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Abstract:

In this study, an unknown force function dependent on the space in the wave equation is
investigated. Numerically wave equation splitting in two parts, part one using the finite-difference method
(FDM). Part two using separating variables method. This is the continuation and changing technique for
solving inverse problem part in (1,2). Instead, the boundary element method (BEM) in (1,2), the finite-
difference method (FDM) has applied. Boundary data are in the role of overdetermination data. The second
part of the problem is inverse and ill-posed, since small errors in the extra boundary data cause errors in the
force solution. Zeroth order of Tikhonov regularization, and several parameters of regularization are
employed to decrease errors for output force solution. It is obvious from figures how error affects the results
and zeroth order stables the solution.

Key words: Finite difference method, Inverse force problem, Regularization, Separation variables method,
Wave equation.

Introduction:

In physics, the wave equation uses
vibrations of a spring or membrane, acoustic
scattering, etc. (1-3). The aim of this study: Firstly, .
to invesgtligate (and) use finite—differencey methg:j where (u(x, ), f _(x)) represents the displacement
(FDM) rather than boundary element method and fgrci, respectively. 0) =
(BEM) in (L,2). Secondly, to show numerical results ~ #(%0) = ug(x), u¢(x, 0) = v (x),
and compare to (3-6), in addition presented . x € Q.‘ ..(2) .
numerical results were not shown in (4). Equation (2) is the initial condition, when ug

Furthermore, numerical solving for inverse represent the initi_al displacement and v velocity.
problems part by finite-difference method (FDM), PO solving equation (1)-(2) need to have boundary
and apply the Tikhonov regularization to stable the ~ condition, first let consider Dirichlet boundary
ill-posed  inverse  problem  with  various  conditions

regularization parameters (2,3). In this research the ulx,t)=Pxt),  (xt) €902 x(0,T). (3)
condition and the theory that insure uniqueness | N€ €quation above calls direct well-posed problem
solution is not provided because it is the same in (1-  If the f(x) is given. Otherwise, for solving
5). Inverse problem is linear source inverse problem  €quations (1)-(3) need to have extra data usually if
(1-3). The design of the paper is as follows: The Dirichlet boundary conditions taken as boundary

mathematical formulation is given in Section 2. ~ condition ~then ~Neumann condition will be
Sections 3, illustrates numerical results and additional data or posit, i.e. the same condition will

discussed, finally, conclusions are offered in  NOtbe existed in original problem
Section 4. a_u(x t) =q(x,t),(x,t) eI x(0,T)

av ) ) ) ) ) )
r con (4)

where v is the outward unit normal to 942, (2,3).
After that the inverse problem (1)-(4) split into

upr(x, t) = |72u(x, )+ f(x), (xt)enNx
(0,T), T >0 0E€ER 1)

Mathematical Formulations:
The require equation for nonhomogeneous
and one-dimension wave equation (1-3)
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U(X, O) = uO(x)' vt(x, O) = UO(X),

x € 0, (6)
v(0,£) =po(t),  v(L ) =pL(),

(x,t) €002 x(0,T). 7
Or using mixed boundary condition instead
equation (7)

vx(O, t) = QO(t)lv(L' t) = pL(t):
(x,t) €02 x (0, 7). (8)

Part two: (w, f) satisfies the ill-posed inverse
problem (1,2,4)
th(x! t) = Wxx(xl t) + f(x)!

(x,t) €N x(0,T), 9)
w(x,0) = wg(x,0) = 0, x € 0, (10)
w(0,t) =0 w(L,t) =0,

(x,t) €02 x (0,T). (11)
Wx(O, t) = QO(t) - vx(ol t);

(x,t) eErx(,7), (12)

And for using mixed boundary condition (8),
equation (12) changed to (see (1))
W(O, t) = pO(t) - U(O' t);
(x,t) e’ x (0,T). (13)

For the numerical solution of the part v direct
problem using FDM (2,3,6). Split wave equation in
two part, solving part one by FDM which is a new
work in this research. Divide the solution domain
(0,L) x (0,T) into M and N subintervals of equal
space length Ax and time step At, respectively,
where Ax = L/M and At =T/N. v;;:= v(x;t;)
is denoted, where x; = iAx, t; = jAt, for
i =0,M,j =0,N (2,3). Then, a central-difference
approximation to equations (5)-(7) at the mesh
points (x;,t;) = (iAx,jAt) of the rectangular mesh
covering the solution domain (0,L) x (0,T) is
(2!3)1

