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Abstract:  
In this paper, Touchard polynomials (TPs) are presented for solving Linear Volterra integral 

equations of the second kind (LVIEs-2k) and the first kind (LVIEs-1k) besides, the singular kernel type of 

this equation. Illustrative examples show the efficiency of the presented method, and the approximate 

numerical (AN) solutions are compared with one another method in some examples. All calculations and 

graphs are performed by program MATLAB2018b. 
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Introduction:  
In many problems, the Volterra integral 

equations (VIEs) arise from the real life, such as 

population dynamics, feedback control theory, and 

fluid dynamics etc. (1). Furthermore, many 

applications of engineering or physics can often 

lead to Volterra integral equations. The singular 

status, which appears in the physical modelling 

structures, has importance in mathematical physics 

and other sciences. The weakly singular kernel of 

the (VIEs) represents such phenomena, which have 

important applications in mathematical physics, 

electrochemistry, chemical reactions, superfluidity, 

and heat conduction (2). 

The standard forms of (LVIEs-2k) and (LVIEs-1k) 

(3, 4) respectively defined as follows: 

 

A(ζ) = k(ζ) + α∫G(ζ, τ) A(τ)dτ         [ a, ζ]

ζ

a

⊆ R                    … (1) 

−k(ζ) = α∫G(ζ, τ) A(τ)dτ     ,                 [ a, ζ]

ζ

a

⊆ R                … (1a)      
 

and the general form of Abel’s singular (LVIEs-1k) 

(4) is: 

k(ζ) = α∫
1

√ζ − τ
 A(τ)dτ          ,           [ a, ζ]

ζ

a

⊆ R                 … (1b)      
 Which is derived from a concrete problem of 

physics without passing during differential 

equations (5).  A(ζ) is an unknown function that 

must be calculated, α is a known constant, it takes 

physical meanings of the characteristic of the 

material, and G(ζ, τ) is the kernel of the Integral 

equation (IE), which is a known continuous or non-

continuous function ( the kernel of such equations 

has jump discontinuities along the continuous curve 

which started at the origin (6) ), holds characteristic 

and property of the material, k(ζ) is the function of 

the integration surface which is a known.  

     There are many numerical methods used or 

developed by the researchers to obtain the 

approximate numerical solutions for the (LVIEs), 

some of them are mentioned as follows: (7) gave 

the numerical scheme for the approximation of the 

(LVIEs) with highly oscillatory Bessel kernels. (8) 

applied the optimal homotopy asymptotic method 

for finding the approximate solutions of a class of 

the (LVIEs) with weakly singular kernels. (9) 

applied the standard spectral Galerkin polynomial 

method and a variant to solve a weakly singular for 

the (VIEs). (10) extended the single-step pseudo-

spectral method for the (VIEs-2k) to the multistep 

pseudo-spectral method. (11) used the Galerkin 

http://dx.doi.org/10.21123/bsj.2020.17.4.1241
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weight residual numerical method with Chebyshev 

polynomials and Touchard polynomials as a trial 

function to obtain a numerical solution for the (IEs).  

    In this work, Touchard polynomials method is 

used to solve (LVIEs) numerically. The rest of the 

paper is arranged as follows: The solution method, 

approximation function, algorithm of solution, 

accuracy of the solution, convergence rate, test 

illustrative examples and the corresponding Tables 

and Figs. are presented. Finally, brief conclusions 

and references are listed.  

 

Solution Method: 
   The Touchard polynomials (11, 12, 13 and 14) 

were first studied by the French mathematician 

Jacques Touchard (1885–1968), it’s a polynomial 

sequence of binomial type over the interval [0, 1], 

and have the form: 

Zn(ζ) = ∑S(n, r)ζr =

n

r=0

∑(
n

r
) ζr

n

r=0

    , … (2)    

Where  (n
r
) =

n!

r!(n−r)!
 , n is the degree of the 

polynomials, r is the index of the polynomials. 

