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Abstract: 
In this study, an unknown force function dependent on the space in the wave equation is 

investigated. Numerically wave equation splitting in two parts, part one using the finite-difference method 

(FDM). Part two using separating variables method. This is the continuation and changing technique for 

solving inverse problem part in (1,2). Instead, the boundary element method (BEM) in (1,2), the finite-

difference method (FDM) has applied. Boundary data are in the role of overdetermination data. The second 

part of the problem is inverse and ill-posed, since small errors in the extra boundary data cause errors in the 

force solution. Zeroth order of Tikhonov regularization, and several parameters of regularization are 

employed to decrease errors for output force solution. It is obvious from figures how error affects the results 

and zeroth order stables the solution. 

 

Key words: Finite difference method, Inverse force problem, Regularization, Separation variables method, 

Wave equation. 

  

Introduction: 
In physics, the wave equation uses 

vibrations of a spring or membrane, acoustic 

scattering, etc. (1-3). The aim of this study: Firstly, 

to investigate and use finite-difference method 

(FDM) rather than boundary element method 

(BEM) in (1,2). Secondly, to show numerical results 

and compare to (3-6), in addition presented 

numerical results were not shown in (4). 

Furthermore, numerical solving for inverse 

problems part by finite-difference method (FDM), 

and apply the Tikhonov regularization to stable the 

ill-posed inverse problem with various 

regularization parameters (2,3). In this research the 

condition and the theory that insure uniqueness 

solution is not provided because it is the same in (1-

5). Inverse problem is linear source inverse problem 

(1-3). The design of the paper is as follows: The 

mathematical formulation is given in Section 2. 

Sections 3, illustrates numerical results and 

discussed, finally, conclusions are offered in 

Section 4. 

 

Mathematical Formulations: 
The require equation for nonhomogeneous 

and one-dimension wave equation (1-3) 
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𝑢𝑡𝑡(𝑥, 𝑡) = 𝛻
2

𝑢(𝑥, 𝑡) + 𝑓(𝑥),     (𝑥, 𝑡) ∈ 𝛺 ×
(0, 𝑇),         𝑇 >  0,    𝛺 ∈ 𝑅                            (1) 

where (𝑢(𝑥, 𝑡), 𝑓(𝑥)) represents the displacement 

and force, respectively.  

𝑢(𝑥, 0) =  𝑢0(𝑥), 𝑢𝑡(𝑥, 0) =  𝑣0(𝑥),
𝑥 ∈  𝛺.      (2) 

Equation (2) is the initial condition, when 𝑢0 
represent the initial displacement and 𝑣0 velocity. 

For solving equation (1)-(2) need to have boundary 

condition, first let consider Dirichlet boundary 

conditions 

𝑢(𝑥, 𝑡) = 𝑃(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝜕𝛺 × (0, 𝑇).     (3) 
The equation above calls direct well-posed problem 

if the 𝑓(𝑥) is given. Otherwise, for solving 

equations (1)-(3) need to have extra data usually if 

Dirichlet boundary conditions taken as boundary 

condition then Neumann condition will be 

additional data or posit, i.e. the same condition will 

not be existed in original problem  
𝜕𝑢

𝜕𝜈
(𝑥, 𝑡) = 𝑞(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝛤 × (0, 𝑇),

𝛤 ⊂  𝜕𝛺     (4) 

where 𝜈 is the outward unit normal to 𝜕𝛺, (2,3). 

      After that the inverse problem (1)-(4) split into 

the form 𝑢 =  𝑣 + 𝑤 (1,2,4). Part one: 𝑣 satisfies 

the well-posed direct problem (1,2,4) 

𝑣𝑡𝑡(𝑥, 𝑡) = 𝑣𝑥𝑥(𝑥, 𝑡),
(𝑥, 𝑡) ∈ 𝛺 × (0, 𝑇),          (5) 
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𝑣(𝑥, 0) =  𝑢0(𝑥), 𝑣𝑡(𝑥, 0) =  𝑣0(𝑥),
𝑥 ∈  𝛺,           (6) 

𝑣(0, 𝑡) = 𝑝0(𝑡), 𝑣(𝐿, 𝑡) = 𝑝𝐿(𝑡),
(𝑥, 𝑡) ∈ 𝜕𝛺 × (0, 𝑇).         (7) 

