛽𝑌)∗ = �̅�𝐴𝑋∗ + �̅�𝐴𝑌∗ =
�̅�𝑋∗𝐴 + �̅�𝑌∗𝐴 = (𝛼𝑋 + 𝛽𝑌)∗𝐴. Therefore, 

𝛼𝑋 + 𝛽𝑌 ∈ 𝑁𝐴. 

Thus, 𝑁𝐴 is a linear subspace on 𝔓(ℋ). 

Assume {𝑇𝑛} be a sequence of operators in 𝑁𝐴 

convergent to 𝑇. So, 𝐴𝑇𝑛
∗ = 𝑇𝑛

∗𝐴, for every 

positive integer 𝑛. Since 𝐴 is continuous and 

{𝑇𝑛} → 𝑇, then {𝑇𝑛
∗} → 𝑇∗, {𝐴𝑇𝑛

∗} → 𝐴𝑇∗, and 

{𝑇𝑛
∗𝐴} → 𝑇∗𝐴. Therefore, 𝐴𝑇∗ = 𝑇∗𝐴, that is 

𝑇 ∈ 𝑁𝐴 

Then, 𝑁𝐴 is a closed linear subspace of 𝔓(ℋ). ∎ 

The following theorem shows that 𝑁𝐴 is proper 

subspace of 𝔓(ℋ); when 𝐴 ≠ 𝛼𝐼 for every 𝛼 ∈ ℂ. 

Theorem 3: Let  𝐴 ∈ 𝔓(ℋ). Then 𝑁𝐴 = 𝔓(ℋ), if 

and only if, there exists 𝛼 ∈ ℂ, such that 𝐴 = 𝛼𝐼. 

Proof: Let {𝑒𝑛} be an orthogonal basis for ℋ and 

let 𝑈, 𝑈∗ be the Unilateral shift operator and it is 

adjoint. Hence, 𝑈𝑒𝑖 = 𝑒𝑖+1 and 𝑈∗𝑒𝑖+1 = 𝑒𝑖 for 

every 𝑖 = 1, 2, … , 𝑈∗𝑒1 = 0.  

If 𝑁𝐴 = 𝔓(ℋ) then 𝑈, 𝑈∗ ∈ 𝑁𝐴. Therefore, 

𝑈∗𝐴(𝑒1) = 𝐴𝑈∗𝑒1 = 0, that is 𝐴𝑒1 = 𝛼𝑒1 for some 

𝛼 ∈ ℂ. For every 𝑛 ≥ 2, 𝐴𝑒𝑛 = 𝐴𝑈𝑛−1𝑒1 =
𝑈𝑛−1𝐴𝑒1 = 𝑈𝑛−1𝛼𝑒1 = 𝛼𝑒𝑛. So, 𝐴𝑥 = 𝛼𝑥 for 

every 𝑥 ∈ ℋ. Thus, 𝐴 = 𝛼𝐼. The prove of the 

converse is trivial. ∎ 

The evidence of the following corollary is a 

consequence from the proof of the above theorem. 

Corollary 4: If 𝐴 ≠ 𝛼𝐼, ∀𝛼 ∈ ℂ, then either 𝑈 ∉ 𝑁𝐴 

or 𝑈∗ ∉ 𝑁𝐴, where 𝑈, 𝑈∗ be the Unilateral, bilateral  

shift operators, respectively. 

Lemma 5: Let 𝐴 ∈ 𝔓(ℋ). Then, 𝑁𝐴𝑁𝐴 = 𝑁𝐴.  

Proof: Let 𝑋, Υ ∈ 𝑁𝐴. So, 𝐴𝑋∗ = 𝑋∗𝐴 and 𝐴Υ∗ =
Υ∗𝐴  implies that  𝐴𝑋∗Υ∗ = 𝑋∗𝐴Υ∗. 