Vijer =TV + 2(1- v + 120

- vi,j—l' i =1,(M—1), ]
=1,(N-1), (14)
. =—— Vi1 — Vi1

Vio =Up(x;), 1=0,M, ST
=vo(%x;),
=1,(M-1), (15)

voj = Po(t;) vm; = Pu(t;),
=0,N, (16)

where r = At/Ax. Putting j = 0 in equation (14)
and using (15), this will obtain (see (2,3))

1
12U (Xip1) + (1= 72)uo(x;)

Vip = 2

1
+ E’"Zuo(xi—ﬂ + (A)vo(x), i
=1,(M-1). (17)
The normal derivatives %(O,t) and %(L,t) are

calculated using the finite-difference
approximations (see (2,3))

676

dv 4vyj —vyj — 3V OV
ax( 4 ]) 2Ax ’ ( ])
_3171\/1] 4vy,_ 1]+UM 2,
L 2Ax ’
=1,N. (18)

The method for solving the second part for
slit wave equation (9)-(12) is built on the separation
of variables, (see equations (53)-(55) in (1)). This
results (see (1,2))

qo(t) — v (0,t) =:g(t) =

aWk
—; (05D)

K
2 b

= \/—Z_Z A_k (1 —cos(cAgt)), t
=

€ [0, T]. (19)
And for (8) and (13) (see equations (78) and (79) in
1)
po(©) —v(0,t) =:h(t)

VZxC b
=C—ZZA—§(1—cos(c)lkt)). t
k=1"k

€ [0, T]. (20)
Consequently, replacing the exact data
qo(t)|or Po(t) by the noisy data (see (1,2))
a5 (t)Ip5(tn) = q, (D] py(t) + €,
n=TN, (21
where € are N (1-3) random noisy variables
generated (using the Fortran NAG routine
GO5DDF) from a Gaussian normal distribution with
mean zero and standard deviation o given by (1-3)
o = p% X maxeo,rlq0(0)|orPo(t)], (22)
p% is the percentage of noise. The noisy data (21)
also makes noise in g|o.h (1-3) as:
g (EIhe(tn) = q5(E)Ips (t)
— Uy (O, tn)lv(ov tn) = g(tn)lh(tn)
+€, n=1N. (23)
Then, apply the condition (19)|(20) with g|,.h
replaced by g€|,-h€ then regularized by zero
order Tikhonov functional

J(b) := Z Z (1 = cos(cApty))
K

—g P +AY B (24
k=1
Or,
N K
V2
J(Q) = Z _ZZ —2(1 — cos(cAyty))
n=1 k=1 Ak
— RE(E]? + 2 Z b2 (25)
where 4 = 0 is a regularization parameter (1-3)

Note that: From equations (21)-(23), "[" means
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or-.

Numerical Results and Discussion:

This study, illustrates same numerical
example of (1,2), in order to see difference between
BEM and FDM. Take the one-dimensional case,
N = (0,L)ywithL =1, T = 1(2,3), consider an
analytical solution with the input data given by (see
(1.3)) ,

t
u(x,t) = sin(mx) +t + EX

f(x) =1+ m?sin(mx),

x€[01], (26)
u(x,0) = ug(x) = sin(mx),

ur(x,0) = vo(x) = 1,

x € [0,1], (27)
@) First, Dirichlet condition
t2
u(0,t) =po(t) =t + EX
tz
u(L,t) =p(t) =t +,
t € (0,1], (28)
and additional condition
u(0,t) = qo(t) = m, t € [0,1], (29)

@)

v, (0, )

