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Abstract:

In this paper, Touchard polynomials (TPs) are presented for solving Linear Volterra integral
equations of the second kind (LVIEs-2k) and the first kind (LVIEs-1k) besides, the singular kernel type of
this equation. Illustrative examples show the efficiency of the presented method, and the approximate
numerical (AN) solutions are compared with one another method in some examples. All calculations and
graphs are performed by program MATLAB2018b.
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Introduction:

In many problems, the Volterra integral
equations (VIEs) arise from the real life, such as
population dynamics, feedback control theory, and
fluid dynamics etc. (1). Furthermore, many
applications of engineering or physics can often
lead to Volterra integral equations. The singular
status, which appears in the physical modelling
structures, has importance in mathematical physics
and other sciences. The weakly singular kernel of
the (VIES) represents such phenomena, which have
important applications in mathematical physics,
electrochemistry, chemical reactions, superfluidity,
and heat conduction (2).

The standard forms of (LVIEs-2k) and (LVIEs-1k)
(3, 4) respectively defined as follows:

4
AQ =K@+ [ 6GDADE  [a3]
cR (D
4
k@ =« [ 6@V AT [2,7]
) CR ..(1a)

and the general form of Abel’s singular (LVIES-1k)
4)is:

[
1
M0=afﬁ¢?AﬁMr . [ag
 cRr ..(1b)

Which is derived from a concrete problem of
physics without passing during differential
equations (5). A(Q) is an unknown function that
must be calculated, o is a known constant, it takes
physical meanings of the characteristic of the
material, and G({, t) is the kernel of the Integral
equation (IE), which is a known continuous or non-
continuous function ( the kernel of such equations
has jump discontinuities along the continuous curve
which started at the origin (6) ), holds characteristic
and property of the material, k(¢) is the function of
the integration surface which is a known.

There are many numerical methods used or
developed by the researchers to obtain the
approximate numerical solutions for the (LVIES),
some of them are mentioned as follows: (7) gave
the numerical scheme for the approximation of the
(LVIES) with highly oscillatory Bessel kernels. (8)
applied the optimal homotopy asymptotic method
for finding the approximate solutions of a class of
the (LVIEs) with weakly singular kernels. (9)
applied the standard spectral Galerkin polynomial
method and a variant to solve a weakly singular for
the (VIEs). (10) extended the single-step pseudo-
spectral method for the (VIEs-2Kk) to the multistep
pseudo-spectral method. (11) used the Galerkin
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weight residual numerical method with Chebyshev
polynomials and Touchard polynomials as a trial
function to obtain a numerical solution for the (IEs).

In this work, Touchard polynomials method is
used to solve (LVIES) numerically. The rest of the
paper is arranged as follows: The solution method,
approximation function, algorithm of solution,
accuracy of the solution, convergence rate, test
illustrative examples and the corresponding Tables
and Figs. are presented. Finally, brief conclusions
and references are listed.

Solution Method:

The Touchard polynomials (11, 12, 13 and 14)
were first studied by the French mathematician
Jacques Touchard (1885-1968), it’s a polynomial
sequence of binomial type over the interval [0, 1],

and have the form:
n

2, =) sang=) () ..
r=0

r=0

Where  (7) =y ¢ N s the degree of the

polynomials, r is the index of the polynomials.
The first seven polynomials of the (TPs) are given
below:
Zo(9) =1
;0 =1+¢
Z,(Q) =1+20+?
Z:;(Q =1+37+3¢%+¢3
7, =14+ 47+ 6 +43+ T
Zs(Q =1+57+10¢% +10¢3 +5¢* + {°
Z6(Q) =1+ 67+ 1502 + 2003 + 15¢* + 6¢° + {©
Approximation Function:

For determining the approximate numerical
solutions of Eg. (1), the function A, (Q) is
approximated by the (TPs) is as follows:

An(Q) = 60Zo(Q +I?121(O + -+ 0,Zy (0

=) 870,

r=0

<1 - (3)
where the function {Z.()}r-, denotes the Touchard
basis polynomials of nth degrees, as defined in Eqg.
(2). The 6, (r =0,1, ...,n) are the unknown
Touchard coefficients that must be determined, and
n represents any positive integer. Writing Eq. (3) as
a dot product:

0<¢

An(@ = [2o(Q Z1(9 .. Zn(] -

The Eqg. (4) can be converted as follows:

Ap(Q) =
800 So1 802 Son [60]
[ 0 811 812 81n ]|91|
131 0 0 8 b | |
l o o o - 5, | 0,

.. (5

where &k (k=0, 1, 2,..., n) are known constants of
the power basis, used to determine the (TPs), this
matrix is upper triangular. For instance, in cases:
n=2, 3, 4 and 5, the operational matrices will be
shown in the Eq. (6), (6a), (6b) and (7) respectively:

11 1
A, =111 [0 1 2” ] ... (6)
00 1
1 11 1775
0
A@=nceel| ) o2 g
00 0 11]e,
.. (6a)
Aa©= 111 11
[0 1 2 3 4“3‘1’}
Leeediio o o 1 4[|
lO 0 0 O 1J[eiJ
.. (6b)
As(Q) = .
11111 1 0
[0 1 2 3 4 5”911
0
neeerels 81 8
[0 0 00 1 5J 0,
0000 0 1]gl
(7
Overall
An(()z o
800 O 8oz - Son 0
[ 000 81011 81022 S(in ][61]
0 0 822 o ‘|| .. (7a)
0 0 0 8 o]

The Solution of the (LVIEs-2K):

In this section, the (TPs) can be used to determine
the (AN) solutions. Remember that the Eq. (1) in
the form:
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4
AQ = k(@) +a f G0 A(D)dr

a

CR..(8)

[a,]

By using the Eqg. (3), let
AQ) = An(®)

= ) 040, (9
=0
novf/, substituting the Eq. (9) into the Eq. (8) yields:
n

A
r=0
4

— k(@) +« f G 1) Z 0,Z.(0)dt, ..(10)
r=0

a

[ 800 001 802 Son ]
| 0 811 612 81n |
17" 0o o0 852 +82n |
l o o o 8,

a

Thus, after computing the integrations
(integration methods have been mentioned in the
given examples) of the Eq. (12) the unknown
coefficients of the (TPs) are found by selecting
(,(A=0,1,..,n) from the interval [0, 1]. Then,
get the system of algebraic equations which can be
solved by using Gauss elimination method. The
unknown coefficients (6,, 6, ,...,6,) have
uniquely determined. As a result, by substituting the
determined coefficients into the Eq. (3) getting the
(AN) solution.

The same procedure can be applied on the Eqg. (1a)
and (1b) to find the (AN) solutions.

800 801 62 8on [60]

0 811 812 81n ] le,ll

0 0 822 8211 | . |dT (12)
: : [ |

0 0 0 8y Il

by using Eq. (4) then Eq. (10) becomes:

8,
o
[Z,@) 7,() ...ZH(O]-i N

I
le, |
=k(©
8
: [91
+a f 6@ D[Zo(V) Zy(¥) . Zy (]| .

a I

le,

dr ,..(11)

|

by using the Eq. (5) then the Eqg. (11) converted to
the general form:

Algorithm of Solution:

In this section, the steps of the algorithm solution
are summarized to find the (AN) solutions for
(LVIES-2K):

Input: (A(Q), k(9), G(C,1),a,7 ).

Output: The polynomials of the degree n.
Step 1:

Select a degree n for the (TPs).

n

Mm@ => ()7

r=0
Step 2:
Put the (TPs) into the (LVIEs-2k).
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800  bo01 802 - 8on ] g
[ O 811 81 O ||V
[1((2..@“].[ 0 0 85 8y
0 0 0 - Spn
4

=k(0) + (xf GOl T 2.1

a

Step 3:
Computation
[ 800
4 | o
jG(Z,T) [1Tt2..7%].] 0
a .
L o
Computation
Step 4:
Computation 8,0, ...,0, wherel, € [a,b], A =
0,1,2,..,n
End.