Hence, 𝐴(Υ𝑋)∗ = 𝑋∗Υ∗𝐴 = (Υ𝑋)∗𝐴. Therefore, 

Υ𝑋 ∈ 𝑁𝐴; that is, 𝑁𝐴𝑁𝐴 ⊂ 𝑁𝐴. 

Conversely, assume that 𝑇 ∈ 𝑁𝐴, so 𝐴𝑇∗ = 𝑇∗𝐴 and 

since 𝐼 ∈ 𝑁𝐴 or 𝐼𝑇 = 𝑇.  

Hence, 𝐴(𝐼𝑇)∗ = 𝐴𝑇∗ = 𝑇∗𝐴 = (𝐼𝑇)∗𝐴. Therefore, 

𝑇 ∈ 𝑁𝐴𝑁𝐴. Then 𝑁𝐴𝑁𝐴 = 𝑁𝐴.∎ 

Remark 2: It is clear that from Lemma (5), if ∈ 𝑁𝐴 

, then 𝑇𝑛 ∈ 𝑁𝐴 for each 𝑛. 

Lemma 6:  𝐴 is normal if and only if 𝐴 ∈ 𝑁𝐴. 

Theorem 7: If 𝐴 is normal, then 𝑇 ∈ 𝑁𝐴 if and only 

if  𝑇∗ ∈ 𝑁𝐴. 

Proof: Let 𝐴 be normal and 𝑇 ∈ 𝑁𝐴. So, 𝐴𝑇∗ =
𝑇∗𝐴. By using theorem (1). 

𝐴𝑇 = 𝑇𝐴. Thus 𝑇∗ ∈ 𝑁𝐴. 

The converse is similar. ∎ 

The following theorem shows the adjoint and 

invertible of the set 𝑁𝐴.  
Theorem 8: Let 𝐴 ∈ 𝔓(ℋ). Then 𝑁𝐴 is satisfying 

the following: 

1- 𝑁𝐴 = 𝑁𝐼+𝜇𝐴 , 𝜇 ∈ ℂ. 

2- 𝑁𝐴
∗ = 𝑁𝐴∗ that is 𝑁𝐴 = (𝑁𝐴∗)∗. In particular, if 

𝐴 is normal, then 𝑁𝐴 = 𝑁𝐴∗ = (𝑁𝐴∗)∗. Where 

𝑁𝐴
∗ = {𝑇∗: 𝑇 ∈ 𝑁𝐴}. 

3- If A is invertible, then 𝑁𝐴 = 𝑁𝐴−1.  

4- If Υ is invertible operator, then Υ ∈ 𝑁𝐴 if and 

only if Υ−1 ∈ 𝑁𝐴.  

Proof: (1) It is easy by definition of 𝑁𝐴 and 

proposition (2).  

(2) Let 𝑆 ∈ 𝑁𝐴∗. So, 𝐴∗𝑆∗ = 𝑆∗𝐴∗ take the adjoint, 

there is 𝐴𝑆 = 𝑆𝐴. Therefore, 𝑆∗ ∈ 𝑁𝐴 that is 

𝑆 ∈ 𝑁𝐴
∗. Hence, 𝑁𝐴∗ ⊆ 𝑁𝐴

∗. The converse is 

similar, and let 𝑇 ∈ 𝑁𝐴. So, 𝐴𝑇∗ = 𝑇∗𝐴 take the 

adjoint, 𝑇𝐴∗ = 𝐴∗𝑇 or 𝐴∗𝑇 = 𝑇𝐴∗. Thus 𝑇∗ ∈ 𝑁𝐴∗, 

that is 𝑇 ∈ (𝑁𝐴∗)∗, it is clear that if 𝐴 is normal and 

by Theorem (1), the required result is obtained.  

(3) Suppose that 𝐴 is invertible and 𝑇 ∈ 𝑁𝐴; so, 

𝐴𝑇∗ = 𝑇∗𝐴 and 𝑇∗𝐴−1 = 𝐴−1𝑇∗, that is 𝑇 ∈ 𝑁𝐴−1 

or 𝑁𝐴 ⊆ 𝑁𝐴−1, the converse is similar. 

