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Abstract:

This paper is concerned with the blow-up solutions of a system of two reaction-diffusion equations
coupled in both equations and boundary conditions. In order to understand how the reaction terms and the
boundary terms affect the blow-up properties, the lower and upper blow-up rate estimates are derived.
Moreover, the blow-up set under some restricted assumptions is studied.
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Introduction:

In this paper, the following parabolic problem is for (x,t) €2 x(0,T),
studied: where F,G: R? = R, it can be said that a solution
uy = Au+ 1,ePY, v, = Av + 1,e%,x € B, (u, v) blows up in finite time, if there exist T < oo
du _ P, v _ e x € OBp, ) such that either u or v blows up at t = T, this
an an means
u(xl 0) = uO(x)' v(-x' 0) = UO(x)ix € BRI Suplu(x’ t)l — O,
fort € (0,T) XEQ ~
where A;,1, > 0;p,q > 0; By is a ball in R™ ; or fclégW(x' t) >, as t->T7,
Uy, Vo are smooth, nonnegative, radial non- while
decreasing, functions, satisfying the conditions: sup{lu(x, )| + [v(x, )|} < C <o, t<T.
9% _ ,pv, o _ ,qug x € OB x€EN
on ’ on ’ R Moreover, one can say that u, v blow up

Aug +eP% >0, Avy+eT >0, x€Bp, (&)  simultaneously, if both u, v blow up at T.
= In fact, many systems of two coupled
Upr(IX) =0,  vo(Ix) =0,  x€Bp y sy P

The blow-up phenomenon in time-dependent semilinear parabolig equations- _ha\_/e peen
problems has been studied over the past years by formulated from physical models arising in various

many authors, see for instance (1, 2 ,3, 4). For flelds_ of appI]ed SCIENCES, for_example, In _the
numerical studies of blow-up solutions, see (5.6,7). chemical reaction process, chemical concentration

In general, for a time- dependent equation (1), one andthtem;g_eraltlure. All Otf dtrl;ese exarr;p(ljes ctan bi
can say that the classical solution u blows up in mathematically represented by a coupled system o

L® — norm or blows up (for short), if there exist reaction diffusion equations in the form of (1), see

T < oo, called the blow-up time, such that u is well (1).
defined for all 0<t<T, while it becomes
unbounded in L* — norm, when t approach to T,

Since several years ago, some authors have
been interested in studying the blow-up properties
for reaction-diffusion equations (systems) with

that is: _ nonlinear boundary conditions, see for instance
supfu(x, )] = o0 as t=>T". (8,9,10,11,12,13).
For a system of two coupled semilinear heat In (8), it was considered a special case, where the
equations, namely reaction terms and boundary terms are of power
U, =Au+Fu,v), v, =4v+G(u,v), type functions:
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Up = Uyy + VP,
u,(1,t) = vy,
u,(0,t) =0,
u(x,0) = ug(x),

Vp = Uy, + uP2?,
v (1,t) = ulz,
1,(0,t) =0,
v(x,0) = vo(x),

3)

for x € (0,1), t€ (0,T)
where py, P2, 91,92 > 0, and u,, v, are radial
nondecreasing, positive smooth functions satisfying
the conditions:
Ugx(0) = 19, (0) =0,
U (1) = v (1), vox(1) = ug*(D).

It was shown that if max{pip,, 192, 0291, 4192} <
1, then every solution of problem (3) exists
globally; otherwise every solution blows up in finite
time. Moreover, the blow-up occurs only at x = 1
and the blow-up rate estimates take the following
forms
CG(T—-t)y“<u(lt) <C(T—-t)™% te(0,7),
C(T—t) P <v,t) SC(T—-t)F, te(0T),
where

a = a(p1, P2 91, 92), B = B(P1, P2, 1, q2)-
In (9), the critical exponents and the conditions,
under which blow-up can occur in a finite time,
were studied for a system of two heat equations
with inner absorption reaction terms and coupled
boundary conditions of exponential type:

uy = Au—1,eP¥, v, =Av —1,e?, x€Q,
du v

= el’l”""hu’ - = epzv"'CIzu’ X € 90
on on

u(x,0) =ug(x), v(x0)=vy(x), x€Q,
forte (0,T)

where Q is a bounded domain with smooth
boundary; 4;,1, > 0; p1,q, > 0; py,q1 = 0.