Or using mixed boundary condition instead 

equation (7)  

𝑣𝑥(0, 𝑡) = 𝑞0(𝑡), 𝑣(𝐿, 𝑡) = 𝑝𝐿(𝑡),
(𝑥, 𝑡) ∈ 𝜕𝛺 × (0, 𝑇).           (8) 

Part two: (𝑤, 𝑓) satisfies the ill-posed inverse 

problem (1,2,4) 

𝑤𝑡𝑡(𝑥, 𝑡) = 𝑤𝑥𝑥(𝑥, 𝑡) + 𝑓(𝑥),
(𝑥, 𝑡) ∈ 𝛺 × (0, 𝑇),             (9) 

𝑤(𝑥, 0) =  𝑤𝑡(𝑥, 0) =  0, 𝑥 ∈  𝛺,          (10) 
𝑤(0, 𝑡) = 0, 𝑤(𝐿, 𝑡) = 0,

(𝑥, 𝑡) ∈ 𝜕𝛺 × (0, 𝑇).       (11) 
𝑤𝑥(0, 𝑡) = 𝑞0(𝑡) − 𝑣𝑥(0, 𝑡),

(𝑥, 𝑡) ∈ 𝛤 × (0, 𝑇),       (12) 
And for using mixed boundary condition (8), 

equation (12) changed to (see (1)) 

𝑤(0, 𝑡) = 𝑝0(𝑡) − 𝑣(0, 𝑡),
(𝑥, 𝑡) ∈ 𝛤 × (0, 𝑇).         (13) 

     For the numerical solution of the part 𝑣 direct 

problem using FDM (2,3,6). Split wave equation in 

two part, solving part one by FDM which is a new 

work in this research. Divide the solution domain 
(0, 𝐿) ×  (0, 𝑇 ) into 𝑀 and 𝑁 subintervals of equal 

space length ∆𝑥 and time step ∆𝑡, respectively, 

where ∆𝑥 = 𝐿/𝑀 and ∆𝑡 = 𝑇/𝑁.  𝑣𝑖,𝑗 ∶=  𝑣(𝑥𝑖, 𝑡𝑗) 

is denoted, where 𝑥𝑖 
=  𝑖∆𝑥, 𝑡𝑗  

=  𝑗∆𝑡, for 

𝑖 = 0, 𝑀̅̅ ̅̅ ̅̅ , 𝑗 = 0, 𝑁̅̅ ̅̅ ̅ (2,3). Then, a central-difference 

approximation to equations (5)-(7) at the mesh 

points (𝑥𝑖, 𝑡𝑗) =  (𝑖∆𝑥, 𝑗∆𝑡) of the rectangular mesh 

covering the solution domain (0, 𝐿)  × (0, 𝑇) is 

(2,3), 

  𝑣𝑖,𝑗+1  
= 𝑟2𝑣𝑖+1,𝑗 +  2(1 – 𝑟2)𝑣𝑖,𝑗 + 𝑟2𝑣𝑖−1,𝑗

−  𝑣𝑖,𝑗−1 ,     𝑖 = 1, (𝑀 − 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,   𝑗

= 1, (𝑁 − 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, (14) 

𝑣𝑖,0 = 𝑢0(𝑥𝑖),     𝑖 = 0, 𝑀̅̅ ̅̅ ̅̅ ,   
𝑣𝑖,1 − 𝑣𝑖,−1

2∆𝑡
= 𝑣0(𝑥𝑖),     𝑖
= 1, (𝑀 − 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,              (15) 

𝑣0,𝑗 = 𝑃0(𝑡𝑗),     𝑣𝑀,𝑗 = 𝑃𝐿(𝑡𝑗),     𝑗

= 0, 𝑁̅̅ ̅̅ ̅,               (16) 

where 𝑟 = ∆𝑡/∆𝑥. Putting 𝑗 =  0 in equation (14) 

and using (15), this will obtain (see (2,3)) 

 𝑣𝑖,1  
=

1

2
𝑟2𝑢0(𝑥𝑖+1) + (1 – 𝑟2)𝑢0(𝑥𝑖)