Note: this algorithm is also suitable for all the other
cases.
Accuracy of the Solution:

To determine the error estimate if the exact
(analytic) solution is known, then the absolute error
must be the difference between the analytic solution
A(Q) and the approximate solution A, (Q) defined by:

En(Q) = A(Q) — Aq (DI

Definition: With h is a real value function defined
and bounded on [0, 1], let A,(h) be the
polynomial on [0, 1], that assigns to h () the
following value:

n
n r
A => (D) n(o)
r=0
where A, (h) is the nth Touchard polynomials for

h (9 (19).

Theorem: For all functions h in C [0, 1], the
sequence of A, (h) converges uniformly to h.

. (13)

800 Go1  Oo2 8on f901
0 811 812 81n le,ll
0 0 822 82n |l . ‘ dT
0 0 0 8y | 0,
801 802 Son ] 20
811 812 “01n | |*2
0 622 621’1 |.| . I dT
PN
0o 0 + 8n 1 o, |
[ 800 801 8oz - Bon ] go
| O 811 612 01y | |2
13201 0 0 8, -8 |-| .|
: : I : [ ]
Lo o o0 - 8um 1l

Proof:

The error estimate is presented here which
demonstrates the applicability of the presented
method. Considering E = (C[L], ||.]|) the Banach
space of all continuous functions on L.

Suppose that there is a constant M such
that |G(, )| <M, for all (¢, 1) €[0, 1]2. Also,
suppose that the linear term satisfies the Lipschitz
condition.

Let A(Q) be the exact solution and A,({) be the
approximate solution of Eqg. (1).

Thus, by taking n of terms from Touchard
polynomials, then:

IA(D) — A (DIl =
maxger, [k(©) + a f} G(Z,7) A()dr — Ap(h(D) —
o faz G, DA, (T)d‘[l
=|k(Q) - An(h(@)] +
|a INIEIOE An(r))drl.

Now, by using the above definition and
convergence theorem, have:

A = An (DIl = e+ Otf;IG(Z.T)I |ACD) —
Ap(7)|dt
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< e+ (xfaZM maxzer,|A(Q) —

An(Q]dt
< BIIAQ) — Ax (Dl

Then, if 0 < < 1, the approximate numerical
solution converges to exact solution as n— oo (15).
The proof is completed.

Convergence Rate:
The error defined by the following relation (16):

1 1/2 n 1/2
1
mall = | [ 2@ ) =(>TER@D|
A=0

0
where ||[E,|| is an arbitrary vector norm,
En (Z?\) = A(Z) — Ay (Z?\)a (AZO: 1,2... 1’1).
The absolute error |E,| = |A(Q)) — An(Q)], where
A,(G) and A(Q) are the approximate solutions of
the degree n and the exact solution of the (VIEs)
respectively.

IR

Ilustrative Examples:

In this section, to show the efficiency and
accuracy of the presented numerical method,
implement it with comparison of three examples
and three examples for test.

Example 1: Consider the (LVIEs-2K) given by
(16):
A(Q) = cos(q) — e®sin(Q)

¢

+f eS A(t)dr, C

€ ([)0, 1]
where k(Q) = cos(Q) — e®sin(Q) ,«
1,G(¢,1) = €%, and the exact solution is: A(Q)

cos(Q).
By applying an algorithm of the presented method

which is described in the above section for this
example in case n= 2, have:

1 1 17 [0
[1C 2] [0 1 2” ]
0 0 1
= cos(Q) — e4sin(Q)
¢

1 1 17 [0
+fe<[1 T TZ].[O 1 2].[61]d‘r,
5 o o 1l le,

this can be rewritten as:

B +0:(1+0) +0,(1+27+ %)
= cos(Q) — e¢sin(Q)
4

+ f e5(8p + 6,(1+ 1) +6,(1

0
+ 21+ 12))dT
Thus, after computing the integrations by using the
power rule, choosing ¢, (A = 0,1, 2) in the interval
[0, 1], getting three equations:

32046999 +_70901578 +_11760478
36028797 ° ' 72057594 ' ' 10808639
79684096
"~ 90071993
68069157 83883271 25751724
90071993 "° T 90071993 ! T 22517998
66420106