The problem (1) has been studied in (14,15), where
AL = A, = 0, namely:

u; = Au, vy = Av, X € By,

ou ov

— = eP? —=¢e, x€0B

oy =€ g =€ X 0Bg, (4)

u(x,0) = up(x), v(x,0) =vy(x),x € By,

forte (0,T)

It has been proved that the blow-up in this problem
can only occur on the boundary. Moreover, the
upper (lower) blow-up rate estimates take the
forms:

1
logc — zlog(T —t) <u(R,t)
1
< — —1log(T —
< logc 24 log( t),
1
logc — Elog(T —t) <v(R,t)

1
< logc — 5log(T —t),
t € (0,T).
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For the parabolic system as in (1), associated with
the zero Dirichlet conditions:

Uy = du + 4P, v, = Av + 1,e™, x € By,
u(x,t) =0, v(x,t) =0, X € 0By, )
u(x,0) =ug(x), v(x0)=vy(x), xEBy,

fort e (0,T)

It was proved in (15), that the upper (lower) blow-
up rate estimates take the forms:

1
logc —alog(T —t) <u(R,t)
1
< logc —Elog(T —t),
1
logc —Elog(T —t) <v(R,t)

1
< logc —;log(T —t),

t € (0,T).

The purposes of this paper are: Firstly, deriving
the upper and lower blow-up rate estimates for
problem (1). Secondly, studying the blow-up set
under some restricted assumptions. The rest of this
paper is organized as follows: In section two, the
local existence and blow-up with stating some
properties of classical solutions of problem (1) are
discussed. In section three, the upper and lower
blow-up rate estimates are derived. In section four,
the blow-up set is studied. In section five, some
conclusions are stated.

Preliminaries

It is clear that the system (1) is uniformly
parabolic, in addition, the reaction terms and the
boundary terms are smooth functions. Moreover,
the initial functions satisfy the compatibility
conditions (2). Therefore, the local existence of
unique classical solutions of problem (1) is known
by standard parabolic theory (16). On the other
hand, with any initial functions (uy,v,), the
solution of this system has to blow up in a finite
time and the blow-up set contains the boundary
(0Bg). This result can be proved easily using the
comparison principle, (17), and the known blow-up
properties of problem (4), which has been studied in
(14).

The next lemma shows some properties of the
classical solutions of problem (1).

It will be denoted for simplicity u(r,t) = u(x, t),
where r = |x| = /x? + x2 + -+ x2
Lemma 1 Let (u, v) be a classical solution to
problem (1) with (2). Then
1. (u,v) is radial and u, v > 0 in Bg x (0, T).

2. U, v, 20in(0,R) X (0,T).

3. u, v, > 0,in Bg % (0,7).
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Next, the following lemma will be proved, which
shows the relation between u and v.

Lemma 2 Let (u, v) be a solution to problem (1),
there exist M > 1 such that

ePV < Med, ed“ < MePY, (6)
(x,t) € Bg x (0,T)
Proof Let
J(x,t) = Meu(t) _ gpv(rt)
for (x,t) € B x (0,T), r = |x|.
A direct calculation shows
Je = qMeTu, — peP?v,,
= ququur - pepvvr’ (7)

Jrr = ququurr + szequu%
—pePv,, — p?ePVv?.
Thus

]t _]rr -

n—1

—Jr
= qgMeT™u; — peP’v,
- ququurr
2 2 2 2
—q“Me™us + peP’v,,. + p“ePVvy

n-1 n-1
i qMe®™u, + Tpep”vr
)

—pe’(Vy = Vpp — —— V) — szeqqu
+ p2ePVp?
= qMe?(1,eP”) — pe”(1,e") —
q*MeT%“u2 + p2ePvv?,
From (7), it follows that
1
(pvre?? +J,),

U, = prypTm
(P*v7 e’ + 2eP v ], + 7).

