Some Properties of Finite Dimensional Fuzzy Anti-Normed Linear Spaces

Esraa Alaa Hussein * Radhi I. M. Ali

Received 16/9/2019, Accepted 8/12/2019, Published 1/6/2020

Abstract:
In this paper the definition of fuzzy anti-normed linear spaces and its basic properties are used to prove some properties of a finite dimensional fuzzy anti-normed linear space.

Key words: Fuzzy anti-norm, Finite dimensional fuzzy anti-norm, t-co-norm.

Introduction:
Fuzzy set theory was introduced in 1965(1), later on, many scientists have applied the concept of the theory in many fields of mathematics, in which data is inaccurate or quasi-occult such as, computer programming, medicine,... etc. Defined a fuzzy norm on the linear space in a way that induced fuzzy metric space(2). In 2015(3) introduced some results of fundamental theorems for fuzzy normed spaces.
Fuzzy anti-norm defined on a linear space has been introduced (4) which reverses somehow to the concept (5) of fuzzy norm on a linear space. Mursaleen M and et al in 2016 (6) introduced generalized statistically convergent sequences of fuzzy numbers .In 2017(7) introduced some aspects on 2- fuzzy 2- anti Normed Linear space. Moreover, In (8) introduced some properties of Fuzzy Norm of fuzzy Bounded Operators. Recently, in 2018(9) introduced Generalized weighted statistical convergence in intuitionistic fuzzy normed linear spaces.
In this paper, we introduce the definition of fuzzy anti-norm on a linear space and study the finite dimensional fuzzy anti-normed linear space and the some properties of them.

Preliminaries
To make this paper as self-contained as possible, we give some definitions and preliminary in this section.

Definition 1(10)
A binary operation $\circ : I \times I \rightarrow I$, where $I = [0,1]$ is said to be continuous t-co-norm if for $a, b, c, d \in I$ then \circ satisfies the following conditions :

(i) \circ is associative and commutative ,
(ii) $a \circ 0 = a$, i.e. 0 is an identity element of the binary operation \circ ,
(iii) if $a \leq c$ and $b \leq d$ then $a \circ b \leq c \circ d$,
(iv) \circ is continuous on $I \times I$

Some examples of continuous t-co-norm are: for all $a, b, b_e I$

(i) $a \circ b = a + b - ab$
(ii) $a \circ b = \max\{a, b\}$,
(iii) $a \circ b = \min\{a + b, 1\}$.

Remark 2(10)
(a) For any $a, b \in (0,1)$ with $a > b$, there exist $c \in (0,1)$ such that $a > c \circ b$.
(b) For any $a \in (0,1)$, there exist $b \in (0,1)$ such that $b \circ b \leq a$.

Definition 3(4)
Let V be a linear space over a field F(R or C). A fuzzy subset N^e of $X \times R$ such that

$(N^e1) \forall x, v \in V,$ and c in F :

$(N^e2) \forall t \in R$ with $t > 0$, $N^e(x, t) = 0$ if and only if $x = 0$;

$(N^e3) \forall t \in R$ with $t > 0$, $N^e(cx, t) = N^e(x, \frac{t}{|c|})$

if $0 \neq c \in F$;

$(N^e4) \forall s, t \in R$, $N^e(x + v, s + t) \leq \max \{ N^e(x, s), N^e(v, t)\}$;

$(N^e5) N^e(x, t)$ is a decreasing function of $t \in R$ and $\lim_{t \rightarrow \infty}N^e(x, t) = 0$.

Then we called N^e be a fuzzy anti-norm on a linear space V and the pair (V, N^e) is called a fuzzy anti-normed linear space (in short FaNLS). The following condition of fuzzy norm N^e will be required later on.
\((N^6) \forall t \in R \text{ with } t > 0, \ N^6(x, t) < 1 \text{ implies } x = 0.\)

Example 4(4)

Suppose \((V, \| \|)\) be a normed linear space. Define
\[
N^6(x, t) = \begin{cases}
\|x\| & \text{if } t > 0, t \in R, x \in V \\
1 & \text{if } t \leq 0
\end{cases}
\]
Then \((V, N^6)\) is a Fa-NLS.

Lemma 5(4)

If \((V, N^6)\) be a Fa-NLS. Then \(N^6(x - y, t) = N^6(y - x, t) \forall x, y \in V \text{ and } t \in (0, \infty).\)

Definition 6(4)

Let \(N^6\) be a fuzzy anti-norm \(V\) satisfying \((N^6)6\).