-5

o (& o2 =k} 04 0s 0 a7 (2] s 1

Second, mixed condition
2

u(l,t) =p(t) =t +%, u,(0,t) = qo(t) = m,

t € [0,1], (30)

and additional overdetermination
2

u(0,t) =pot) =t + %,t € [0,1]. (31

The numerical results for (a) v,(0,t) (b) v(0,¢t),
presenting in Fig. 1, achieved by the FDM with
various M = N € {20,40,80}. However, the
exact solution is not given, but it can see convergent
with various Mand N. And compare this figure with
Fig. 2 in (1) when boundary element method had
been used, which can be seen in Table 1, there is
difference  when choosing Dirichlet boundary
condition as extra data. Then input the numerical
solution (a) v,(0,t) (b) v(0,t) at the points
(t)n=1x into equation (a) (19) to determine the
values for g(t;;) and its noisy counterpart g€(t;)
given by (23), (b) (20) to determine the values for
h(t,) and its noisy counterpart h€(t,) given by
(23) forn = 1, N, respectively.

(b)

v(0,t)

2 L L L 1 1 L L
o |8} o2 o3 o4 a5 0 o7 ns L2 1

- O b

Figure 1. (a) v¢(0, t), (b) v(0, t) come by using the FDM withM = N € {20, 40, 80}.
Table 1. (a) vx(0,t), (b) v(0, t) come by using the BEM and FDM withM = N € {20,40,80}.

(@) v, (0, ¢)
t; M=N=20 M =N = 40 M=N =80
BEM FDM BEM FDM BEM FDM
02 250089 236232 242396  2.34681 2.38345 2.34291
04 082599 057872  0.69957  0.57279 0.63546 0.57130
06 -1.30763  -157872  -1.44003  -1.57279 -1.50564 -1.571304
0.8 -3.16143  -3.36232  -3.25401  -3.34681 -3.29844 -3.342907
(0) v(0,¢t)
02 0.1595 0.15959  0.1595 0.15948 0.1595 0.15946
0.4  0.0944 0.09407  0.0944 0.094376  0.0944 0.09441
06 -0.3339  -0.33483  -0.3339  -0.33401 -0.3339 -0.33391
08 -11255  -1.12690  -1.1255  -1.12566 -1.1255 -1.12551

From Fig. 2a one can note that the
numerical solution b = (by)k=1x 9et from (19)
compare with analytical values for the sine Fourier
series coefficients (see equation (75) in (1)) have a

good approached. Also there is different shape
where boundary element method (BEM) had been
used (see Figure 4 in (1)). From absolute error
between exact and numerical in Table 2a shows
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(FDM) is better than (BEM) where k = 5,10, but it
is opposite in k = 15,20.

Furthermore, Fig. 2b shows the b = (by)k=1x
obtained from (20), in comparison with cosine
Fourier series coefficients exact one when given by
(equation (83) in (1)) the amount of error between

(@)

K

the exact and numerical one is decried. Nearly the
same figure has been obtained when boundary is
used element method (BEM) (1). But the values are
closer to the exact one, when FDM has used one
can see in Table 2b.

(b)

Figure 2. The numerical solution (...) for (by),_1x for K = 20, N = 80 obtained, in comparison
with the exact solution (a) equation ((75) in (1)) (b) equation ((83) in (1)) (—).

Table 2. The numerical solution for (by),-1x for K = 20, N = 80 obtained using BEM and FDM,
in comparison with the exact solution (a) equation ((75) in (1)) (b) equation ((83) in (1)).

(@) by, In case v,(0,t)

k Exact BEM Error FDM Error

5 0.180063263 0.183231939 0.00316 0.1868537 0.00679045
10 O -1.77E-02 0.0177 0.0053252 0.00532524
15 0.060021088 6.96E-02 0.00957 0.0796422 0.01962113
20 0 -8.95E-03 0.00895 0.0106504 0.01065049

(b) by In case v(0,t)

5 -0.13076 -0.1317 0.0009360 -0.1310896 0.00032572
10 -9.72E-02 -0.0962 0.0009652 -0.0976859 0.00052070
15 0.009812 0.0056 0.0042129 0.00695022 0.00286274
20  -3.48E-02 -0.0346 0.0001999 -0.0368118 0.00201184

Give the numerical solutions f(x) from
equations ((54) and (79) in (1)). Note that: They are
the same formula but different method has been
used for finding by, it is FDM. Then f(x) are
plotted in Fig. 3(a) and 3(b), respectively. It is clear
from those figures that good approaches are
achieved between numerical and exact solutions. In
3(a) more accuracy has been obtained in boundary
element method (BEM) rather than FDM (see
Figure 5 (1)), and 3(b) nearly same figures are

(@)

fla)

obtained for both FDM and BEM (see Figure 14
(1)), and they are clear in Table (3). Moreover, the
figure of the numerical and exact solution for
u(x, t) and condition number of a matrix see (1) are
not showed in this study, the reason for that: nearly
I have gotten the same shape for u(x,t) and used
the same matrix (Q (3)). In this study the method
has been changed for solving vinstead applied
BEM apply FEM.