(4) Suppose that Υ is invertible operator then Υ ∈
𝑁𝐴 ⟺ 𝐴Υ∗ = Υ∗𝐴. 

So, Υ∗−1𝐴 = 𝐴Υ∗−1 ⟺ Υ−1 ∈ 𝑁𝐴 .∎ 

The following propositions shows more properties 

on the normality set. 

Proposition 9: Let 𝐴, 𝐵, 𝐶 ∈ 𝔓(ℋ):  

1- If 𝐵 ∈ 𝑁𝐴, then 𝐴 ∈ 𝑁𝐵. 

2- If 𝐴 ∈ 𝑁𝐵 and 𝐵 ∈ 𝑁𝐶, then 𝐵 ∈ 𝑁𝐴𝐶⋂𝑁𝐶𝐴. 

Proof: (1) Assume that 𝐵 ∈ 𝑁𝐴, so that 𝐴𝐵∗ = 𝐵∗𝐴 

by take the adjoint, we have 𝐵𝐴∗ = 𝐴∗𝐵; that is, 

𝐴 ∈ 𝑁𝐵.  

(2) Since 𝐴 ∈ 𝑁𝐵 and 𝐵 ∈ 𝑁𝐶 given, so 𝐵𝐴∗ = 𝐴∗𝐵 

and 𝐶𝐵∗ = 𝐵∗𝐶. 

Hence 𝐴𝐵∗ = 𝐵∗𝐴 and 𝐶𝐵∗ = 𝐵∗𝐶. Therefore 

𝐴(𝐶𝐵∗) = 𝐴(𝐵∗𝐶). Thus (𝐴𝐶)𝐵∗ = 𝐵∗(𝐴𝐶); that 
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is, 𝐵 ∈ 𝑁𝐴𝐶 . Similar way, we can proof 𝐵 ∈ 𝑁𝐶𝐴. 

Thus 𝐵 ∈ 𝑁𝐴𝐶⋂𝑁𝐶𝐴. ∎ 

Proposition 10: Let 𝐴, 𝐵, 𝐶 ∈ 𝔓(ℋ). Then: 

1- 𝑁𝐴 ∩ 𝑁𝐵 ⊆ 𝑁𝐴+𝐵. 

2- 𝑁𝐴 ∩ 𝑁𝐵 ⊆ 𝑁𝐴𝐵 ∩ 𝑁𝐵𝐴. 

3- 𝑁𝐴
𝑛 ⊆ 𝑁𝐴𝑛 for each integer number 𝑛. where 

𝑁𝐴
𝑛 = {𝑇𝑛: 𝑇 ∈ 𝑁𝐴}. 

4- 𝑁𝐴 = ⋂ 𝑁𝐴𝛼∀𝛼∈𝑁 . 

Proof: (1) Suppose that 𝑇 ∈ 𝑁𝐴 ∩ 𝑁𝐵; so, 𝐴𝑇∗ =

𝑇∗𝐴, and 𝐵𝑇∗ = 𝑇∗𝐵, by additive, there is (𝐴 +
𝐵)𝑇∗ = 𝑇∗(𝐴 + 𝐵). Therefore, 𝑇 ∈ 𝑁𝐴+𝐵, that is 

𝑁𝐴 ∩ 𝑁𝐵 ⊆ 𝑁𝐴+𝐵. 

(2) If 𝑇 ∈ 𝑁𝐴 ∩ 𝑁𝐵, then 𝐴𝐵𝑇∗ = 𝐴𝑇∗𝐵 = 𝑇∗𝐴𝐵, 

so, 𝑇 ∈ 𝑁𝐴𝐵 or 𝑁𝐴 ∩ 𝑁𝐵 ⊆ 𝑁𝐴𝐵; similarly, 𝐵𝐴𝑇∗ =

𝐵𝑇∗𝐴 = 𝑇∗𝐵𝐴. So, 𝑇 ∈ 𝑁𝐵𝐴. Hence,  𝑁𝐴 ∩ 𝑁𝐵 ⊆

𝑁𝐵𝐴.  