The first seven polynomials of the (TPs) are given 

below:  

  Z0(ζ) = 1 

  Z1(ζ) = 1 + ζ 

 Z2(ζ) = 1 + 2ζ + 𝜁2 

 Z3(ζ) = 1 + 3ζ + 3𝜁2 + 𝜁3 

 Z4(ζ) = 1 + 4ζ + 6ζ2 + 4ζ3 + ζ4 

 Z5(ζ) = 1 + 5ζ + 10𝜁2 + 10𝜁3 + 5𝜁4 + 𝜁5      

Z6(ζ) = 1 + 6ζ + 15𝜁2 + 20𝜁3 + 15𝜁4 + 6𝜁5 + 𝜁6      
Approximation Function:  

 

    For determining the approximate numerical 

solutions of Eq. (1), the function An (ζ) is 

approximated by the (TPs) is as follows: 

An(ζ) = θ0Z0(ζ) + θ1Z1(ζ) + ⋯+ θnZn(ζ)  

= ∑θrZr(ζ)

n

r=0

,         0 ≤ ζ

≤ 1        … (3)         
where the function {Zr(ζ)}r=0

n  denotes the Touchard 

basis polynomials of nth degrees, as defined in Eq. 

(2). The  θr (r = 0, 1, … , n) are the unknown 

Touchard coefficients that must be determined, and 

n represents any positive integer. Writing Eq. (3) as 

a dot product: 

 

An(ζ) = [Z0(ζ)   Z1(ζ)… Zn(ζ)] .  

[
 
 
 
 
 
θ0

θ1.
.
.

θn]
 
 
 
 
 

 ,    … (4) 

The Eq. (4) can be converted as follows: 

An(ζ) =

[1  ζ  ζ2 … ζn].

[
 
 
 
 

δ00      δ01       δ02     … δ0n 
 0         δ11       δ12      ⋯ δ1n  
 0         0            δ22     ⋯ δ2n  
⋮            ⋮          ⋮  ⋱               ⋮   

     0          0           0         ⋯  δnn    ]
 
 
 
 

.

[
 
 
 
 
 
θ0

θ1.
.
.

θn]
 
 
 
 
 

 ,    

… (5) 

where  δkk (k= 0, 1, 2,…, n) are known constants of 

the power basis, used to determine the (TPs), this 

matrix is upper triangular. For instance, in cases: 

n=2, 3, 4 and 5, the operational matrices will be 

shown in the Eq. (6), (6a), (6b) and (7) respectively: 

 

A2(ζ) = [1  ζ  ζ2]. [
1 1 1
0 1 2
0 0 1

] . [

θ0

θ1

θ2

] ,             … (6)       

 

A3(ζ) = [1  ζ  ζ2 ζ3 ]. [

1 1 1      1
0 1 2      3
0 0 1      3

  0    0     0       1  

] . [

θ0

θ1

θ2

θ3

].                                 

… (6a) 

 

A4(ζ) =

[1  ζ  ζ2 ζ3 ζ4 ].

[
 
 
 
 
 

1 1 1      1   1
0 1 2      3   4
0 0 1      3    6
  0    0     0     1    4  
  0 0 0      0    1  

  ]
 
 
 
 
 

.

[
 
 
 
 
θ0

θ1

θ2

θ3

θ4]
 
 
 
 

                    

… (6b) 

 

A5(ζ) =

[1  ζ  ζ2 ζ3 ζ4  ζ5 ].

[
 
 
 
 
 
1 1 1
0 1 2
0 0 1

    
1 1 1 
3 4 5 
3 6 10

0 0 0
0 0 0
0 0 0

    
1 4 10 
0 1 5 
0 0 1 ]

 
 
 
 
 

.

[
 
 
 
 
 
θ0

θ1

θ2

θ3

θ4

θ5]
 
 
 
 
 

                      

       … (7) 

Overall 

 

An(𝜁) =

[
 
 
 
 

δ00      δ01       δ02     … δ0n 
 0         δ11       δ12      ⋯ δ1n  
 0         0            δ22     ⋯ δ2n  
⋮            ⋮          ⋮  ⋱               ⋮   

     0          0           0         ⋯  δnn    ]
 
 
 
 

 .

[
 
 
 
 
 
θ0

θ1.
.
.