~ 90071993
26798325 +_75146947 +_51854731
45035996 ° ' 90071993 ! ' 45035996
31323995
56294995

Solve these equations by using Gauss elimination,

and then the coefficients are:

8, = 0.51318, 0, = 097648, 0, =
—0.48950

Substituting into the Eq. (3), the (AN) solution is:

A,(Q) = 0.5132Zy(Q) + 0.9765 Z;(Q)

— 0.4895 7, (0)
Now, by applying the same previous procedure for
n=3, 4, 5, 6 and 7, then the (AN) solutions are
respectively:

A5(Q) = 0.4420 Z, + 1.1550 Z, — 0.6385 Z,
+0.0413 Zs.
A,(Q) = 05378 Zy + 0.8464 Z, — 0.2665 Z,

—0.1574 Z5 + 0.0397 Z,.

A5(Q) = 0.5481Zy + 0.8061 Z, — 0.2040 Z, —
0.2057 Z3 + 0.0583 Z, —0.0029 Zg

Ae(D) =

0.5407Zy + 0.8395Z; —

0.2665Z, —0.1434 Z3 + 0.0235Z, + 0.0075 Zs
—0.0013 Z.

A0 =

0.5399 Z, + 0.8438Z,—0.2760 Z, —0.1320Z5 +
0.0153 Z4+0.0110 Zs —0.0021Zg+ 0.0000863 Z,
Tablel shows the comparison of the results. Also
Fig. 1 shows the exact and the (AN) solutions for n
=7
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Table 1. The Comparison Errors ||E,|| of

Example 1.
n IE, || of example 1
Method of (16) Present Method
2 1.95950E—-03 2.8568E—02
3 2.27437E—-04 7.8726E—03
4 6.17039E—-06 2.7592E-04
5 5.39633E—-07 3.5448E—-05
6 1.09152E—-08 7.0276E—-07
7 1.11546E—-09 1.6214E—-07
i Exact Solution
0.95 #  Approximate Solution,n=7
0.9
0.85
g 0.8
_§ 0.75
S o7
0.65
0.6
0.55 "

0.5 L . . . . . . . L
0 0.1 02 03 0.4 0.5 0.6 0.7 08 0.9 1

X-Axis
Figure 1. Results of Example 1, Exact Solution
and the (AN) Solution for n=7.

Example 2: Consider the (LVIEs-1K) given by
(16):
¢

f e A(t)dt = sin()) , {€[0,1]

0

where k(Q) =sin({) ,a =1, G 1) =exp& D,
the exact solution is: A(Q) = cos(Q) — sin(Q).

By applying the same algorithm for this example
and computing the integrations by using the
integration of natural exponential function and the
integration by using parts formula, and then the
comparison results are shown in Table 2. Also Fig.
2 shows the exact and the (AN) solution forn=7.

Table 2. The Comparison Errors ||E,|| of

Example 2.
n ||E, || of Example 2
Method of (16) Present Method

2 5.06401E-02 1.1940E—01
3 2.07936E—03 6.7191E-03
4 6.14967E-04 1.2897E—03
5 1.42477E-04 3.3775E-05
6 5.41139E—05 3.5964E—-06
7 1.42421E-05 1.3150E-07

Exact Solution
®  Approximate Solution,n=7

0.8

0.6 |

0.4 r

o

02r

Solution Axis

ot

-02 ¢

041+ \ . . \ e . . . \ 4
0 0.1 02 03 04 05 06 07 08 09 1
X-Axis

Figure 2. Results of Example 2, Exact Solution
and (AN) Solution for n=7.