Thus, 𝑁𝐴 ∩ 𝑁𝐵 ⊆ 𝑁𝐴𝐵 ∩ 𝑁𝐵𝐴. 

(3) Assume that 𝑇 ∈ 𝑁𝐴; so, 𝐴𝑇∗ = 𝑇∗𝐴 and 

𝐴2𝑇∗ = 𝐴𝑇∗𝐴 = 𝑇∗𝐴2. Thus, 𝐴𝑛𝑇∗ = 𝑇∗𝐴𝑛 for 

every integer number 𝑛, that is 𝑇 ∈ 𝑁𝐴𝑛  for every 𝑛. 

Therefore, 𝑁𝐴 ⊆ 𝑁𝐴𝑛 and by Lemma (5), there is 

𝑁𝐴
𝑛 ⊆ 𝑁𝐴 for every integer number 𝑛. So, 𝑁𝐴

𝑛 ⊆
𝑁𝐴 ⊆ 𝑁𝐴𝑛, the result is obtained.  

(4) The prove is similar to prove (3). ∎ 

But the following example shows that 𝑁𝐴𝑛 ≠ 𝑁𝐴
𝑛, 

for some 𝑛 > 1. 

Example 1: Let 𝐴 = [
0 𝛼
0 0

] and 𝑇 = [
𝑎 𝑏
𝑐 𝑑

], 

where 𝛼, 𝑎, 𝑏, 𝑐, 𝑑 are real number and 𝛼, 𝑏 are non-

zero. So, 𝐴 is not invertible and nilpotent operator. 

That is, 𝐴𝑛 = 0, for every 𝑛 > 1. 

Hence, 𝐴𝑛𝑇∗ = 𝑇∗𝐴𝑛 and 𝑇 ∈ 𝑁𝐴𝑛  , for every 

𝑛 > 1. But 𝐴𝑇∗ ≠ 𝑇∗𝐴. Therefore 𝑇 ∉ 𝑁𝐴. Since 

𝑁𝐴
𝑛 ⊆ 𝑁𝐴. Then 𝑇 ∉ 𝑁𝐴

𝑛 for each 𝑛. 

Now, we shows the commute normal operators with 

𝑁𝐴. 

Theorem 11: If the operator 𝐴 ∈ 𝑁𝐴, then, 𝐴𝑁𝐴 =
𝑁𝐴𝐴. 

Proof: Assume that 𝐴 is normal enough to prove 

𝐴𝑇 = 𝑇𝐴 for every operator 𝑇 ∈ 𝑁𝐴. 

So, 𝐴𝑇∗ = 𝑇∗𝐴. Since 𝐴 is normal and by theorem 

(1), there exists 𝐴∗𝑇∗ = 𝑇∗𝐴∗ by take adjoint, 

implies 𝐴𝑇 = 𝑇𝐴, that is 𝐴𝑁𝐴 = 𝑁𝐴𝐴 for all 𝑇 ∈
𝑁𝐴. ∎ 

 

Relationships with 𝑵𝑨 
In this section, the relation between two 

operators on the set 𝑁𝐴 will be studied. Then, this 

section will investigate whether the operator is 

similar, quasi-similar, unitary or more than them. 

Theorem 12: If 𝐴 ≈ 𝐵, then, 𝑁𝐴 = (𝑇∗)−1𝑁𝐵𝑇∗ =
𝑁𝑇−1𝐵𝑇. 

Proof: Suppose that 𝐴 and 𝐵 are similar, by 

definition (2.4). Then ∃ 𝑇 is invertible, where 

𝐴 = 𝑇𝐵𝑇−1.  