+
1

2
𝑟2𝑢0(𝑥𝑖−1) + (∆𝑡)𝑣0(𝑥𝑖),     𝑖 

= 1, (𝑀 − 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅.               (17) 

The normal derivatives 
∂v

∂x
(0, t) and 

∂v

∂x
(L, t) are 

calculated using the finite-difference 

approximations (see (2,3)) 

−
𝜕𝑣

𝜕𝑥
(0, 𝑡𝑗) = −

4𝑣1,𝑗 − 𝑣2,𝑗 − 3𝑣0,𝑗

2∆𝑥
,     

𝜕𝑣

𝜕𝑥
(𝐿, 𝑡𝑗)

=
3𝑣𝑀,𝑗 − 4𝑣𝑀−1,𝑗 + 𝑣𝑀−2,𝑗

2∆𝑥
,     𝑗

= 1, 𝑁̅̅ ̅̅ ̅.     (18) 
 

The method for solving the second part for 

slit wave equation (9)-(12) is built on the separation 

of variables, (see equations (53)-(55) in (1)). This 

results (see (1,2)) 

𝑞0(𝑡) − 𝑣𝑥(0, 𝑡) =: 𝑔(𝑡) =
𝜕𝑤𝑘

𝜕𝑥
(0, 𝑡; 𝑏)

=
√2

𝑐2
∑

𝑏𝑘

𝜆𝑘

𝐾

𝑘=1

(1 − cos(𝑐𝜆𝑘𝑡)),     𝑡

∈ [0, 𝑇].               (19) 
And for (8) and (13) (see equations (78) and (79) in 

(1)) 

𝑝0(𝑡) − 𝑣(0, 𝑡) =: ℎ(𝑡)

=
√2

𝑐2
∑

𝑏𝑘

𝜆𝑘
2

𝐾

𝑘=1

(1 − cos(𝑐𝜆𝑘𝑡)),     𝑡

∈ [0, 𝑇].                      (20) 
Consequently, replacing the exact data 

𝑞0(𝑡)|or 𝑝0(𝑡) by the noisy data (see (1,2)) 
𝑞0

𝜖(𝑡𝑛)|𝑝0
𝜖(𝑡𝑛) = 𝑞0(𝑡)| 𝑝0(𝑡) + 𝜖,

𝑛 = 1, 𝑁̅̅ ̅̅ ̅,           (21) 
where 𝜖 are 𝑁 (1-3) random noisy variables 

generated (using the Fortran NAG routine 

G05DDF) from a Gaussian normal distribution with 

mean zero and standard deviation 𝜎 given by (1-3) 

𝜎 =  𝑝% × 𝑚𝑎𝑥𝑡∈[0,𝑇]|𝑞0(𝑡)|or𝑝0(𝑡)| ,           (22) 

𝑝% is the percentage of noise. The noisy data (21) 

also makes noise in 𝑔|orℎ (1-3) as: 
𝑔𝜖(𝑡𝑛)|ℎ𝜖(𝑡𝑛) = 𝑞0

𝜖(𝑡𝑛)|𝑝0
𝜖(𝑡𝑛)

− 𝑣𝑥(0, 𝑡𝑛)|𝑣(0, 𝑡𝑛) = 𝑔(𝑡𝑛)|ℎ(𝑡𝑛)
+ 𝜖, 𝑛 = 1, 𝑁̅̅ ̅̅ ̅.       (23) 

Then, apply the condition (19)|(20) with 𝑔|orℎ 

replaced by 𝑔𝜖|orℎ𝜖 then regularized by zero 

order Tikhonov functional 

𝒥(𝑏) ∶= ∑[

𝑁

𝑛=1

√2

𝑐2
∑

𝑏𝑘

𝜆𝑘

𝐾

𝑘=1

(1 − cos(𝑐𝜆𝑘𝑡𝑛))

− 𝑔𝜖(𝑡𝑛)]2 + 𝜆 ∑ 𝑏𝑘
2

𝐾

𝑘=1

           (24) 

Or, 

𝒥(𝑏) ∶= ∑[

𝑁

𝑛=1

√2

𝑐2
∑

𝑏𝑘

𝜆𝑘
2

𝐾

𝑘=1

(1 − cos(𝑐𝜆𝑘𝑡𝑛))

