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Abstract:

In this paper, some estimators of the unknown shape parameter and reliability function of Basic
Gompertz distribution (BGD) have been obtained, such as MLE, UMVUE, and MINMSE, in addition to
estimating Bayesian estimators under Scale invariant squared error loss function assuming informative prior
represented by Gamma distribution and non-informative prior by using Jefferys prior. Using Monte Carlo
simulation method, these estimators of the shape parameter and R(t), have been compared based on mean
squared errors and integrated mean squared, respectively

Key words: Basic Gompertz distribution, MinMSE estimator, MLE, Scale invariant squared error loss
function, UMV UE.

Introduction: Non-Bayes Estimators of the Shape Parameter
The Gompertz distribution (GD) was  Maximum likelihood Estimator (MLE)
originally introduced by Gompertz in1825 (1).This Assume that, t = t;, tp,... ,t, be the set of n

distribution is used in model survival times, random lifetimes from the Basic Gompertz
modeling human mortality and actuarial tables. It ~ distribution defined by equation (1), the likelihood
has many real life applications, especially in  function for the sample observation will be as
medical and actuarial studies. Due to its  follows (4)

complicated form, it has not received enough L (ty,t,..., cp)—n1 1t 9)

attention in the past. However, recently, this

distribution has received considerable attention = @"exp[ Zt + @Z(l— e] - (3)
from actuaries and demographers. The probability

density function of the (GD) is given by (2): By Iettmg, ln L (tl,tz, .., tn; @) =0, the MLE
f(t; @) = @exp [CH‘% 1 —eCt)] t20,60>0 ofq)becomes

Where ¢ is the shape parameter and c is the scale @y = — . (4)

parameter of the Gompertz distribution. In the WhereTzTZ? (1 — et
1=

current paper, it will be assumed c=1 which is @ gageq on the invariant property of the MLE, the
special case of Gompertz distribution known as MLE for R(t) will be as follows

Basic Gompertz distribution with the following R(t) = ~ 1 — et
probability density function (3): )= expl@me (1 = D]

f(t; ) = et t>0, >0  ..(1) Uniformly  Minimum  Variance  Unbiased

The corresponding cumulative distribution function Estimator (UMVUE)

F(t) is given by The probability density function of the

F(t) =1 —exple (1 —eY)] ; t=20 ..(2) BGD (1) belongs to the exponential family.

Accordingly, R(t) is given by Therefore, T = Y, (1 — et) is a (C.S.S) for ¢.

R(t)= F(t) =exp[e(1—eY)] ; t=0 Then, depending on the theorem of Lehmann-
Scheffe (5), the UMVUE of ¢, denoted by @, will
be as follows
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n—-1

Tt ..(5)

oy =
Hence,
The UMVUE of R(t) is approximated as
Ry =exp[@ ,(1—€Y] ..(6)
Minimum Mean Squared Error Estimators
Method (MinMSE)

The Minimum Mean Squared Error (Min
MSE) estimator can be found in the class of

estimators of the form (Y = V—l;) where,
k is a constant, W = Y™, (e'i — 1). Therefore,
2
MSE(@minmse) = E [W - (P]
1 1
= k%E (2) — 20kEG) + @?..(7)
To minimize (MSE) for (®minmsg), partial

derivative will be taken, with respect to (k) and then
equating it to zero, as follows

_Ms?()‘PMmMSE) =2KE _(Wz)_ZCPE(W) 0
@E

k= ..(8

B (8)

To obtaining E (%) and E(%), assuming that,
Y=e'—1

This implies that,

t= In(y + 1), then

de _
o =y+1

According to the transformation technique,
_ g0 |4

9v) = £ |5
= (_pe_(py

Therefore,

Y ~Exponential(¢@) and, W = YL, Y; ~ ['(n, )
with the following p.d.f.

,y>0

giw) =L wn e w>0
LetZ = —
w

Hence, Z ~Inverted Gamma (n, ¢)
; 1) _ 9
Since, E (W) =E(Z) = —

1 @?
)= YooY
E (WZ) E(Z) (n—1)(m-2)
After substitution into (8), yields
@?*/m-1

¢?/((n-1)(n-2))

Since k = n-2, the MIinMSE estimator for ()
became as follows

~ - (n-2)

(lenMSE ;1:1(eti_1)

The MinMSE of R(t) is approximated as

R(©minmse = expl Puminmse (1 —€D] 5 t=0
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Bayesian estimation
Posterior Density Functions Using Gamma
Distribution