(b)

Figure 3. The exact solution (26) for f(x) in comparison with the numerical solution, (a)
equation ((54) in (1)) and (b) equation ((79) in (1)) for K € {5,10,20} respectively.
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Table 3. The exact solution (26) for f(x) in comparison with the numerical solution BEM and FDM,

() equation ((54) in (1)) and (b) equation ((79) in (1)) for K = 20.

fr=20 In case v, (0, t)

M =N =80 f(x),exact f(x), BEM Error f(x),FDM Error
0.2 6.801207913 6.582675008 0.218532905 6.709727966 0.091479947
0.4 10.38655158 10.28346389 0.103087691 10.33671287 0.04983871
0.6 10.38655158 10.3991275 0.012575923 10.34160683 0.04494475
0.8 6.801207913 6.879010004 0.077802091 6.730459123 0.07074879

fr=20 In case v(0, t)

0.2 6.801207913 6.7895 0.011707913 6.788235668 0.012972245
0.4 10.38655158 10.3705 0.01605158 10.36905097 0.01750061
0.6 10.38655158 10.3639 0.02265158 10.36180593 0.02474565
0.8 6.801207913 6.7581 0.043107913 6.754137179 0.047070734

Figure 4 and 5 have plotted the numerical solutions
for f(x) for various values of K € {5,10,20} and
contain some (p% = {1,3,5}%) noise in the data
(21). First, in case (a) Dirichlet condition: From Fig.
4(a) it can be observed that there is little difference
between the exact solution (26) and the results for
f(x) obtained with and without noise (where
p% = 1%). In contrast, in (Figure 7 (1)) the

instabilities as p% = 1%. This means, in this case,
FDM is a better solution rather than BEM. And
when the amount of noise increase p% = {3,5}%
it can be clearly seen that oscillations start to appear
see figures 4(b) and 4(c). Fig. 4(d) shows
instabilities as p increases and fixed K = 20.
Meanwhile, in case (b) mixed condition: Fig. 5
oscillations start to appear as K increases to 10 or

unregularized numerical solution for  f(x)
(a)
5
S~
xr
(©)
0
S

f(=x)

20 with noise (p% = 1%.).

(b)

S ()

(d)

Figure 4. Comparison between exact solution (26) for f(x) and numerical solution (54) in (1) for

various K € {5,10,20}, no regularization, for (a) p%

p% = {1,3,5}% and K = 20 noisy data.

679

1% (b) p% =

3% (c) p% =

5% (d)


http://bsj.uobaghdad.edu.iq/index.php/BSJ/workflow/access/4112

Open Access
2020, 17(2 Special 1ssue)NICST:675-681

Baghdad Science Journal

P-1SSN: 2078-8665
E-ISSN: 2411-7986

" " L L L L " s " |
01 0.2 0.3 0.4 0.5 08 0.7 oa 0.9 1

£
Figure 5. Comparison between exact solution
(26) for f(x) numerical solution (79) in (1) for
various K € {5,10,20}, no regularization, for
p% = 1% noisy data.

@)

|| frnumerical — fexact]]

Figure 6. The accuracy error ||fnumerical‘ fexact||’ as a function of 4, for K = 20 and (a) p%

5% (b) p% = 1% noise.
(a)

F (=)

|| frumerical — fexact]||

In order to deal with this instability, the
zero order Tikhonov regularization has been
employed, see (1-3). Fix K = 20 and to stabilise of
the numerical solution for £(x) shown by (—a—)
in Fig. 4(d) and 5 obtained with no regularization,
ie. 1 =0, for p% = 5% and p% = 1% noisy
data, respectively. First, to choose suitable
regularization parameter A, using error between
exact and numerical solution for f(x), from Fig.
6(a) and 6(b) can be seen that the minimum of the
error occurs around 2 = 10~ (the same amount in
using BEM (1) and difference shape compare to
Fig. 9 in (1) and A = 5 x 10™* (difference
amount in using BEM (1)), respectively. From Fig.
7 those amounts of A are optimal one.