θn]
 
 
 
 
 

    … (7a)   

The Solution of the (LVIEs-2k):  

 

In this section, the (TPs) can be used to determine 

the (AN) solutions. Remember that the Eq. (1) in 

the form: 

https://en.wikipedia.org/wiki/French_people
https://en.wikipedia.org/wiki/Mathematician
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A(ζ) = k(ζ) + α∫G(ζ, τ) A(τ)dτ                     [ a, ζ]

ζ

a

⊆ R … (8)                     
 

By using the Eq. (3), let 

A(ζ) ≅ An(ζ)

=  ∑θr𝑍r(ζ)

n

r=0

,                                                 … (9)       

now, substituting the Eq. (9) into the Eq. (8) yields:   

∑θrZr(ζ)

n

r=0

= k(ζ) + α∫G(ζ, τ)

ζ

a

∑θrZr(τ)

n

r=0

dτ ,    … (10)  

 

 by using Eq. (4) then Eq. (10) becomes: 

[Z0(ζ)   Z1(ζ) … Zn(ζ)].

[
 
 
 
 
 
θ0

θ1.
.
.

θn]
 
 
 
 
 

= k(ζ)

+ α∫G(ζ, τ)[Z0(τ)   Z1(τ) … Zn(τ)].

[
 
 
 
 
 
θ0

θ1.
.
.

θn]
 
 
 
 
 

dτ

ζ

a

  , … (11) 

 

by using the Eq. (5) then the Eq. (11) converted to 

the general form: 

 

[
 
 
 
 
 

[1  ζ  ζ2 …ζn].

[
 
 
 
 

δ00      δ01       δ02     … δ0n 
 0         δ11       δ12      ⋯ δ1n  
 0         0            δ22     ⋯ δ2 n  
⋮            ⋮          ⋮  ⋱               ⋮   

     0          0           0         ⋯  δnn    ]
 
 
 
 

 .

[
 
 
 
 
 
θ0

θ1.
.
.

θn]
 
 
 
 
 

]
 
 
 
 
 

.

= k(ζ) + α∫G(ζ, τ)

ζ

a

[1  τ  τ2 …𝜏n].

[
 
 
 
 

δ00      δ01       δ02     … δ0n 
 0         δ11        δ12      ⋯ δ1n  
 0         0            δ22     ⋯ δ2n  
⋮            ⋮          ⋮  ⋱               ⋮   

     0          0           0         ⋯  δnn    ]
 
 
 
 

.

[
 
 
 
 
 
θ0

θ1.
.
.

θn]
 
 
 
 
 

 dτ … (12) 

 

Thus, after computing the integrations 

(integration methods have been mentioned in the 

given examples) of the Eq. (12) the unknown 

coefficients of the (TPs) are found by selecting 

ζ λ (λ =  0, 1, … , n)  from the interval [0, 1]. Then, 

get the system of algebraic equations which can be 

solved by using Gauss elimination method. The 

unknown coefficients (θ0 , θ1  , … , θn ) have 

uniquely determined. As a result, by substituting the 

determined coefficients into the Eq. (3) getting the 

(AN) solution.  

The same procedure can be applied on the Eq. (1a) 

and (1b) to find the (AN) solutions. 

 

 

 

Algorithm of Solution:  
     In this section, the steps of the algorithm solution 

are summarized to find the (AN) solutions for 

(LVIEs-2K): 

Input: (A(ζ), k(ζ), G(ζ , τ), a , ζ  ). 

 

Output: The polynomials of the degree n. 

Step 1: 

 

Select a degree n for the (TPs). 

 

An(ζ) = ∑(
n

r
) ζr

n

r=0

 

Step 2: 

Put the (TPs) into the (LVIEs-2k). 



Open Access     Baghdad Science Journal                                P-ISSN: 2078-8665 

2020, 17(4):1241-1249                                                            E-ISSN: 2411-7986 

 

1244 

[
 
 
 
 
 

[1  ζ  ζ2 …ζn].

[
 
 
 
 

δ00      δ01       δ02     … δ0n 
 0         δ11       δ12      ⋯ δ1n  
 0         0            δ22     ⋯ δ2n  
⋮            ⋮          ⋮  ⋱               ⋮   

     0          0           0         ⋯  δnn    ]
 
 
 
 

 .