Let 𝑋 ∈ 𝑁𝐴 implies that 𝐴𝑋∗ = 𝑋∗𝐴, so  

(𝑇𝐵𝑇−1)𝑋∗ = 𝑋∗(𝑇𝐵𝑇−1).  

Hence, 𝐵(𝑇−1𝑋∗𝑇) = (𝑇−1𝑋∗𝑇)𝐵. Then 

𝐵(𝑇∗𝑋 (𝑇∗)−1)∗ = (𝑇∗𝑋 (𝑇∗)−1)∗𝐵. So, 

𝑇∗𝑋(𝑇∗)−1 ∈ 𝑁𝐵. Hence, 𝑋 ∈ (𝑇∗)−1𝑁𝐵𝑇∗ and 

𝑁𝐴 ⊆ (𝑇∗)−1𝑁𝐵𝑇∗. 

Conversely, Suppose that (𝑇∗)−1𝑆𝑇∗ ∈
(𝑇∗)−1𝑁𝐵𝑇∗. Hence 𝑆 ∈ 𝑁𝐵 Implies that 𝐵𝑆∗ =
𝑆∗𝐵. So, (𝑇−1𝐴𝑇)𝑆∗ = 𝑆∗(𝑇−1𝐴𝑇) and 

𝐴(𝑇𝑆∗𝑇−1) = (𝑇𝑆∗𝑇−1)𝐴, (𝑇∗)−1𝑆𝑇∗ ∈ 𝑁𝐴, 

(𝑇∗)−1𝑁𝐵𝑇∗ ⊆ 𝑁𝐴 and 𝑁𝐴 = (𝑇∗)−1𝑁𝐵𝑇∗. ∎ 

Theorem 13: If 𝐴 ≅ 𝐵, then 𝑁𝐵 = 𝑈𝑁𝐴𝑈∗ =
𝑁𝑈𝐴𝑈∗. 

Proof: Assume that 𝐴 and 𝐵 are unitarily 

equivalent. So by definition (5) there exists a 

unitary operator 𝑈, where 𝑈𝐴 = 𝐵𝑈 or 𝐴 = 𝑈∗𝐵𝑈. 

Let 𝑇 ∈ 𝑁𝐴 implies that 𝐴𝑇∗ = 𝑇∗𝐴. So, 

(𝑈∗𝐵𝑈)𝑇∗ = 𝑇∗(𝑈∗𝐵𝑈). 

Hence, 𝐵(𝑈𝑇∗𝑈∗) = (𝑈𝑇∗𝑈∗)𝐵 and 𝐵(𝑈𝑇𝑈∗)∗ =
(𝑈𝑇𝑈∗)∗𝐵. Thus, 𝑈𝑇𝑈∗ ∈ 𝑁𝐵. That is 𝑈𝑁𝐴𝑈∗ ⊂
𝑁𝐵. Conversely, let  𝒮 ∈ 𝑁𝐵 implies that 𝐵𝒮∗ =
𝒮∗𝐵 since 𝐵 = 𝑈𝐴𝑈∗. 

Hence, (𝑈𝐴𝑈∗)𝒮∗ = 𝒮∗(𝑈𝐴𝑈∗), and 𝐴(𝑈∗𝒮∗𝑈) =
(𝑈∗𝒮∗𝑈)𝐴.  

Then, 𝐴(𝑈∗𝒮𝑈)∗ = (𝑈∗𝒮𝑈)∗𝐴. There exists 

𝑈∗𝒮𝑈 ∈ 𝑁𝐴, but 𝒮 = 𝑈(𝑈∗𝑆𝑈)𝑈∗. 

 Thus, 𝒮 ∈ 𝑈𝑁𝐴𝑈∗. Then, 𝑁𝐵 ⊂ 𝑈𝑁𝐴𝑈∗. Thus 

𝑁𝐵 = 𝑈𝑁𝐴𝑈∗. ∎ 

Theorem 14: If 𝐴 ≃ 𝐵, then 𝑇1
∗𝑁𝐵𝑇2

∗ ⊆ 𝑁𝐴 and  

𝑇2
∗𝑁𝐴𝑇1

∗ ⊆ 𝑁𝐵.  