n—1

= qMe®™ (ut — Uy —

1
q2M2e2au
Therefore,

Je = A = (qA1M — pAy)e T PY

2pv 5 2ebV 1
)Ur - (Mequ vy + Mequ]r)]r-

w2

+(eP? —
Clearly,
ePV —

Med4

e v _J

Mequ Med4%
Therefore, the last equation can be rewritten as
follows:
Je =& =DbJy —c] =
(g4 M — pAy)e™*PY >0, (x,t) € Bg X (0,T)
provided M > pA,/qA,, where

eP?
b(x,t) =— Mot vy +Meq”

— € 2
c(x,t) = Vot vy
It clear that, b, ¢ are continuous functions and c is
bounded in By x (0,T*),forT* < T.
Moreover,

aJ
a |xEBBR = (qMeT™u, — peP?v,)
= qMeu+PY — pedqutpy

= (gM — p)ed¥tPv > (,

Jr|s
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and

J(x,0) = MeT0 — eP¥ >0, x € By
provided M is large enough.
From above and with using the Maximum principle
,(1), it follows that

J]=0, in Bgx(0,T).
Similarly, one can show that the function
H = MeP? — e js nonnegative in By x (0, T).
Blow-up Rate Estimates
In this section, the upper and lower blow-up rate
estimates for problem (1) with (2) are considered.
Theorem 1 Let (u, v) be a blow-up solution to
problem (1); where A, = A, = A; T is the blow-up
time. Assume that the initial conditions (uy, vg)
satisfy the conditions:

uor(r) — %eva(r) >0,
vor(r) — e ™ >0, 7€ (O,R) (8)
Then there is a positive constant ¢ such that
logc — %log(T —t) <u(R,t),
1
logc — Elog(T —t)<v(R,t), te(0,T).

Proof Define the functions J;, J, as follows:

J1Get) = u (r,t) — %epv(r,t)’

r t
Ja(x,8) = vp (7, £) — ™0,
A direct calculation shows
r n-—1
Jie = Upe — Epepv(vrr + - Ur + e),

— r v 1 pv
]1r = Upy _Epep Uy _Eep ’

n—1 n—1 v
Jirr = Upe = —— Uy + Tur - )lpep V)
r
R (pe?? vy, + p*eP’vf)
From above, it follows that
n—1
]11: _jlrr - —]11" =
n—1

r r
7 (uy, — 7 eP?) + ApeP? (v, — R ed™)

r 2,V ,,2 2 pv
+§p erryy +§pe Uy
Thus
-1
Jie — A1 + nr—zh — ApeP¥], =
%pze’”’vr2 + %pep"vr >0,
for (x,t) € B X (0,T) n {r > 0}.
In the same way, it can be shown that
n—1
Jar =42 + r_zlz —Aqe?™]; = 0,

for (x,t) € B X (0,T) N {r > 0}.
Clearly, from (8), it follows that

jl(x' 0),]2()(,', 0) = 0 X € BR
And
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J1(0,t) = u,(0,t) = 0,
J2(0,8) =v,(0,t) 2 0
Ji(R,6) = J,(R,t) =0, t € (0,T).
Since, the supermoms of the functions Ae, 1eP?
and 1;—;’ (on B x (0,t) fort < T) are finite,
therefore, from above and maximum principle, it
follows
]1,]2 > 0, (x, t) € BR X (O, T)

Moreover,
61
L |33R <0.
This means
r 1
(urr - Epepvvr - Eepv)lﬁBR <0.
Thus
-1 L 1 -
U < ( u, + e +§pe vr+Ee )asg

This implies that
u: (R, t) < nTTlep”(R’t) + Aev®D +
pepv(R,t)+qu(R,t) + %epv(R,t)‘ t e (0, T).
From the last inequality and Lemma 2, it follows
u (R, t) < n—_lMeq“(R't) + AM e TRD 4
Mpe?au®) += eq”(R D, te (7).
Thus, there eX|st a constant C such that
u, (R, t) < Ce?®RY € (0,T).
Integrate this inequality from ¢t to T and since u

blows up at R, it follows
c

- <e*®Y  te(0,T)
(T-)24
or logc— %log(T —t)<u(Rt), te(0,7).
It can be shown in a similar way that
1
logc — Elog(T —t) <v(Rt), te(0,T).

Next, the upper bounds are considered

Theorem 2 Let u be a blow-up solution solution to
problem (1)-(2), T is the blow-up time. Then there
is a positive constant C such that

u(R,t) <logC — élog(T —t),

1
v(R,t) <logC — Elog(T —t), te(0,T).