Define
\[
\|x\|_\alpha^\ast = \inf \{ t > 0 : N^6(x, t) < \alpha, \alpha \in (0, 1) \}
\]

Theorem 7(4)

If \((V, N^6)\) be a Fa-NLS. \(\forall \alpha \in (0, 1) \text{ and } x \in V.\)

Then we have
\[
(i) \|x\|_{\alpha_1}^\ast \geq \|x\|_{\alpha_2}^\ast \text{ for } 0 < \alpha_1 < \alpha_2 \leq 1,
(ii) \|c\|_{\alpha}^\ast = |c|\|x\|_{\alpha_2}^\ast, \forall c.
(iii) \|x + y\|_{\alpha}^\ast \leq \|x\|_{\alpha_1}^\ast + \|y\|_{\alpha_2}^\ast.
\]

Theorem 8(4)

If \((V, N^6)\) be a Fa-NLS. Then \(\{\|x\|_{\alpha}^\ast; \alpha \in (0, 1)\}\) is a decreasing family of norms on \(V\).

Theorem 9(4)

Let \(V\) be a linear space and let \(\{\|x\|_{\alpha}^\ast; \alpha \in (0, 1)\}\) be a decreasing family of norms on \(V\). Now define a function \(N_1^\ast: V \times R \rightarrow I\) as
\[
N_1^\ast(x, t) = \begin{cases}
\inf(\alpha \in (0, 1]; \|x\|_{\alpha}^\ast \leq t) & \text{if } (x, t) \neq 0 \\
1 & \text{if } (x, t) = 0
\end{cases}
\]

(i) \(N_1^\ast\) is a fuzzy anti-norm on \(V\).

(ii) \(\forall x \in V, \exists r = r(x) > 0\) such that \(N_1^\ast(x, t) = 1\).

Definition 10(11)

Let \((V, N^6)\) be a Fa-NLS. A sequence \(\{x_n\}\) in \(V\) is said to be convergent to \(x \in V\) if given \(t > 0 \text{ , } r \in (0, 1)\) there exists an integer \(n_0 \in N\) such that \(N^6(x_n - x, t) < r, \forall n \geq n_0, t \geq n_0\).

Theorem 11(4)

Let \((V, N^6)\) be a Fa-NLS. A sequence \(\{x_n\}\) converges to \(x \in V\) iff \(\lim_{n \to \infty} N^6(x_n - x, t) = 0, \forall t > 0\).

Definition 12(11)

Let \((V, N^6)\) be a Fa-NLS. A sequence \(\{x_n\}\) in \(V\) is said to be a Cauchy sequence if given \(t > 0\)
\(r \in (0, 1)\), \(\exists\) an integer \(n_0 \in N\) such that \(N^6(x_n + p - x_n, t) < r, \forall n \geq n_0, p = 1, 2, \ldots\).

Theorem 13(4)

Let \((V, N^6)\) be a Fa-NLS. \(\{x_n\}\) is a Cauchy sequence in \(V\) iff
\[
\lim_{n \to \infty} N^6(x_n + p - x_n, t) = 0, p = 1, 2, 3, \ldots \text{ and } t > 0.
\]

Theorem 14(4)

If a sequence \(\{x_n\}\) in a Fa-NLS \((V, N^6)\) is convergent, its limit is unique.

Theorem 15(4)

Let \((V, N^6)\) be a Fa-NLS every subsequence of a convergent sequence converges to the limit of sequence.

Theorem 16(4)

If \((V, N^6)\) be a Fa-NLS then every convergent sequence is a Cauchy sequence.

Definition 17(4)

Let \((V, N^6)\) be a Fa-NLS. A subset of \(V\) of \(V\) said to be closed set if for any sequence \(\{x_n\}\) in \(U\) converges to \(x\) in \(U\), i.e., \(\lim_{n \to \infty} N^6(x_n - x, t) = 0, 0 < t > 0\) implies that \(x \in U\).

Definition 18(4)

Let \((V, N^6)\) be a Fa-NLS. A subset \(A\) of \(V\) is said to be the closure of \(U\) if \(\forall x \in A, \exists\) a sequence \(\{x_n\}\) in \(U\) such that \(\lim_{n \to \infty} N^6(x_n - x, t) = 0, 0 < t > 0\) we denote the set \(A\) by \(\bar{U}\).