[
 
 
 
 
 
θ0

θ1.
.
.

θn]
 
 
 
 
 

]
 
 
 
 
 

.

= k(ζ) + α∫G(ζ, τ)

ζ

a

[1  τ  τ2 …𝜏n].

[
 
 
 
 

δ00      δ01       δ02     … δ0n 
 0         δ11        δ12      ⋯ δ1n  
 0         0            δ22     ⋯ δ2n  
⋮            ⋮          ⋮  ⋱               ⋮   

     0          0           0         ⋯  δnn    ]
 
 
 
 

.

[
 
 
 
 
 
θ0

θ1.
.
.

θn]
 
 
 
 
 

 dτ   

 

 

Step 3: 

Computation  

∫G(ζ, τ)

ζ

a

[1  τ  τ2 …𝜏n].

[
 
 
 
 

δ00      δ01       δ0 2     … δ0n 
 0         δ11        δ1 2      ⋯ δ1n  
 0         0            δ22     ⋯ δ2n  
⋮            ⋮          ⋮  ⋱               ⋮   

     0          0           0         ⋯  δnn    ]
 
 
 
 

.

[
 
 
 
 
 
θ0

θ1.
.
.

θn]
 
 
 
 
 

 dτ 

 

Computation                 

[
 
 
 
 
 

[1  ζ  ζ2 …ζn].

[
 
 
 
 

δ00      δ01       δ02     … δ0n 
 0         δ11       δ12      ⋯ δ1n  
 0         0            δ22     ⋯δ2n  
⋮            ⋮          ⋮  ⋱               ⋮   

     0          0           0         ⋯  δnn    ]
 
 
 
 

 .

[
 
 
 
 
 
θ0

θ1.
.
.

θn]
 
 
 
 
 

]
 
 
 
 
 

 

 

Step 4: 

Computation θ0 , θ1 , … , θn   where ζλ ∈ [a, b], λ =
0, 1, 2,… , n 

End. 

Note: this algorithm is also suitable for all the other 

cases. 

Accuracy of the Solution: 

    To determine the error estimate if the exact 

(analytic) solution is known, then the absolute error 

must be the difference between the analytic solution 

A(ζ) and the approximate solution An(ζ) defined by: 

 En(𝜁) = |A(ζ) − An(ζ)|.  
Definition: With h is a real value function defined 

and bounded on [0, 1], let  An(h )  be the 

polynomial on [0, 1], that assigns to h (ζ) the 

following value: 

 

An(h) = ∑(
n

r
) ζr

n

r=0

 h (
r

n
)   ,          … (13)                   

where  An(h ) is the nth Touchard polynomials for 

h (ζ) (15). 

 

Theorem: For all functions h in C [0, 1], the 

sequence of An(h )  converges uniformly to h. 

 

Proof: 

 

The error estimate is presented here which 

demonstrates the applicability of the presented 

method. Considering   E = (C[L], ‖. ‖)  the Banach 

space of all continuous functions on L. 

Suppose that there is a constant M such 

that |G(ζ, τ)| ≤ M, for all (ζ, τ) ∈[0, 1]2. Also, 

suppose that the linear term satisfies the Lipschitz 

condition. 

Let A(ζ) be the exact solution and An(𝜁) be the 

approximate solution of Eq. (1). 

 Thus, by taking n of terms from Touchard 

polynomials, then: 

 

‖A(ζ) − An(𝜁)‖ =

maxζ∈L |k(ζ) + α∫ G(ζ, τ) A(τ)dτ − An(h(ζ)) −
𝜁

a

α∫ G(ζ, τ)An(𝜏)dτ
𝜁

a
|  

                           =|k(ζ) − An(h(ζ))| +

|α∫ G(ζ, τ)( A(τ) − An(𝜏))dτ
𝜁

a
|.    

Now, by using the above definition and 

convergence theorem, have: 

‖A(ζ) − An(𝜁)‖ =  ε + α∫ |G(ζ, τ)|
ζ

a
|A(τ) −

An(𝜏)|dτ  
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                   ≤  ε + α∫ M
ζ

a
maxζ∈L|A(ζ) −

An(𝜁)|dτ 

                                ≤ β ‖A(ζ) − An(𝜁)‖    
Then, if 0 < β < 1, the approximate numerical 

solution converges to exact solution as n→ ∞ (15). 