− ℎ𝜖(𝑡𝑛)]2 + 𝜆 ∑ 𝑏𝑘    
2

𝐾

𝑘=1

           (25) 

where 𝜆 ≥  0 is a regularization parameter. (1-3) 
     Note that: From equations (21)-(23), "|" means 

http://bsj.uobaghdad.edu.iq/index.php/BSJ/workflow/access/4112


Open Access     Baghdad Science Journal                                P-ISSN: 2078-8665 

2020, 17(2 Special Issue)NICST:675-681                                                      E-ISSN: 2411-7986 

 

677 

"or". 

 

Numerical Results and Discussion: 
This study, illustrates same numerical 

example of (1,2), in order to see difference between 

BEM and FDM. Take the one-dimensional case, 

𝛺 =  (0, 𝐿) with 𝐿 =  1, 𝑇 =  1 (2,3), consider an 

analytical solution with the input data given by (see 

(1,3)) 

𝑢(𝑥, 𝑡) = sin(𝜋𝑥) + 𝑡 +
𝑡2

2
,

𝑓(𝑥) = 1 + 𝜋2 sin(𝜋𝑥) ,
𝑥 ∈ [0,1],          (26) 

𝑢(𝑥, 0) =  𝑢0(𝑥) = sin(𝜋𝑥) ,
𝑢𝑡(𝑥, 0) =  𝑣0(𝑥) =  1,
𝑥 ∈  [0, 1],            (27) 

(a) First, Dirichlet condition 

𝑢(0, 𝑡) = 𝑝0(𝑡) = 𝑡 +
𝑡2

2
,

𝑢(1, 𝑡) = 𝑝𝐿(𝑡) = 𝑡 +
𝑡2

2
,

𝑡 ∈ (0,1],         (28)  
and additional condition 

 𝑢𝑥(0, 𝑡) =  𝑞0(𝑡) =  𝜋, 𝑡 ∈  [0,1],            (29) 

Second, mixed condition 

𝑢(1, 𝑡) = 𝑝𝐿(𝑡) = 𝑡 +
𝑡2

2
,   𝑢𝑥(0, 𝑡) =  𝑞0(𝑡) =  𝜋,

𝑡 ∈  [0,1],      (30) 

and additional overdetermination 

 𝑢(0, 𝑡) = 𝑝0(𝑡) = 𝑡 +
𝑡2

2
, 𝑡 ∈  [0,1].          (31) 

     The numerical results for (a) 𝑣𝑥(0, 𝑡) (b) 𝑣(0, 𝑡), 

presenting in Fig. 1, achieved by the FDM with 

various 𝑀 =  𝑁 ∈  {20, 40, 80}. However, the 

exact solution is not given, but it can see convergent 

with various 𝑀and 𝑁. And compare this figure with 

Fig. 2 in (1) when boundary element method had 

been used, which can be seen in Table 1, there is 

difference when choosing Dirichlet boundary 

condition as extra data. Then input the numerical 

solution (a) 𝑣𝑥(0, 𝑡) (b) 𝑣(0, 𝑡) at the points 

(𝑡)𝑛=1,𝑁̅̅ ̅̅ ̅ into equation (a) (19) to determine the 

values for 𝑔(𝑡𝑛) and its noisy counterpart 𝑔𝜖(𝑡𝑛) 

given by (23), (b) (20) to determine the values for 

ℎ(𝑡𝑛) and its noisy counterpart ℎ𝜖(𝑡𝑛) given by 

(23) for 𝑛 =  1, 𝑁̅̅ ̅̅ ̅, respectively. 

 
(a) 

 

(b) 

 

Figure 1. (a) 𝐯𝐱(𝟎, 𝐭), (b) 𝐯(𝟎, 𝐭) come by using the FDM with 𝐌 =  𝐍 ∈  {𝟐𝟎, 𝟒𝟎, 𝟖𝟎}. 
 