Definition 19(4)

A subset \(A\) of a Fa-NLS is said to be bounded if for there exist \(t > 0\) and \(0 < r < 1\) such that \(N^6(x, t) < r, \forall x \in A\).

Definition 20(4)

If \((V, N^6)\) be a Fa-NLS. Then a subset \(F\) of a Fa-NLS is compact if any sequence \(\{x_n\}\) in \(F\) has a subsequence converging to an element of \(F\).

Theorem 21 (4)

If \((V, N^6)\) be a Fa-NLS. Then Every Cauchy sequence \(F\) in \((V, N^6)\) is bounded.

Finite dimensional fuzzy anti-normed linear space

In this section we prove the following lemmas which play the key role in studying the properties of finite dimensional fuzzy anti-normed linear spaces. Then, some properties of finite dimensional fuzzy anti- normed linear spaces will be proved.

Lemma 22

Let \((V, N^6)\) be a fuzzy anti-normed linear space with the underlying \(t\)-co-norm \(\circ\) continuous at \((0, 0)\) and \(\{x_1, x_2, \ldots, x_n\}\) be a linearly independent set of vectors in \(V\). Then \(\exists c > 0 \text{ and } \delta \in (0, 1)\) such that for any set of scalars \(\{\alpha_1, \alpha_2, \ldots, \alpha_n\}\):
\[
N^6(\alpha_1 x_1 + \alpha_2 x_2 + \ldots, + \alpha_n x_n, c \sum_{j=1}^n |\alpha_j| > \delta \ldots (1)
\]
Proof.
Let $s = |\alpha_1| + |\alpha_2| + \ldots + |\alpha_n|$. If $s = 0$ then $\alpha_j = 0 \forall j = 1, 2, \ldots, n$ and the relation (1) holds for any $c > 0$ and $\delta \in (0, 1)$. Next we suppose that $s > 0$. Then (1) is equivalent to
\[N^\circ (\beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_n x_n) > \delta \quad (2) \]
for some $c > 0$ and $\delta \in (0, 1)$, and for all scalars β’s with $\sum_{j=1}^n |\beta_j| = 1$.

If possibly suppose that (2) does not hold, thus for each $c > 0$ and $\delta \in (0, 1)$, \exists a set of scalars $\{\beta_1, \beta_2, \ldots, \beta_n\}$ with $\sum_{j=1}^n |\beta_j| = 1$ for which $N^\circ (\beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_n x_n) \leq \delta$.

Then for $c = \delta = \frac{1}{m}, m = 1, 2, \ldots, \exists$ a set of scalars $\{\beta_1(m), \beta_2(m), \ldots, \beta_n(m)\}$ with $\sum_{j=1}^n |\beta_j(m)| = 1$ such that $N^\circ (y_m, \frac{1}{m}) \leq \frac{1}{m}$ where
\[y_m = \beta_1(m) x_1 + \beta_2(m) x_2 + \ldots + \beta_n(m) x_n. \]

Since $\sum_{j=1}^n |\beta_j(m)| = 1$, we have $0 \leq |\beta_j(m)| \leq 1$ for $j = 1, 2, \ldots, n$. So for each fixed j the sequence $\{\beta_j(m)\}$ is bounded and hence $\{\beta_1(m)\}$ has a convergent subsequence. Say that β_1 denote the limit of that subsequence and $\{y_1(m)\}$ will represent the subsequence corresponding to $\{y_m\}$. Using a similar argument $\{y_1(m)\}$ has a subsequence $\{y_2(m)\}$ for which the corresponding subsequence of scalars $\{\beta_2(m)\}$ converges to β_2 (say). Continuing in this way, after n steps we obtain a subsequence $\{y_n(m)\}$ where
\[y_{n,m} = \sum_{j=1}^n y_j(m) x_j \]
with $\sum_{j=1}^n |y_j(m)| = 1$ and $y_j(m) \to \beta_j$ as $m \to \infty$.