The proof is completed. 

 

Convergence Rate:  

The error defined by the following relation (16): 

 

‖En‖ = (∫En
2

1

0

(ζ)dζ)

1
2⁄

≅ (
1

n
∑ En

2

n

λ=0

(ζλ))

1
2⁄

, 

 

where ‖En‖   is an arbitrary vector norm, 

En(ζλ) = A(ζ) − An(ζλ),    (λ=0, 1, 2… n). 

The absolute error |En|  ≅ |A(ζ) − An(ζλ)|, where 

An(ζλ) and   A(ζ)  are the approximate solutions of 

the degree n and the exact solution of the (VIEs) 

respectively. 

 

Illustrative Examples:  

    In this section, to show the efficiency and 

accuracy of the presented numerical method, 

implement it with comparison of three examples 

and three examples for test.   

Example 1: Consider the (LVIEs-2k) given by 

(16):  

A(ζ) = cos(ζ) − eζ sin (ζ)

+ ∫  eζ A(τ)dτ ,             ζ

ζ

0

∈ [0, 1]                                
where k(ζ)  = cos(ζ) − eζ sin(ζ) , α =
1 , G(ζ, τ)  = eζ , and the exact solution is: A(ζ) =
cos(ζ).  
By applying an algorithm of the presented method 

which is described in the above section for this 

example in case n= 2, have: 

 

[1  ζ  ζ2]. [
1 1 1
0 1 2
0 0 1

] . [

θ0

θ1

θ2

]

= cos(ζ) − eζ sin (ζ)

+ ∫eζ [1  τ  τ2]. [
1 1 1
0 1 2
0 0 1

] . [

θ0

θ1

θ2

] dτ  ,    

ζ

0

 

this can be rewritten as: 

θ0 + θ1(1 + ζ) + θ2(1 + 2ζ + ζ2)
= cos(ζ) − eζ sin (ζ)

+ ∫eζ(θ0 + θ1(1 + τ) + θ2(1

ζ

0

+ 2τ + τ2))dτ  ,     
Thus, after computing the integrations by using the 

power rule, choosing ζ λ (λ =  0, 1, 2) in the interval 

[0, 1], getting three equations: 

 
32046999

36028797
 θ0 +

70901578

72057594
 θ1 +

11760478

10808639
 θ2

=
79684096

90071993
 

 
68069157

90071993
 θ0 +

83883271

90071993
 θ1 +

25751724

22517998
 θ2

=
66420106

90071993
 

 
26798325

45035996
 θ0 +

75146947

90071993
 θ1 +

51854731

45035996
 θ2

=
31323995

56294995
 

  

 Solve these equations by using Gauss elimination, 

and then the coefficients are:   

θ0 =  0.51318,          θ1 = 0.97648 ,        θ2 =
  −0.48950 
 

Substituting into the Eq. (3), the (AN) solution is:  

 

  A2(ζ)  = 0.5132 Z0(ζ) + 0.9765  Z1(ζ)
− 0.4895 Z2(ζ) 

Now, by applying the same previous procedure for 

n=3, 4, 5, 6 and 7, then the (AN) solutions are 

respectively:  

A3(ζ) =  0.4420 Z0 + 1.1550 Z1 − 0.6385 Z2

+ 0.0413 Z3. 
A4(ζ) = 0.5378 Z0 + 0.8464 Z1 − 0.2665 Z2

− 0.1574 Z3 + 0.0397 Z4. 
 

A5(ζ) = 0.5481 Z0 + 0.8061 Z1 − 0.2040 Z2 −
0.2057 Z3 + 0.0583 Z4 −0.0029 Z5  

A6(ζ) =
0.5407 Z0  + 0.8395 Z1 −
0.2665 Z2 −0.1434 Z3 + 0.0235 Z4 + 0.0075 Z5  

−0.0013 Z6. 
 