Table 1. (a) 𝐯𝐱(𝟎, 𝐭), (b) 𝐯(𝟎, 𝐭) come by using the BEM and FDM with 𝐌 =  𝐍 ∈  {𝟐𝟎, 𝟒𝟎, 𝟖𝟎}. 
(a) 𝑣𝑥(0, 𝑡) 

𝑡𝑗 𝑀 = 𝑁 = 20 𝑀 = 𝑁 = 40 𝑀 = 𝑁 = 80 

BEM FDM BEM FDM BEM FDM 

0.2 2.50089 2.36232 2.42396 2.34681 2.38345 2.34291 

0.4 0.82599 0.57872 0.69957 0.57279 0.63546 0.57130 

0.6 -1.30763 -1.57872 -1.44003 -1.57279 -1.50564 -1.571304 

0.8 -3.16143 -3.36232 -3.25401 -3.34681 -3.29844 -3.342907 

(b) 𝑣(0, 𝑡) 

0.2 0.1595 0.15959 0.1595 0.15948 0.1595 0.15946 

0.4 0.0944 0.09407 0.0944 0.094376 0.0944 0.09441 

0.6 -0.3339 -0.33483 -0.3339 -0.33401 -0.3339 -0.33391 

0.8 -1.1255 -1.12690 -1.1255 -1.12566 -1.1255 -1.12551 
 

From Fig. 2a one can note that the 

numerical solution 𝑏  =  (𝑏𝑘)𝑘=1,𝐾̅̅ ̅̅̅ get from (19) 

compare with analytical values for the sine Fourier 

series coefficients (see equation (75) in (1)) have a 

good approached. Also there is different shape 

where boundary element method (BEM) had been 

used (see Figure 4 in (1)).  From absolute error 

between exact and numerical in Table 2a shows 
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(FDM) is better than (BEM) where k = 5,10, but it 

is opposite in k = 15,20. 

      Furthermore, Fig. 2b shows the 𝑏  =  (𝑏𝑘)𝑘=1,𝐾̅̅ ̅̅̅ 

obtained from (20), in comparison with cosine 

Fourier series coefficients exact one when given by 

(equation (83) in (1)) the amount of error between 

the exact and numerical one is decried. Nearly the 

same figure has been obtained when boundary is 

used element method (BEM) (1). But the values are 

closer to the exact one, when FDM has used one 

can see in Table 2b. 

 (a) 

 

(b) 

 

Figure 2. The numerical solution (…) for (𝒃𝒌)𝒌=𝟏,𝑲̅̅ ̅̅ ̅ for 𝑲 =  𝟐𝟎, 𝑵 =  𝟖𝟎 obtained, in comparison 

with the exact solution (a) equation ((75) in (1)) (b) equation ((83) in (1)) (— ). 
 

Table 2. The numerical solution for (𝒃𝒌)𝒌=𝟏,𝑲̅̅ ̅̅ ̅ for 𝑲 =  𝟐𝟎, 𝑵 =  𝟖𝟎 obtained using BEM and FDM, 

in comparison with the exact solution (a) equation ((75) in (1)) (b) equation ((83) in (1)). 
(a) 𝑏𝑘 In case 𝑣𝑥(0, 𝑡) 

𝑘 Exact BEM Error FDM Error 

5 0.180063263 0.183231939 0.00316 0.1868537 0.00679045 

10 0 -1.77E-02 0.0177 0.0053252 0.00532524 

15 0.060021088 6.96E-02 0.00957 0.0796422 0.01962113 

20 0 -8.95E-03 0.00895 0.0106504 0.01065049 

(b) 𝑏𝑘 In case 𝑣(0, 𝑡) 

5 -0.13076 -0.1317 0.0009360 -0.1310896 0.00032572 

10 -9.72E-02 -0.0962 0.0009652 -0.0976859 0.00052070 

15 0.009812 0.0056 0.0042129 0.00695022 0.00286274 

20 -3.48E-02 -0.0346 0.0001999 -0.0368118 0.00201184 
 

Give the numerical solutions 𝑓(𝑥) from 

equations ((54) and (79) in (1)). Note that: They are 

the same formula but different method has been 

used for finding 𝑏𝑘, it is FDM. Then 𝑓(𝑥) are 

plotted in Fig. 3(a) and 3(b), respectively. It is clear 

from those figures that good approaches are 

achieved between numerical and exact solutions. In 

3(a) more accuracy has been obtained in boundary 

element method (BEM) rather than FDM (see 

Figure 5 (1)), and 3(b) nearly same figures are 

obtained for both FDM and BEM (see Figure 14 

(1)), and they are clear in Table (3). Moreover, the 

figure of the numerical and exact solution for 

𝑢(𝑥, 𝑡) and condition number of a matrix see (1) are 

not showed in this study, the reason for that: nearly 

I have gotten the same shape for u(x, t) and used 

the same matrix (Q (3)). In this study the method 

has been changed for solving v instead applied 

BEM apply FEM. 