Proof Define
M(t) = maxu(x t), N(t) = maxv(x t).
Br

M(t), N(t) are increasing in (0 T) due to
u, v >0, (x,t) €Bg x (0,T).
ForO0 <z <t <T,x € Bg,asin (18), the integral
equation for problem (1) with respect to u can be
written as follows

u(x,t) = f I'(x—y,t—2)u(y,z)

+1; f f I'(x —y,t —1)eP*OUDdydr
Br
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t
+f f [(x—y,t— r)ep"(y'f)dsydr

flumﬂ

where T is the fundamental solution of the heat
equation, which takes the form:

1
P(x,8) = Grpmm exP(— ©)
Letting x — 0By and using the j Jump relation, (19),
for the fourth term on the right hand side of the last

equation, it follows that:
1
Eu(x, t) = f I'(x—y,t—2)u(y, z)dy
Br

t
+4 f f I'(x —y,t —1)eP*ODdydr
Z

t —1)ds,dr,

le

f f F'(x—y, t—‘r)ep”(yf)ds dt
SR

fLumﬂ

forxeaBR,0<z<t<T
Since u, v are positive and radial, it follows

fBR F(x -y t— Z)u(y,Z)dy > 0;

t
f f ePOUOr (x — y,t — 1)ds,d,
z YSR

t —1)ds,dr,

t
= J eP?®D(| T(x —y,t —1)dsy)dr.
z SR
Thus
1
—M(t) > j epN(T)( [(x —y,t —1)dsy)dt

waq;h—@—% — D)ldsy)dr, x

ESR0<z<t<T.
It is known that (see (19)) for 0 < t, < t,, these is
C* > 0 such that

t)l
c* 1
< . :
(tz — t))#  |x — y|(n+1-24-0)
for x,y € Sg,0 € (0,1).

or .
Iany (x y’ 2

Choose 1 — % < u < 1, from (19), there exist

C; > 0 such that
dsy
st |x—y|(m+1-21-0) < Cl'

Also, if t; close to t,, then there exist a constant ¢
such that

st I'(x — —ty)dsy =

: e
it =

Thus

Sincefor0<z<r<t<T
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it is clear that M(t) < M(t), thus

1 t ePN(® N _
SM@©) =c, ";/ﬁ dt — C;M(t)|T — z|*™#
(10)

Taking z so that C;|T — z|*™# = 1/2, it follows

t ePN(® _
M(t)=c, F=dr= A1) (11)
Clearly,
, ePN(®)
A (t) = Cﬁ.

From Lemma 2, there exist a constant k > 1 such
that the last equation becomes

L on  ceM® ¢ gaA®)
AW == 2
which leads to
T dA T ¢ drt
ke zazl vi=
Clearly,
. t ePN@
AT = i [} s =
t,., ePN®
cf, lim ~—— dr = co.
This leads to
1 2c
—qqu(f) = T —t.
Therefore, there exist a constant C, > 0 such that
qA(t) < _So_
e SJTT’ z<t<T. (12)

On the other hand, for t, = 2t — T (Assuming that
tiscloseto T),
A(t) = cfto =
t 1 d
26T yr=z ¢
= ePNC)2¢c(v2 — DVT — .
Combining the last inequality with (12), yields
C
—_T"_t > ePNC)2c(v2 — VT — ¢,
which leads to
DN(to) <« Co
e S DIy
Thus there exist a constant € such that

PV <5 g<t<T
T-t)

t ePN@

dr =

CepN(tO)

or
v(R,t) < logC — %log(T —t), te(0,T).
In the same way, it can be shown that
u(R,t) <logC — élog(T —t), te(0,T).