Proof: Suppose that 𝐴 is quasi-similar to 𝐵 if there 

exists two injective with dense range bounded 

operators 𝑇1 from ℋ1 to ℋ2 and 𝑇2from  ℋ2 to ℋ1 

s.t  𝑇1𝐴 = 𝐵𝑇1 and 𝐴𝑇2 = 𝑇2𝐵. 

Let 𝑋 ∈ 𝑁𝐵. So, 𝐵𝑋∗ = 𝑋∗𝐵 and 𝐴(𝑇2𝑋∗𝑇1) =
(𝑇2𝑋∗𝑇1)𝐴.  

Therefore, 𝐴(𝑇1
∗𝑋𝑇2

∗)∗ = (𝑇1
∗𝑋𝑇2

∗)∗𝐴. Then 

𝑇1
∗𝑋𝑇2

∗ ∈ 𝑁𝐴, that is 𝑇1
∗𝑁𝐵𝑇2

∗ ⊆ 𝑁𝐴. 

Now, let 𝑌 ∈ 𝑁𝐴. So 𝐴𝑌∗ = 𝑌∗𝐴. Hence 

𝐵(𝑇1𝑌∗𝑇2) = (𝑇1𝑌∗𝑇2)𝐵. 

Therefore, 𝐵(𝑇2
∗𝑌𝑇1

∗)∗ = (𝑇2
∗𝑌𝑇1

∗)∗𝐵. Then 

𝑇2
∗𝑌𝑇1

∗ ∈ 𝑁𝐵, that is 𝑇2
∗𝑁𝐴𝑇1

∗ ⊆ 𝑁𝐵. ∎ 

 

Invariant Subspace: 
It has been clarified that if 𝐴 ∈ 𝔓(ℋ), then 

𝑁𝐴 is a non-empty set and closed subspace. The 

following theorem shows that 𝑁𝐴∗ is invariant under 

𝐴. 

Theorem 15: If 𝐴 ∈ 𝔓(ℋ). Then 𝐴(𝑁𝐴∗) ⊆ 𝑁𝐴∗. 

Proof: Let 𝐴𝑇 ∈ 𝐴(𝑁𝐴∗) where 𝑇 ∈ 𝑁𝐴∗. Hence 

𝐴∗𝑇∗ = 𝑇∗𝐴∗. Therefore 𝐴𝑇 = 𝑇𝐴.  
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So that 𝐴∗(𝐴𝑇)∗ = 𝐴∗(𝑇∗𝐴∗) = (𝑇𝐴)∗𝐴∗ =
(𝐴𝑇)∗𝐴∗. Thus 𝐴𝑇 ∈ 𝑁𝐴∗. 

Corollary 16: Every operator 𝐴: 𝔓(ℋ) → 𝔓(ℋ) 

has non-trivial invariant subspace. 

Proof: If 𝐴 = 𝛼𝐼 for some 𝛼 ∈ ℂ, then clearly every 

subspace 𝑀 ⊆ 𝔓(ℋ) is invariant. So, it is supposed 

that 𝐴 ≠ 𝛼𝐼. It is clear that 𝑁𝐴∗ ≠ {0} since 𝐼 ∈ 𝑁𝐴∗ 

and 𝑁𝐴∗ ≠ 𝔓(ℋ) theorem (3.3) and 𝑁𝐴∗ is a closed 

subspace proposition (2) and by theorem (15). 

Hence, 𝑁𝐴∗ is a (n.i.s) for A. 

Definition 7: Let 𝓍 ∈ ℋ, then we defined the 𝑁𝐴  

be other form is 𝑁𝐴(𝓍) = {𝑇(𝓍): 𝑇 ∈ 𝑁𝐴}. 

Proposition 17: If 𝓍 ∈ ℋ, then 𝑁𝐴(𝓍) is a subspace 

of ℋ. 