(a) 

 

(b) 

 

 Figure 3. The exact solution (26) for 𝒇(𝒙) in comparison with the numerical solution, (a) 

equation ((54) in (1)) and (b) equation ((79) in (1)) for 𝑲 ∈  {𝟓, 𝟏𝟎, 𝟐𝟎} respectively. 
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Table 3. The exact solution (26) for 𝒇(𝒙) in comparison with the numerical solution BEM and FDM,  

(a) equation ((54) in (1)) and (b) equation ((79) in (1)) for 𝑲 = 𝟐𝟎. 
𝑓𝑘=20 In case 𝑣𝑥(0, 𝑡) 

𝑀 = 𝑁 = 80 𝑓(𝑥),exact 𝑓(𝑥), BEM Error 𝑓(𝑥),FDM Error 

0.2 6.801207913 6.582675008 0.218532905 6.709727966 0.091479947 

0.4 10.38655158 10.28346389 0.103087691 10.33671287 0.04983871 

0.6 10.38655158 10.3991275 0.012575923 10.34160683 0.04494475 

0.8 6.801207913 6.879010004 0.077802091 6.730459123 0.07074879 

𝑓𝑘=20 In case 𝑣(0, 𝑡) 

0.2 6.801207913 6.7895 0.011707913 6.788235668 0.012972245 

0.4 10.38655158 10.3705 0.01605158 10.36905097 0.01750061 

0.6 10.38655158 10.3639 0.02265158 10.36180593 0.02474565 

0.8 6.801207913 6.7581 0.043107913 6.754137179 0.047070734 

 

Figure 4 and 5 have plotted the numerical solutions 

for 𝑓(𝑥) for various values of 𝐾 ∈  {5, 10, 20} and 

contain some (𝑝% =  {1, 3, 5}%) noise in the data 

(21). First, in case (a) Dirichlet condition: From Fig. 

4(a) it can be observed that there is little difference 

between the exact solution (26) and the results for 

𝑓(𝑥) obtained with and without noise (where 

𝑝% =  1%). In contrast, in (Figure 7 (1)) the 

unregularized numerical solution for 𝑓(𝑥) 

instabilities as 𝑝% =  1%. This means, in this case, 

FDM is a better solution rather than BEM. And 

when the amount of noise increase 𝑝% =  {3, 5}% 

it can be clearly seen that oscillations start to appear 

see figures 4(b) and 4(c). Fig. 4(d) shows 

instabilities as 𝑝 increases and fixed 𝐾 = 20. 

Meanwhile, in case (b) mixed condition: Fig. 5 

oscillations start to appear as 𝐾 increases to 10 or 

20 with noise (𝑝% =  1%.). 

 
(a) 

 

(b) 

 
(c) 

 

(d) 

 

Figure 4. Comparison between exact solution (26) for 𝐟(𝐱) and numerical solution (54) in (1) for 

various 𝐊 ∈  {𝟓, 𝟏𝟎, 𝟐𝟎}, no regularization, for (a) 𝐩% =  𝟏% (b) 𝐩% =  𝟑% (c) 𝐩% =  𝟓% (d) 

𝐩% =  {𝟏, 𝟑, 𝟓}% and 𝐊 = 𝟐𝟎 noisy data. 
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Figure 5. Comparison between exact solution 

(26) for 𝐟(𝐱) numerical solution (79) in (1) for 

various 𝐊 ∈  {𝟓, 𝟏𝟎, 𝟐𝟎},  no regularization, for 

𝐩% =  𝟏% noisy data. 