Let $y = \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_n x_n$. Thus we have
\[\lim_{m \to \infty} N^\circ (y_{n,m} - y, t) = 0 \quad \forall \ t > 0 \quad (3) \]
Now for $k > 0$, choose m such that $\frac{1}{m} < k$. We have
\[N^\circ (y_{n,m}, k) = N^\circ (y_{n,m} + 0, \frac{1}{m} + k - 1 - \frac{1}{m}) \]
\[\leq N^\circ (y_{n,m} + 0, k - 1 - \frac{1}{m}) \]
i.e. $N^\circ (y_{n,m}, k) \leq \frac{1}{m} \circ N^\circ (0, k - 1 - \frac{1}{m})$.
\[\lim_{m \to \infty} N^\circ (y_{n,m}, k) \leq \frac{1}{m} \]
i.e. $\lim_{m \to \infty} N^\circ (y_{n,m}, k) = 0$. \quad \ldots (4)

Now $N^\circ (y_{n,m}, k) = N^\circ (y_{n,m} + y_{n,m}, k + k) \leq N^\circ (y_{n,m}, k) \circ N^\circ (y_{n,m}, k)
\[\Rightarrow N^\circ (y, 2k) \leq \lim_{m \to \infty} N^\circ (y_{n,m}, k) \circ \lim_{m \to \infty} N^\circ (y_{n,m}, k)
\]
(by the continuity of t-co-norm \circ at $(0, 0)$).
\[\Rightarrow N^\circ (y, 2k) \leq 0 \circ 0 \quad \text{by (3) & (4)} \]
\[\Rightarrow N^\circ (y, 2k) = 0 \circ 0 = 0. \]

Since $k > 0$ is arbitrary, by ($N^\circ 2$) it follows that $y = 0$. Again since
\[\sum_{j=1}^n |\beta_j(m)| = 1 \quad \text{and} \quad \{x_1, x_2, \ldots, x_n\} \text{are linearly independent set of vectors, so}
\]
y = $\beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_n x_n = 0$.

Thus we arrive at a contradiction and the lemma is proved.

Theorem 23
Every finite dimensional fuzzy anti-normed linear space (V, N°) with the continuity of the underlying t-co-norm \circ at $(0, 0)$ is complete.

Proof.
Let (V, N°) be fuzzy anti-normed linear space and let $\dim V = k$. Let $\{e_1, e_2, \ldots, e_k\}$ be a basis for V and $\{x_n\}$ be a Cauchy sequence in V. Let
\[x_n = \beta_1^{(n)} e_1 + \beta_2^{(n)} e_2 + \ldots + \beta_k^{(n)} e_k, \]
where $\beta_1^{(n)}, \beta_2^{(n)}, \ldots, \beta_k^{(n)}$ are suitable scalars. So
\[\lim_{m,n \to \infty} N^\circ (x_m - x_n, t) = 0 \quad \forall \ t > 0 \quad (5) \]
Now from lemma 22, it follows that $\exists \ c > 0$ and $\delta \in (0, 1)$ such that
\[N^\circ \left(m \sum_{i=1}^k (\beta_i^{(m)} - \beta_i^{(n)}) e_i \right) \leq c \sum_{i=1}^k |\beta_i^{(m)} - \beta_i^{(n)}| \quad (6) \]
Again for $0 < \delta < 1$, from (5), it follows that \exists a positive integer n_0,
\[0 < n_0 (\delta, t) \text{ such that} \]
\[N^\circ \left(m \sum_{i=1}^k (\beta_i^{(m)} - \beta_i^{(n)}) e_i \right) < \delta \quad \forall \ m, n \geq n_0 \quad (\delta, t) \quad (7) \]
Now from (6) and (7), we have
\[N^\circ \left(m \sum_{i=1}^k (\beta_i^{(m)} - \beta_i^{(n)}) e_i \right) < \delta \quad \forall \ m, n \geq n_0 \quad (\delta, t) \]
(i.e. $\beta_i^{(m)} - \beta_i^{(n)}$ is not increasing in t).
\[\Rightarrow \ c \sum_{i=1}^k |\beta_i^{(m)} - \beta_i^{(n)}| > \frac{t}{c} \quad \forall \ m, n \geq n_0 \quad (\delta, t) \]
(i.e. $\beta_i^{(m)} - \beta_i^{(n)}$ is not increasing in t).
\[\Rightarrow |\beta_i^{(m)} - \beta_i^{(n)}| > \frac{t}{c} \quad \forall \ m, n \geq n_0 \quad (\delta, t) \]
Since $t > 0$ is arbitrary, from above we have,
\[
\lim_{n,m \to \infty} |\beta_i^{(m)}(t) - \beta_i^{(n)}(t)| = 0 \quad \forall t > 0.
\]
Thus each sequence $\{\beta_i^{(n)}\}$ converges. Let
\[
\lim_{n \to \infty} \beta_i^{(n)}(t) = \beta_i(t) \quad \forall t > 0.
\]

\section*{Theorem 24}

Let (V, N) be a finite dimensional fuzzy anti-normed linear space in which the underlying tco-norm \circ is continuous at $(0,0)$. Then a subset A which is said to be compact if and only if A is closed and bounded.