In this subsection, Gamma distribution has
been considered as a prior distribution of the shape
parameter (p which is defined as follows (7):

g1(9) = —F(Y) @ e 9>0y,6>0 ..(9
In general, the posterior p.d.f. of the shape
parameter ¢ can be expressed as
Lttty
(olt) = (ty, t; n.(P) g(¢p) .(10)
Joo L Ctnta, o to; @) g(@)dep

Now, combining equation (3) with equation (9) in
equation (10), results in

n+y 1a— @(8-T)
1T1((P|t) f @+Y-1e=@(6-T)d¢p

After simplification, gives

§—T)+Y n+Y-1 o=@ (6-T)
nl((plt) e Li"(nﬂ/)

The posterior p.d.f. of the parameter ¢ is Gamma
distribution, i.e.,

@lt~T(n+ v, (8 —T)), with,

E(olt) = 5%, Var(olt~@) =

n+y
(8-T)2

Posterior Density Functions Using Jeffreys Prior

Supposing ¢ to have non-informative prior
presented after using Jeffreys prior information
g, (@) which is signified by (8):

g2 (@) x I(@)

Where 1I(¢p) stands for Fisher information
designated as follows (9):
d%In f(t, @)
0 =50
Hence,
0% Inf(t; )

82 (‘P)=k\]‘nE< 92

) .. (11)
Where, Kk is a constant
Inf(t; ) =Ing +t+ @(1 —eb)

9°Inf 1
dp? @?
Thus,

’Inf(to) _ 1
E( 02 )_ foxs
After substitution into equation (11) yields,

Kk
g2(@=_vn , >0
After substituting in equation (10), the posterior
density function based on Jeffreys prior
T, (@|ty, ..., ty) IS
@ "lem@ZinCli-1)

T, ((pltlr ""tn) =

Jy” @nle~@Zin(e1-1 dg
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Pn(pn—le—cpP
- T
Where P =Y (e'i — 1)
(@ltq, ..., ty)~T(n, P) , with:

Bayes Estimator under Scale Invariant Squared
Error Loss Function

The Scale invariant squared error loss
function (SISELF) is a continuous and non-negative
symmetric loss function. It has been discussed by
De Groot (1970) (10), and is defined as:

0=

Based on (SISELF), risk function R(®, @) can be
derived as

-9
(0]

L(®

R@, ) = E(L (3,0))
J;) L(®,@)T(@|ty o vvevenn

th)dep

By letting M

2@13(%)—213(&):0

Therefore, Bayesian estimator under (SISELF), that
minimizes the risk function, as follows

E()
.. (12)

=0, gives,

Pp=—%

E((pz)
Bayes Estimation under (SISELF) with Gamma
Prior
Bayes estimator relative to (SISELF) based
on Gamma prior, can be derived as follows

o)

B (1) - j Sn(ol)de

o (85— T)n+y— (pn+y 20— (8- T)d(p

_ (-1 l“(n+y—1)f

- [(n+y) 0 ['(n+y-1)
_6B-7
T n4y-—-1

1

E((IT

1) = f nlolde

_ (8 _ T)ZF(V) © (6 _ T)v(pv—le—(p(S—T)d(p
'n+v) r'v)

Where,v=n+vy—2

Thus,

(6-T)?
(m+y-1Dn+y-2)

2 (k) -

856

The posterior density is then realized as the Gamma
distribution density, i.e.

E(pl) = 3, Var(olt~¢) = 5
After substituting into (12), yields
8§—T
~ n+y-—1
PBG = (5 — T)Z

n+y—1(n+y—2)
Thus, Bayesian estimation for the shape parameter
of BGD under (SISELF) with Gamma prior,
denoted by @gg is
n+y-—2

PG =

Now, Bayesian estimation for R(t) by using
(SISELF) can be obtained using equation (12) as
follows
Bl
1

E -
(R(V)?

R(t) = .. (14)

1
R(D

(> —Lp(l—et) (S—T)n+y(pn+y 1 —(p(8 T)d<p

E( )_fo € )
— n+y ° n+y, n+y—1,-@(&)

G (n+v)

Where, § = (8 —T) + (1 —eb)
Hence,
) "

|
-]

Now,
— fooe-w(l-et) (6 —T)"V Y lem*®"D
0

['(n+vy)
f .
Where,

O=(@-T)+2(1—¢eb.
Hence,

1
R(t)

o= T)n+y
(6 —T) + (1 — et))n+v

n(@|t)de

E ! 5
(R®) (R®)

de

(6 T)n+y

n+y

)n+y (pn+y—le—cp(®)