 

In order to deal with this instability, the 

zero order Tikhonov regularization has been 

employed, see (1-3). Fix 𝐾 = 20 and to stabilise of 

the numerical solution for 𝑓(𝑥) shown by (—△— ) 

in Fig. 4(d) and 5 obtained with no regularization, 

i.e. 𝜆 =  0, for 𝑝% =  5% and 𝑝% =  1% noisy 

data, respectively. First, to choose suitable 

regularization parameter 𝜆, using error between 

exact and numerical solution for 𝑓(𝑥), from Fig. 

6(a) and 6(b) can be seen that the minimum of the 

error occurs around 𝜆 =  10−1
 
(the same amount in 

using BEM (1) and difference shape compare to 

Fig. 9 in (1) and 𝜆 =  5 ×  10−4 (difference 

amount in using BEM (1)), respectively. From Fig. 

7 those amounts of 𝜆 are optimal one. 

(a) 

 

(b) 

 

Figure 6. The accuracy error ||𝒇numerical 
–  𝒇exact||, as a function of 𝝀, for 𝑲 = 𝟐𝟎 and (a) 𝒑% =

 𝟓% (b) 𝒑% =  𝟏% noise. 
(a) 

 

(b) 

 

Figure 7. Comparison between exact solution (26) for 𝒇(𝒙) and numerical solution, for 𝑲 = 𝟐𝟎, (a) 

𝒑% =  𝟓% noise, and regularization parameters 𝝀 ∈  {𝟏𝟎−𝟏, 𝟏𝟎𝟎} (b) 𝒑% =  𝟏%  noise, and 

regularization parameters 𝝀 ∈  {𝟏𝟎−𝟒, 𝟓 × 𝟏𝟎−𝟒, 𝟏𝟎−𝟑}. 

 

Conclusions: 
In this study, the solving wave equation by 

using FDM and separation variable has been 

applied. Meanwhile, some comparison between 

FDM and BEM (1) has been mentioned in Section 

3. The inverse problem is ill-posed since small 

errors in the input addition boundary condition 

causes large errors in the output solving force. The 

problem was divided into two parts, the part one 

discretised using the FDM, and next part using 

separation variable (1,2), in addition for 

regularization and stabilize, the zero order is 

employed Tikhonov regularization method (1,2). 

The choice of the regularization parameter was 
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found by the minimum error method, it is clear and 

from plots as well. The corresponding using FDM 

and separation variable with different boundary 

condition will be investigated in Part II, (1-3). 
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 تقسيم معادلة الموجة واحدة الابعاد

 جزء الاول: استخدام طريقة الفروق المحدودة مع فصل المتغيرات
 

 شيلان عثمان حسين

 
 العراق.السلمانية، قسم الرياضيات، كلية العلوم، الجامعة السليمانية،  

 

 الخلاصة:

في هذه الدراسة، تم التحقيق فى دالة قوة مجهولة تعتمد على الفضاء في معادلة الموجة حيث تم تقسيم معادلة الموجة عدديا الى  

( فى القسم الاول واستخدام طريقة فصل المتغيرات فى القسم الثاني وقد اجرى تغييرا فى MDFقسمين وتم استخدام طريقة الفروق المحدودة )

(  بدلاً من طريقة MDF( حيث تم تطبيق طريقة الفروق المحدودة )2,1قسم المتعلق بالمسآلة العكسية المذكورة فى )تقنية الحل لل

(. وتم توظيف البيانات الحدودية لخدمة البيانات ما فوق المحدودة وان القسم الثاني للمسألة 2,1الواردة  فى ) (BEM)العناصرالحدودية 

هوعكسى وفى وضع معتل لان الاخطاء الصغيرة فى البيانات الحدودية الاضافية تسبب اخطاءأ فى حل المسألة حيث وظفت الرتبة الصفرية 

معلمات( عديدة للنظام لتقليل الاخطاء من اجل الحصول على حل القوة ومن الواضح من الرسوم البيانية لنظام تيكونوف وكذلك باراميترات )

كيف ان الخطأ يو
ء

 ثر على النتيجة وكيف ان الرتبة الصفرية تعمل على استقرار الحل. 

  

 وة العكسية، معادلة الموجة.طريقة الفروقات المحدودة، طريقة فصل المتغيرات، مسألة الق التنظيم، الكلمات المفتاحية:
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