(b)

(b)

. . . . . ,
05 06 07 08 09 1
xT

L
0.4

Figure 7. Comparison between exact solution (26) for f(x) and numerical solution, for K = 20, (a)

p% = 5% noise, and regularization parameters A € {1071,10°} (b) p% = 1%

noise, and

regularization parameters 4 € {107%,5 x 10741073},

Conclusions:

In this study, the solving wave equation by
using FDM and separation variable has been
applied. Meanwhile, some comparison between
FDM and BEM (1) has been mentioned in Section
3. The inverse problem is ill-posed since small
errors in the input addition boundary condition

680

causes large errors in the output solving force. The
problem was divided into two parts, the part one
discretised using the FDM, and next part using
separation variable (1,2), in addition for
regularization and stabilize, the zero order is
employed Tikhonov regularization method (1,2).
The choice of the regularization parameter was
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found by the minimum error method, it is clear and References:

from plots as well. The corresponding using FDM 1. Hussein SO, Lesnic D. Determination of a space-

and separation variable with different boundary dependent source functions in the one-dimensional

condition will be investigated in Part 11, (1-3). wave equation. EJBE. 2014; 12: 1-26.

2. Hussein SO. Inverse force problems for the wave
equation. PhD Thesis, The University of Leeds

Author’s declaration: Department of Applied Mathematics; 2016

- Conflicts of Interest: None. 3. Hussein SO, Lesnic D. Determination of forcing
- I hereby confirm that all the Figures and Tables functions in the wave equation. Part I: the space-
in the manuscript are mine. Besides, the Figures dependent case. J. Eng. Math. 2016; 96; 115-133.

and images, which are not mine, have been given 4. Cannon JR, Dunninger DR. Determination of an

the permission for re-publication attached with unknown forcing function in a hyperbolic equation

the manuscript. from overspecified data. ANN MAT PUR APPL.
- Ethical Clearance: The project was approved by 1970; 1: 49-62. _

the local ethical committee in University of - Colton D, Kress R. lnverse Acoustic and

Electromagnetic Scattering Theory. 3" ed. New
York: Springer Verlag; 2013.

6. Morse PM, Feshbach H. Methods of Theoretical
Physics. New York: McGraw-Hill; 1953.

Sulaimani.

Aagy) Basl g A gall z.ldmeguﬁ
i piiial) Jugd pa 3 ganall (39 il A8, ha aladind ;oY) 5 o
.'. =OL‘3; .\L&

sdadal)
&V baae Aa el Adlas el Q5 Cam A gall Alalre b eliadl) o aaied A gea 558 Ally 3 Batll a3 Al all o2a
B 2 (5 ) 285 (N a8 ol el Jumd 38y 5ha s 5 J5Y) sl 3 (FDM) 52 s35all G 5_ill 43k aladiiad o5 (ppand
Gk ge Y (FDM) sasaaall @dl diyh @alad & dus (2,1) (8 )5S0l dpuSall Allisally (Slaiall andll Jal) 4
Alall U andll () g 33 ganall (358 Lo ULl daddd Ao gaall clilll Cada g a3g (2,1) & 53,05l (BEM) 4 saall jualiall
4 steall Al il g um ALl da 8 Telad) Cand 28La) 40 gaad) i) 33 puall olad¥) Y Jine gudas b5 ouSe 5o
Al o pms M) (30 guaalsl) (a5 Bl s e Jsemnll dal G sUaa) Juli) Uil sapse (ilalas) ) fiaal e Gl 5 (o S5 ol

Aall il o Jead 4 jdall 45 )l o) S g daiill e 57 5 Uadldl o)) asS

A sall Aol dpnall 3 8l Allisa () puritall Jucad 43 ha (83 ganall <l g jall 46y Hla caasill sAalidal) cilalSl)

681


http://bsj.uobaghdad.edu.iq/index.php/BSJ/workflow/access/4112