Proof: Let 𝑇(𝓍), 𝑆(𝓍) ∈ 𝑁𝐴(𝓍), where 𝑇, 𝑆 ∈ 𝑁𝐴. 

Since 𝑁𝐴 is subspace, then 𝛼𝑇 + 𝛽𝑆 ∈ 𝑁𝐴 for every 

𝛼, 𝛽 ∈ ℂ. So that 𝛼𝑇(𝓍) + 𝛽𝑆(𝓍) = (𝛼𝑇 +
𝛽𝑆)(𝓍) ∈ 𝑁𝐴(𝓍). Thus 𝑁𝐴(𝓍) is a subspace for 

every 𝓍 ∈ ℋ. 

Theorem 18: If 𝐴 ∈ 𝔓(ℋ), then 𝐴𝑁𝐴∗(𝓍) ⊆
𝑁𝐴∗(𝓍) for every 𝓍 ∈ ℋ. 

Proof: Let 𝐴𝑇(𝓍) ∈ 𝐴𝑁𝐴∗(𝓍) where 𝑇 ∈ 𝑁𝐴∗. 

Hence 𝐴∗𝑇∗ = 𝑇∗𝐴∗ and 𝐴𝑇 = 𝑇𝐴.  

So that 𝐴∗(𝐴𝑇)∗ = 𝐴∗(𝑇∗𝐴∗) = (𝑇𝐴)∗𝐴∗ =
(𝐴𝑇)∗𝐴∗. Thus 𝐴𝑇 ∈ 𝑁𝐴∗. 

 So implies that 𝐴𝑇(𝓍) ∈ 𝑁𝐴∗(𝓍). This enough  

proof. 

Corollary 19: If 𝐴 ∈ 𝔓(ℋ), then 𝑁𝐴∗(𝓍)̅̅ ̅̅ ̅̅ ̅̅ ̅ is a 

closed invariant subspace for A for every 𝓍 ∈ ℋ. 

Proof: Since 𝑁𝐴∗(𝓍) is subspace and 𝐴𝑁𝐴∗(𝓍) ⊆
𝑁𝐴∗(𝓍), then 𝑁𝐴∗(𝓍)̅̅ ̅̅ ̅̅ ̅̅ ̅ is a closed subspace and 

𝐴𝑁𝐴∗(𝓍)̅̅ ̅̅ ̅̅ ̅̅ ̅ ⊆ 𝑁𝐴∗(𝓍)̅̅ ̅̅ ̅̅ ̅̅ ̅. 

 

 

Conclusion:  

In this paper, the normality set NA is 

studied. This set has many of the properties of which 

we reviewed some with some important 

relationships, and tried to solve the famous problem 

of the invariant subspace which is still not yet 

solved, and some important results have been 

submitted in this subject. 
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 حول المجموعة السوية للمؤثرات الخطية

ليث خليل شاكر
1

أنس عباس حجاب                                                           
2  

 
1

اتكُـلي   ،قسـم الرياضيات العـراق. ،صلاح الـدين ،جامعة تكِـريت ،ـة علوم الحـاسْوب والرياضي ـ  
2

ة التربيْة للعـلوم الصِرفـةكُـ ،قسـم الرياضيات العـراق. ،صلاح الديـن ،جامعة تكِـريت ،لي ـ  

 

 الخلاصَة:
. ثم ستسلط الدراسة الضوء على بعض الخصائص ودراستها 𝑁𝐴سنحاول تعريف المجموعة السوية من النوع  ،في هذا البحث

سنحاول أثبات انهُ لكل مؤثر محتوى في المجموعة السوية يملك فضاء جزئي لامتغير غير تافه من  ،م والنتائج المهة. بالأضافة لذلكوالمفاهي

 ℋ. 

 مؤثر أحادي. ،مؤثر شبه التشابه ،مؤثر التشابه ،المجموعة السوية، متغير لا الكلمات المفتاحية:

 

 