I'(n+vy)

de

(6 — T)P+Y
[(6—T) + 2(1 — eH|"+Y

’ [(R(lt))zl )
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After substituting into(14), the Bayes estimator for
R(t) under (SISELF) with Gamma prior is given by

R()pe =

Bayes Estimation under (SISELF) with Jefferys
Prior

The Bayes estimator for the shape
parameter ¢ under Jefferys prior can be obtained
using equation (12) as follows:

q$@=!1ﬂﬁym

© 1 P
<pP
__ PI(n-1) f o0 PN=1 N=2e=®P(¢
T T 0 I'(n—-1)

E(,lt) =5
E(G:1t) =

fy gz (olt)de
__ Pr(n-2) foo PN—2pn-3g=¢Pq¢p
I'(n) 0 ['(n-2)
PZ
~ -Dm-2)
After substituting into (12), Bayesian estimation for
the shape parameter of BGD under (SISELF) with
Jefferys prior, denoted by @g; is
= n-—2
Pp) = P .. (16)
This is equivalent t0 @ yinmse-
Now, Bayesian estimation for R(t) under
(SISELF) can be obtained using equation (14), as
follows

g (%) - Jow R "(@l9de

= [©emo(-eh PleT e PPy
0 I'(n)
pn foo (P+(1—et))nq)n_le_‘p(P"'(l_et))dq)

n+y
(8-T)+2(1—e")

~(P+(1—et)n o I'(n)
Pn
~(P+(-eH))"
1 _ ([ —2¢(1-et) P@" te” P
E[_(R(t))z] fO e () d(P

(ZD')n n-1 —(p(zzr)
J I'(n)

Where,
w=P+2(1—¢eb
Pn
T (P+2(1-eb))n
After substituting into(14), Bayesian estimator for
R(t) using (SISELF) with based on Jefferys prior,

denoted by R(t)g is

P+2(1—eb)

ﬁ(t)B] = [m] .. (17)

Simulation study

To compare the behavior of the different
estimators of ¢ and R(t) Monte-Carlo simulation
has been employed. The process has been repeated
5000 times (L=5000) with different sample sizes
(n=15, 50, and100). The values of ¢ have chosen as
¢=0.5and 3.
Two values of the parameters of Gamma prior are
chosen as y=0.8 and 3, 6=0.5 and 3.
All estimators for ¢ derived previously are
evaluated based on their mean squared errors
(MSE's), where,
MSE(¢) = ZZLL‘“’)Z S i=123,...,L
The integrated mean squared error (IMSE) has
been employed to compare the behavior of the
Bayesian estimation for R(t). IMSE is an important

global measure and it more accurate than MSE,
where,

IMSE(R(t))—— Sk [ Yt R ()R
_n_t ijlMSE(Ri(tj))

Where i=1, 2,..., L, n; the random limits of ¢;.
In this paper, we chose t =0.1, 0.2, 0.3, 0.4, 0.5.

Results and Discussion
Estimating the shape parameter

The results of estimating the shape
parameter of Basic Gompertz distribution ¢
including expected values (EXP) and mean squared

errors (MSE's) are tabulated in Tables 1-4.

The discussion of the results can be summarized as

follows:

e The comparison between MSE's of the three
non-Bayesian estimators (MLE, UMVUE and
MInMSE) for the shape parameter ¢ showed
that (theoretically and empirically), the
performance of (MinMSE) is the best estimator,
followed by UMVUE. In other words,
MSE(MinMSE) < MSE(UMVUE) <
MSE(MLE)

e The simulation experiments results show a
convergence between the expected values
(EXP) to the true values of the parameter ¢ with
an increase in the sample sizes.

e The Bayes estimator under Scale invariant
squared error loss function with Gamma prior is
the best estimator for the shape parameter in
comparing to others, such that the value of the
shape parameter of Gamma prior y should be
less than (1) for all cases and the value of the
scale parameter of Gamma prior should be
chosen greater than 1 if the shape parameter of
Basic Gompertz distribution is less than 1 and
vice versa.
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e The MinMSE estimator for the shape parameter o
and Bayes estimator with Jefferys prior are
equivalent.

Generally, the MSE's of all estimators of the
shape parameter ¢ increase with the increase of
the shape parameter value.

Table 1. The expected values (EXP) and MSE’s for different estimators of the shape parameter of
Basic Gompertz distribution ¢ when ¢ =0.5.