A7(ζ) =
0.5399 Z0 + 0.8438 Z1−0.2760 Z2 −0.1320Z3 +
0.0153 Z4+0.0110 Z5 −0.0021Z6+ 0.0000863 Z7 
Table1 shows the comparison of the results. Also 

Fig. 1 shows the exact and the (AN) solutions for n 

=7  
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Table 1. The Comparison Errors ‖𝐄𝐧‖ of 

Example 1. 
n ‖En‖ of example 1 

Method of (16) Present Method 

2 1.95950E−03 2.8568E−02 

3 2.27437E−04 7.8726E−03 

4 6.17039E−06 2.7592E−04 

5 5.39633E−07 3.5448E−05 

6 1.09152E−08 7.0276E−07 

7 1.11546E−09 1.6214E−07 

 

 
Figure 1. Results of Example 1, Exact Solution 

and the (AN) Solution for n=7. 

 

Example 2: Consider the (LVIEs-1k) given by 

(16):  

∫  e(ζ−τ)  A(τ)dτ = sin(ζ)  ,             ζ ∈ [0, 1]     

ζ

0

 

where k(ζ)  = sin(𝜁)  , α = 1 , G(ζ, τ)  = exp (ζ−τ) , 
the exact solution is: A(ζ) = cos(ζ) − sin(ζ).  
By applying the same algorithm for this example 

and computing the integrations by using the 

integration of natural exponential function and the 

integration by using parts formula, and then the 

comparison results are shown in Table 2. Also Fig. 

2 shows the exact and the (AN) solution for n = 7. 

 

Table 2. The Comparison Errors ‖𝐄𝐧‖ of 

Example 2. 
n ‖En‖ of Example 2 

Method of (16) Present Method 

2 5.06401E−02 1.1940E−01 

3 2.07936E−03 6.7191E−03 

4 6.14967E−04 1.2897E−03 

5 1.42477E−04 3.3775E−05 

6 5.41139E−05 3.5964E−06 

7 1.42421E−05 1.3150E−07 

 

 
Figure 2. Results of Example 2, Exact Solution 

and (AN) Solution for n=7. 

 

Example 3: Consider Abel’s singular (LVIEs-1k) 

given by (16): 

∫
1

√ζ − τ

ζ

0

 A(τ)dτ

=
2√𝜁

105
(105 − 56𝜁2 + 48𝜁3) ,     ζ

∈ [0, 1]   

where k(ζ)  =  
2√𝜁

105
(105 − 56𝜁2 + 48𝜁3) ,α =

1 , G(ζ, τ)  =
1

√ζ−τ
 , the exact solution is: A(ζ) =

𝜁3 − 𝜁2 + 1. 

Now, by applying the previous algorithm for n=2, 

3,…,7 and computing the integrations by using 

parts formula, and then the (AN) solutions are 

respectively:  

A2(ζ) = 0.5925 Z0 + 0.8960 Z1 − 0.4857 Z2. 
A3(ζ) =  − Z0 + 5 Z1 − 4 Z2 +  Z3 . 
A4(ζ) =  − Z0 + 5 Z1 − 4 Z2 +  Z3 + 1.8885E

− 13 Z4. 
A5(ζ) =  − Z0 + 5 Z1 − 4 Z2 +  Z3

+ 5.3841E − 12 Z4 − 8.1480E
− 13 Z5  

A6(ζ) =  − Z0 + 5 Z1 − 4 Z2 +  Z3

+ 5.3139E − 11 Z4 − 1.5306E
− 11 Z5  + 1.8254E − 12 Z6 

A7(ζ) = − Z0 + 5 Z1 − 4 Z2 +  Z3

+ 5.3139E − 11 Z4 − 1.5306E
− 11 Z5 + 1.8254E − 12 Z6 + 0. 

The comparison results are shown in Table 3. Also 

Fig. 3 shows the exact and the (AN) solution for n = 

7. 
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Table 3. The Comparison Errors ‖𝐄𝐧‖ of 

Example 3. 
n ‖En‖ of Example 3 

Method of (16) Present Method 

2 6.39819E−02 5.1892E−01 

3 2.42366E−02 5.4209E−07 

4 3.26226E−03 4.6947E−07 

5 1.15000E−03 4.1990E−07 

6 1.85755E−04 3.8332E−07 

7 2.70787E−04 3.5488E−07 

 

 
    Figure 3. Results of Example 3, Exact Solution 

and the (AN) Solution for n=7. 