\section*{Proof}

First we suppose that A is compact. We have to show that A is closed and bounded. Let $x \in A$. Then \exists a sequence $\{x_n\}$ in A such that
\[
\lim_{n \to \infty} (x_n - x, t) = 0 \quad \forall t > 0 \quad \text{implies} \quad x \in A.
\]
Since A is compact, \exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ converges to a point in A. Again $\{x_{n_k}\} \to x$ so $\{x_{n_k}\} \to x$ and hence $x \in A$. So A is closed.

If A is not bounded. Then $\exists r = r_0$, $0 < r_0 < 1$, such that for each positive integer n, $\exists x_n \in A$ such that $N(x_n, n) \geq r_0$. Since A is compact, \exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ converging to some element $x \in A$. Thus
\[
\lim_{k \to \infty} (x_{n_k} - x, t) = 0 \quad \forall t > 0.
\]

\section*{Conversely suppose that A is closed and bounded and we have to show that A is compact. Let $x = \lim_{n \rightarrow \infty} x_n$ and $\{ e_1, e_2, \ldots, e_n\}$ be a basis for V. Choose a sequence $\{x_n\}$ in A and suppose
\[
x_k = \beta_i^{(k)}(e_1) + \beta_i^{(k)}(e_2) + \ldots + \beta_i^{(k)}(e_n)
\]
for $\beta_i^{(k)}(e_1), \ldots, \beta_i^{(k)}(e_n)$ are scalar. From Lemma 22, $\exists \delta > 0$ such that
\[
N(x_n, x, t) = 0 \quad \forall x \in A.
\]
So $\{x_n\}$ converges. From (9) and (10) we get,
\[
N(\sum_{i=1}^{n} \beta_i^{(k)}(e_i), c \sum_{i=1}^{n} \beta_i^{(k)}(e_i)) > \delta.
\]
Again since A is bounded, for $\delta \in (0, 1)$ such that
\[
N(x_n, x, t) < \delta \quad \forall x \in A.
\]
So
\[
N(\sum_{i=1}^{n} \beta_i^{(k)}(e_i), t) < \delta.
\]

From (9) and (10) we get,
\[
N(\sum_{i=1}^{n} \beta_i^{(k)}(e_i), c \sum_{i=1}^{n} \beta_i^{(k)}(e_i)) > \delta > N(\sum_{i=1}^{n} \beta_i^{(k)}(e_i), t).
\]

\section*{So each sequence $\beta_i^{(n)}$ converges. Let
\[
\lim_{n \to \infty} \beta_i^{(n)}(t) = \beta_i(t) \quad \forall t > 0.
\]
⇒ \(\lim_{l \to \infty} N^o(x_{kl} - x, t) \leq 0 \circ 0 \circ 0 \ldots 0 \)

(\(\beta_l^{(kl)} \to \beta_l \) as \(l \to \infty \))

(using the continuity of t-co-norm \(\circ \)
at \((0, 0)\))

⇒ \(\lim_{l \to \infty} N^o(x_{kl} - x, t) = 0 \).

Since \(t > 0 \) is arbitrary, it follows that

\(\lim_{l \to \infty} N^o(x_{kl} - x, t) = 0 \Rightarrow \lim_{l \to \infty} x_{kl} = 0. \)

i.e. \(\{x_{kl}\} \) is a convergent subsequence of \(\{x_k\} \) and converges to \(x \). Since \(A \) is closed and \(\{x_k\} \) is a sequence in \(A \), it follows that \(x \in A \), thus every sequence in \(A \) has a convergent subsequence and converges to an element of \(A \). Hence \(A \) is compact.

Conclusion

In this paper, properties of fuzzy anti-normed linear space are given and they are more effective to prove some properties of a finite dimensional fuzzy anti-normed linear space for instance, a finite dimensional fuzzy anti-normed linear space is complete, etc. For future work we may study and find some characterization of infinite dimensional fuzzy anti-normed linear space.

Authors' declaration:
- Conflicts of Interest: None.
- Ethical Clearance: The project was approved by the local ethical committee in University of Baghdad.

References:
5. Bag T, Samanta SK. Finite Dimensional Fuzzy Normed Linear Spaces.