Blow-up Set
In this section, the blow-up set for problem (1) is
studied, under some restricted assumptions on
A1, 5.
Theorem 3 Let (u,v) be a blow-up solution to
problem (1), such that the following conditions are
satisfied:

i. 1<p<21<q<2

" 1 .
ii. A< mmm{Q, K,P} (13)
1 g ) —ulle
where Q = c’ K= (R2+4(n+1)T) e
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_ 4(n+1)

T (R2+4(n+1)T)
T is the blow-up time; and C is given in Theorem
3.2, A = max{1,, 4, }.
Then for any 0 < a < R, there exists A > 0 such

that:  u(x,t) < 1og(

1%
e~Iolleo,

1
A(Rz—rz)z)’
1
v, t) < log(G 752
for (x,t) € B x (0,T), r = |x|
Proof Define the two functions U,V as follows

U(x,t) =V(x,t) (14)

1
= log (Aa(x)+B(T-t))’

for (x,t) € By x (0,T),
where a(x) = (R? —=1r%)2, r=|x|, B >0,
A=A
A direct calculation shows:
U, = B ___
(a(x)+B(T-t))
Upr =
[a(x) + B(T — t)][4A(R? — 312)] + 164%r%(R? — 1?)
(a(x) + B(T — t))?

_ 4rA(R?*-1?)
T (a()+B(T-1))’

Thus
n—1
Ut - Urr _—Ur —AepV =
[B—4A(n — 1D(R? —r¥)](a(x) + B(T —t))
(a(x) + B(T —t))?
[4A(R? — 3r®)][a(x) + B(T — t)] + 161%a(x)
[a(x) + B(T —t)]?
A

a0 +B(T - )P
- [B—4A(n — 1)(R?> —r?) — 4A(R? — 3r%) — 161%]v(x)

[a(x) + B(T - )]?

[a(x) + B(T — t)]?

[B — 4AR?*n — 4AR?]a(x) — A
[a(x) + B(T —t)]?
Provided (T —t) <1/2, A(R* —r?) < 1/2,and

B +4AR*’(n+1) >

(15)

>0

> 000
~A(R?2 —12)
4AR*(n+ 1) = 4AR?*(n + 1),
where0 <r <a < R.
80, U — Upy == U, — Ae?” 2 0, (16)
in (0,R) x (0,7)
In the same way, it can be shown that:

Ve =V ==V, — A€V 2 0,
in (0,R) x (0,T)
It follows that
U — AU — 2,ePV >0, inBg x (0,T),
Vi —AV — 1,e9Y >0, inBgx(0,T)
provided B > A(4R?*(n + 1)).
Moreover,

(17

} (18)
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1 1
Ux,0) = log [a(x)+BT] 2 log [AR*+BT] =
u(x,0), x € BR

Provided ———— > e%(<0),
[AR*+BT]

or 1t > e”u()”oo
[AR*+BT]

From condition (13), it is obtained that
[AR41+ BT] = BRZl
i+ BT
_ 4(n+1)
" B(R2+4(n+ 1)T)
So that, (19) is satisfied if

pe_t0+D i,

TR2+4(n+ DT
In the same way, it can be shown that:

(19)
X € Bp,

1
V(x,0) = log [a(x)+BT] = log [AR4+BT] =
v(x,0), x € By (20)
Provided that
pe_t0+D i
“RZ+4(n+ DT
Moreover,
c
U(R,t) = log——— = log ,
B(T ) - t)q

(21)
V(R, t)—logB(T t)Zlog ‘<, l}
t € (0,7). )
provided B < 1/c
From (21) and Theorem 2, it follows that

U(R,t) = u(R,t), V(R,t) 2 v(R,t),
(22)
t e (0,T)
From (18, 19, 20,22), and by the comparison
principle (20), it follows that

Ulx,t) = u(x,t), V(x,t) =v(x,t),
for (x,t) € B X (0,T).
from (14), it is obtained

1
u(x,t) <log (m)

v(x,t) < log(m)
for (x,t) € B X (0,T).

Moreover, that

(23)

Conclusion:

This paper is devoted to deriving the upper and
lower blow-up rate estimates, and blow-up set for a
system of two reaction-diffusion equations coupled
in both equations and boundary conditions. The
results show that; under the assumptions of
theorems land 2, the upper blow-up rate estimates
of problem (1) are coincident with the upper blow-
up rate estimates of problem (5), while the lower
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blow-up rate estimates of problems (1) are
coincident with the lower blow-up rate estimates of
problem (4), see (15). Moreover, from (23), it can
be concluded that any point x € By cannot be a
blow-up point for problem (1) with (13). Therefore,
the blow-up can only occur on the boundary. This
means, if A; and A, are small enough, then the
blow-up set is the same as that of problem (4), see
(14).
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