 

Example 4: Now consider the (LVIEs-2k) given by 

(4): 

A(ζ) = 5ζ3 − ζ5

+ ∫  τ A(τ )dτ       ,          ζ

ζ

0

∈ [0, 1]                            
where k(ζ)  = 5ζ3 − ζ5  , α = 1 ,  G(ζ, τ)  = τ, and 

the exact solution is: A(ζ) =  5ζ3 

Now, by applying the same algorithm for n=2, 3,…, 

7 and computing the integrations by using the 

power rule, then, the (AN) solutions are 

respectively:  

A2(ζ) = 3.5836 Z0 − 6.5560 Z1 + 3.0025 Z2. 
A3(ζ) =  −5 Z0 + 15 Z1 − 15 Z2 + 5  Z3. 
A4(ζ) =  −5 Z0 + 15 Z1 − 15 Z2 + 5 Z3 + 0. 
A5(ζ) =  −5 Z0 + 15 Z1 − 15 Z2 + 5 Z3 + 0 + 0.   
A6(ζ) =  −5 Z0 + 15 Z1 − 15 Z2 + 5 Z3 + 0 + 0

+ 0. 
A7(ζ) =  −5 Z0 + 15 Z1 − 15 Z2 + 5 Z3 + 0 + 0 +
0 + 0. 
The computed errors are shown in Table 4. Also 

Fig. 4 shows the exact and the (AN) solution for n= 

7. 

Example 5: Consider another (LVIEs-2k) given by 

(4): 

A(ζ) =  ζ + ζ4 +
1

2
ζ2 +

1

5
ζ5 − ∫ A(τ)

ζ

0

dτ    ,    ζ ∈ [0, 1] 

where k(ζ)  =  ζ + ζ4 +
1

2
ζ2 +

1

5
ζ5,α =

1 , G(ζ, τ)  = 1, the exact solution is: A(ζ) = ζ + 𝜁4 , 
Now, by applying the same algorithm for n=2, 

3,…,7 and computing the integrations by using the 

power rule, then the (AN) solutions are 

respectively:  

A2(ζ) = −0.68955 Z0 + 0.44500 Z1

+ 0.24796 Z2. 
A3(ζ) =  −2.3957 Z0 + 4.7342 Z1 − 3.3374 Z2

+  0.99666 Z3. 
A4(ζ) = −2.8232e − 13 Z0 − 3 Z1 + 6 Z2 − 4 Z3

+  Z4. 
A5(ζ) = −1.5673E − 12 Z0 − 3 Z1 + 6 Z2 − 4 Z3

+  Z4 + 3.5774E − 13 Z5. 
A6(ζ) = −7.9198E − 12 Z0 − 3 Z1 +  6 Z2 −
4 Z3 +  Z4 + 9.3103E − 12 Z5  − 1.1059E − 12 Z6 

A7(ζ) = −4.5151E − 11 Z0 − 3 Z1 +  6 Z2 −
4 Z3 +  Z4 + 1.6560E − 10 Z5 − 3.8466E −
11 Z6+ 3.8146E − 12 Z7. 
The computed errors are shown in Table 4. Also 

Fig. 5 shows the exact and the (AN) solution for 

n=7. 

 

Table 4. The Computed Errors ‖𝐄𝐧‖ of the 

Present Method of Examples 4 and 5. 
n ‖En‖ of Examples 4 and 5 

Example 4 Example 5 

2 2.3158E+00 7.1586E−01 

3 2.7465E−06 2.0767E−01 

4 2.3786E−06 1.2191E−06 

5 2.1274E−06 1.0904E−06 

6 1.9421E−06 9.9539E−07 

7 1.7980E−06 9.2155E−07 

 

 
Figure 4. Results of Example 4, Exact Solution 

and the (AN) Solution for n=7. 
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Figure 5. Results of Example 5, Exact Solution 

and the (AN) Solution for n=7. 