Example 3: Consider Abel’s singular (LVIEs-1k)
given by (16):
¢

bf\/% A(t)dt
= 21—‘({5?(105 — 5602 +487%),
€ [0,1]
where k(@) = 2 (105 - 56¢2 + 48¢%) ,« =
1,G(¢1) = J%_T the exact solution is: A(Q) =
3-0+1

Now, by applying the previous algorithm for n=2,
3,...,7 and computing the integrations by using
parts formula, and then the (AN) solutions are
respectively:
A,(Q) = 0.5925 Z, + 0.8960 Z; — 0.4857 Z,.
As(Q= —Zo+57,— 47, + Z5.
A= —Zy+5Z, —47Z, + Z3 + 1.8885E
—13Z,.
As(Q= —Zg+5Z;, — 47, + 7
+ 5.3841E - 12 Z, — 8.1480E
—13Zsg
Ac(Q= —Zg+5Z;, — 47, + 7
+ 5.3139E - 11Z, — 1.5306E
—11Zs + 1.8254E — 12 Z,
Ay =—Zg+5Z— 47, + Zg
+ 5.3139E - 117Z, — 1.5306E
—11Zs + 1.8254E — 12 Z4 + 0.
The comparison results are shown in Table 3. Also
Fig. 3 shows the exact and the (AN) solution for n =
7.
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Table 3. The Comparison Errors ||E,|| of

Example 3.
n ||E, || of Example 3
Method of (16) Present Method
2 6.39819E—02 5.1892E-01
3 2.42366E—02 5.4209E—-07
4 3.26226E—03 4.6947E-07
5 1.15000E-03 4.1990E-07
6 1.85755E—-04 3.8332E—-07
7 2.70787E—04 3.5488E—07
14 E;icl Solution 7
#  Approximate Solution, n=7
0.95
2
3
09

0.85C . . : . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Figure 3. Results of Example 3, Exact Solution
and the (AN) Solution for n=7.

Example 4: Now consider the (LVIEs-2K) given by
(4):
AQ=50-¢

+ -[ TA(t)dt , C
0

€ [0,1]
wherek(Q)) =583 -0 ,a =1, G(1) =1, and
the exact solution is: A(Q) = 53
Now, by applying the same algorithm for n=2, 3,...,
7 and computing the integrations by using the
power rule, then, the (AN) solutions are
respectively:
A,(Q) = 3.5836 Z; — 6.5560 Z; + 3.0025 Z,.
A;(Q)= —5Zy+15Z; —15Z, + 5 Zs.
A = -5Zy+15Z, —15Z, + 5Z3 + 0.
As(Q)= -5Zy+15Z, —15Z, +5Z3;+ 0+ 0.
Ag(Q)= -5Z¢g+15Z, —15Z, +5Z3+0+0

+ 0.
A (Q) = —5Z¢g+15Z;, —15Z, +5Z; + 0+ 0 +
0+ 0.
The computed errors are shown in Table 4. Also
Fig. 4 shows the exact and the (AN) solution for n=
7.
Example 5: Consider another (LVIEs-2K) given by

(4):

4
1 1
AQ = G+3 5T +20 - [ A@dr L e [01]

0
wherek()) = {+ (* 4+ +:0%a =
1,G(¢,t) =1, the exact solution is: A(Q) = {+ {4,
Now, by applying the same algorithm for n=2,
3,...,7 and computing the integrations by using the
power rule, then the (AN) solutions are
respectively:
A,(Q) = —0.68955 Z, + 0.44500 Z,

+0.24796 Z,.

As(Q) = —2.3957 Zy + 4.7342 Z, — 3.3374 Z,
+ 0.99666 Z;.

Ay() =—28232e—13Z)—3Z, +6Z, — 4 Z,
+ 7,

As(Q) = —1.5673E—12Zy — 37, + 6 Z, — 4 Z5
+ Z, + 3.5774E — 13 Z..

Ag(Q) =—-79198E—12Zy—37Z, + 67, —

473+ 74 +9.3103E—-127Z; —1.1059E — 12 Z,

A,(Q) =—-45151E—11Zy—3Z; + 6Z, —

475+ Z, + 1.6560E — 10 Z5 — 3.8466E —

117Z¢+ 3.8146E — 12 Z,.

The computed errors are shown in Table 4. Also

Fig. 5 shows the exact and the (AN) solution for

n=7.

Table 4. The Computed Errors ||E,|| of the
Present Method of Examples 4 and 5.