# Gamma prior
n  Critria  MLE  UMVU MINMSE Jeprirgﬁ’s y=0.8 y=3
§=05 _ 6=3 _ 85=05 5=3
5 EXP 0535349 0499650 0463970 0463970 0.483241 0441950 0560279 0512405
MSE  0.023567 0.019441 0.018061 0.018061 0.017675 0.015239 0.027016 0.016110
s  EXP 0510212 0500008 0489804 0489804 0495385 0482878 0517718 0504647
MSE  0.005678 0.005353 0.005240 0.005240 0.005219 0.004974 0.005991 0.005134
10 EXP 0505357 0500303 0495250 0495250 0498021 0491761 0.509110 0502712
MSE  0.002650 0.002569 0.002540 0.002540 0.002537 0.002474 0.002730 0.002522

Table 2. The expected values (EXP) and MSE’s for different estimators of the shape parameter of
Basic Gompertz distribution ¢ when ¢ =3.

" Gamma prior
n  Critria MLE ~ UMVU MINMSE Jeprirgﬁ’s y=0.8 y=3
§=05  6=3 _ 8=05 §=3
s EXP 3212009 2097957 2783821 2783821 2.651703 1768695 3.074444 2050661
MSE  0.848427 0.699889 0.650205 0.650205 0.548626 1.596538 0.579961 1.009360
s  EXP 3061275 3000048 2938821 2938821 2897267 2517173 3027889 2.630656
MSE 0204416 0.192715 0.188672 0.188672 0.179087 0.328218 0.184850 0.240282
10 EXP 3032140 3001823 2971498 2.971498 2950575 2743830 3.016275 2.804920
MSE  0.095417 0.092509 0.091458 0.091458 0.089096 0.130291 0.090820 0.105633

Estimating the Reliability function

The discussion of the results IMSE's of all
estimators of R(t) were tabulated in Tables (5-8) .
and the dissection can be expressed by the
following important point:

R(t), followed by MLE when the value of the
shape parameter ¢ greater than 1(see Table 6).

The Bayes estimator under Scale invariant
squared error loss function with Gamma prior is
the best estimator for R(t) in comparison to

e According to the results for Non-Bayesian

methods, when the shape parameter less than 1,
the performance of MinMSE (approximated) is
the best estimator for R(t), followed by
UMVUE (approximated). In other words,
MSE(MinMSE) < MSE(UMVUE) <

MSE(MLE) (see Table 5). While the
UMVUE(approximated) is the best estimator for

others, such that the value of the shape
parameter of Gamma prior y should be greater
than (1) for all cases while the value of the scale
parameter of Gamma prior should be greater
than 1 if the shape parameter of Basic
Gompertz distribution is less than 1 and vice
versa (see Tables 7-8).

The IMSE's of all estimators of R(t) increase
with the increase of the shape parameter value.

Table 3. IMSE's of different estimators of the reliability function of Basic Gompertz distribution

when ¢ =0.5
n MLE UMVUE MINMSE  Jeffreys Gamma prior
(approxi  (approxi prior y=0.8 y=3
mated) mated) §=05 §=3 §=05 5=3
15 0.001459 0.001248 0.001216 0.001643 0.001414 0.001085 0.002465 0.000777
50 0.000384 0.000366 0.000363 0.000398 0.000383 0.000344 0.000479 0.000312
100  0.000186 0.000182 0.000181 0.000190 0.000186 0.000176 0.000210 0.000168
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Table 4. IMSE's of different estimators of the reliability function of Basic Gompertz distribution

when ¢ =3
n MLE UMVUE MINMSE Jeffreys Gamma prior
(approxi  (approxi prior y=0.8 y=3
mated)  mated) §=05 §=3  6§=05  &=3
15 0.006947 0.006914 0.007888 0.009866 0.006196 0.074618 0.005891 0.058172
50 0.002111 0.002108 0.002190 0.002375 0.002032 0.015987 0.001996 0.013066
100 0.001066 0.001066 0.001086 0.001132 0.001045 0.005355 0.001036 0.004508

Conclusion:

The simulation study has shown that:
1. In general, Bayesian estimation of the shape
Parameter and the Reliability function of Basic
Gompertz distribution under Scale invariant squared
error loss function with Gamma prior is the best
compared
1. AIP Conf. Proc. 2015; (1643): (125-134).
Hogg R V with the corresponding estimates.
2. To increase the accuracy of Bayesian estimation
of R(t) under Scale invariant squared error loss
function using Gamma prior, the value of scale
parameter (6) of Gamma prior should be chosen to
be inversely proportional to the value of the shape
parameter of Basic Gompertz distribution ().
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