 

Example 6: Consider the (LVIEs-2k) of the 

convolution type given by (4): 

A(ζ) = ζ + ∫  (τ − ζ )A(τ )dτ       ,          ζ ∈ [0, 1]   

ζ

0

 

where k(ζ)  =  ζ , α = 1 ,  G(ζ, τ)  = (τ − ζ ),  the 

exact solution is: A(ζ) = sin (ζ)  
By applying the same algorithm, then for n=4 and 5, 

and computing the integrations by using the power 

rule, then the (AN) solutions are respectively: 

A4(ζ) = −0.81208 Z0 + 0.42624 Z1 + 0.59631 Z2

− 0.22275 Z3 + 0.012293 Z4. 
A5(ζ) = −0.84023 Z0 + 0.53582 Z1 + 0.42621 Z2

− 0.091119 Z3 − 0.038484 Z4

+ 0.0078118 Z5. 
The comparison results are shown in Table 5. Also 

Fig. 6 shows the exact and the (AN) solution for 

n=5. 

               

Table 5.The Comparison of Absolute Errors |𝐄𝐧| of the Presented Method of Example 6. 
 

ζ 
 

Exact 

Solution 

For n=4 For n=5 

Approximate 

Solution 

Absolute Error  

 

Approximate 

Solution 

Absolute Error 

0 0 9.6606E-06 9.6606E−06 3.1106E-07 3.1106E−07 

0.1 9.9833E−02 9.9833E−02 0 9.9833E−02 0 

0.2 1.9867E−01 1.9867E−01 0 1.9867E−01 0 

0.3 2.9552E−01 2.9552E−01 0 2.9552E−01 0 

0.4 3.8942E−01 3.8942E−01 0 3.8942E−01 0 

0.5 4.7943E−01 4.7943E−01 0 4.7943E−01 0 

0.6 5.6464E−01 5.6463E−01 1.0000E−06 5.6464E−01 0 

0.7 6.4422E−01 6.4416E−01 6.0000E−05 6.4422E−01 0 

0.8 7.1736E−01 7.1716E−01 2.0000E−04 7.1736E−01 0 

0.9 7.8333E−01 7.8281E−01 5.2000E−04 7.8334E−01 1.0000E−05 

1.0 8.4147E−01 8.4033E−01 1.1400E−03 8.4151E−01 4.0000E−05 

 

 
Figure 6. Results of Example 6, Exact Solution 

and the (AN) Solution for n=5. 

 

Note: the symbols ‖En‖ and |En| were defined in 

the section of convergence rate. 

 

Conclusions: 
     The prior knowledge have used in a new 

concept, by using the Touchard polynomials to 

construct matrices and get functions of the 

approximation. These functions are used to find the 

approximate numerical solutions for several kinds 

of mathematical equations: The integral equations, 

in particular (LVIEs) of all kinds. The results 

showed that the present method for solving (LVIEs) 

of the first and the second kind, also with singular 

kernel is very effective and their accuracy is high. 

The Tables and Figs. support this claim. The results 

indicated that when the polynomial degree n 

increases, the error decreases rapidly. Moreover, the 

presented method has been tested by six examples, 

and approximate numerical results have been 

compared with one another method. Consequently, 

the comparison is compatible with it or better. 
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 الحلول العددية التقريبية لمعادلات فولتيرا التكاملية باستخدام متعددة حدود توشارد
 

 جليل طلب عبدالله

 
 قسم الاحصاء، كلية الادارة والاقتصاد ، جامعة واسط ، العراق

 

 الخلاصة:
معادلات فولتيرا التكاملية الخطية  من النوع الثاني والنوع الاول بالإضافة الى في هذا البحث، نقدم طريقة متعددة حدود توشارد لحل 

ع طريقة واحدة نوع النواة الانفرادية لهذه المعادلة. الامثلة العددية هي للتحقق من كفاءة الطريقة المقدمة وتم مقارنة الحلول العددية التقريبية م

 . 2018b جميع الحسابات  والرسوم البيانية تم تنفيذها عن طريق برنامج الماتلاب  .اخرى في بعض الامثلة

 
 ، الحلول العددية التقريبية.  معادلة فولتيرا التكاملية الخطية ، كثيرات حدود توشاردالكلمات المفتاحية: 
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