>

[|E, || of Examples 4 and 5

Example 4 Example 5
2 2.3158E+00 7.1586E—-01
3 2.7465E-06 2.0767E—-01
4 2.3786E—-06 1.2191E—-06
5 2.1274E-06 1.0904E—-06
6 1.9421E-06 9.9539E—-07
7 1.7980E—06 9.2155E—-07
5 o p o]

Exact Solution
¥  Approximation Solution, n=7

Solution-Axis

=1l L L L L £+ L . . .
(L) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
X-Axis
Figure 4. Results of Example 4, Exact Solution

and the (AN) Solution for n=7.
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Exact Solution
#  Approximate Solution, n=7

Solution-Axis
o o o =
B ®» o - N

o
o

o

0 0.1 0.2 03 04 05 0.6 0.7 0.8 0.9 1
)E—Axis

Figure 5. Results of Example 5, Exact Solution
and the (AN) Solution for n=7.

Example 6: Consider the (LVIEs-2k) of the
convolution type given by (4):

4
A(<)=<+f(r—<)A<r>dr . Zeo0,1]

0
wherek()) = ¢, a =1, G({,t) = (t—1C), the
exact solution is: A(Q) = sin(0)
By applying the same algorithm, then for n=4 and 5,
and computing the integrations by using the power
rule, then the (AN) solutions are respectively:
A, (Q) = —0.81208Zy + 0.42624 Z; + 0.59631 Z,
—0.222757Z5 4+ 0.012293 Z,,.
As(Q) = —0.84023 Zy + 0.53582 Z; + 0.42621 Z,
—0.0911197; — 0.038484 Z,
+ 0.0078118 Zs.
The comparison results are shown in Table 5. Also
Fig. 6 shows the exact and the (AN) solution for
n=5.

Table 5.The Comparison of Absolute Errors |E,| of the Presented Method of Example 6.

For n=4 For n=5
C Exact Approximate Absolute Error Approximate Absolute Error
Solution Solution Solution

0 0 9.6606E-06 9.6606E—06 3.1106E-07 3.1106E—07
0.1 | 9.9833E—02 9.9833E—-02 0 9.9833E—-02 0

0.2 | 1.9867E—01 1.9867E—01 0 1.9867E—01 0

0.3 | 2.9552E—01 2.9552E—01 0 2.9552E—-01 0

0.4 | 3.8942E—01 3.8942E—-01 0 3.8942E—-01 0

0.5 | 4.7943E-01 4.7943E-01 0 4.7943E—-01 0

0.6 | 5.6464E—01 5.6463E—01 1.0000E—06 5.6464E—-01 0
0.7 | 6.4422E—01 6.4416E—01 6.0000E—05 6.4422E—-01 0
0.8 | 7.1736E—01 7.1716E—-01 2.0000E—04 7.1736E—01 0
0.9 | 7.8333E-01 7.8281E—01 5.2000E—04 7.8334E—-01 1.0000E—05
1.0 | 8.4147E-01 8.4033E—-01 1.1400E—03 8.4151E—-01 4.0000E—05

09 Conclusions:

Exact Solution
#  Approximate Solution,n=5 ¥

0.8

0.7

Solutions-Axis
o o o o
n w = [,

=]

(=]

0 O‘Iﬂ 0?2 OiB D.‘4 0;5 016 O‘I? 0.‘8 OiQ 1
X:Axis

Figure 6. Results of Example 6, Exact Solution

and the (AN) Solution for n=5.

Note: the symbols ||E,|| and |E,| were defined in
the section of convergence rate.

The prior knowledge have used in a new
concept, by using the Touchard polynomials to
construct matrices and get functions of the
approximation. These functions are used to find the
approximate numerical solutions for several kinds
of mathematical equations: The integral equations,
in particular (LVIEs) of all kinds. The results
showed that the present method for solving (LVIES)
of the first and the second kind, also with singular
kernel is very effective and their accuracy is high.
The Tables and Figs. support this claim. The results
indicated that when the polynomial degree n
increases, the error decreases rapidly. Moreover, the
presented method has been tested by six examples,
and approximate numerical results have been
compared with one another method. Consequently,
the comparison is compatible with it or better.
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