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Abstract:

In this article, we aim to define a universal set consisting of the subscripts of the fuzzy differential
equation (5) except the two elements 0 and N, subsets of that universal set are defined according to certain
conditions. Then, we use the constructed universal set with its subsets for suggesting an analytical method
which facilitates solving fuzzy initial value problems of any order by using the strongly generalized H-
differentiability. Also, valid sets with graphs for solutions of fuzzy initial value problems of higher orders are

found.

Key words: Fuzzy differential equations,
differentiability.

Fuzzy Laplace transform, Fuzzy numbers, Generalized H-

Introduction:

The concept of the fuzzy derivative was
first introduced by Chang and Zadeh (1), it was
followed up by Dubios and Prade (2), and Puri and
Ralescu (3). The fuzzy Laplace transform (FLT) is
proposed to solve first order fuzzy differential
equations (FDEs) by using the strongly generalized
differentiability concept (4), and then some of well-
known properties of the fuzzy Laplace transform
were investigated. In addition, an existence theorem
was given for fuzzy-valued function which
possesses the fuzzy Laplace transform (5). A
formula of the fuzzy Laplace transform of the nth-
order derivative was initially introduced in terms of
the number of derivatives in form (ii) by
Mohammad Ali ( 6), and Haydar and Mohammad
Ali (7), it was followed by introducing another
formula for the fuzzy Laplace transform on fuzzy
nth-order derivative by concept of the strongly
generalized differentiability (8). In the direction of
solving n-th order FDEs numerically, many efforts
have been introduced by a number of authors (9-
11). So far, a few number of works have been
introduced in the subject of finding the analytical
solutions of FDEs for example (12- 14). Also, some
analytical methods for solving fuzzy differential
equations are introduced in (15). Recently,
approximated solutions of fuzzy initial value
problems have been studied such as (16) and (17).
In this paper, we extend the proposed method by
Mohammed (18), for solving nth-order classical

differential equations by the classical Laplace
transform to solve nth-order FDEs by FLT under
the strongly generalized H-differentiability. Also,
we introduce theorem and some corollaries  that
help us in solving nth-order FDEs.

This paper is organized as follows: Basic
concepts are given in Section 2. In Section 3, a new
method for solving FIVPs of nth-order is introduced
with some results. In Section 4, examples of several
FIVPs are solved to show the activity of the
method. In Section 5, discussion and conclusions
are given.

Basic concepts
In this section, we are going to recall some basic
concepts that we need in this paper.

Definition 1. (5) A fuzzy number u in parametric
form is a pair (u,0) of functions u(e) and
U(ax), 0<a <1 which satisfy the following
requirements:

1. u(e)is a bounded non-decreasing left
continuous function in (0,1], and right continuous

at 0,
2. U () is a bounded non-increasing left continuous

function in(0,1], and right continuous at 0,
3. u(a)<u(e), 0<a<l.
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Definition 2. (5) Letx,yeE. If there exists
Z € Esuch that X=Yy+2Z, then zis called the H-
difference of X and Yy, and it is denoted by xXOY .

In this paper, the sign “O“ always stands for H-
difference, and also note that X Oy #Xx +(-1)y .

Definition 3. (5) Let f :(a,b) > Eand X, € (a,b).
We say that f is strongly generalized differential
at x, if there exists an element f'(x,) € E, such
that
i. For allh > Osufficiently small, 3f (x,+h) ©
f (%), 3f (%) © f (% —h) and the limits (in the
metric d)

lim[(f (5 + M) of (x,))/h]=lim(f (x;)o
f(x —h))/h]=1'(x)

or

ii. For allh> Osufficiently small, 3f (x,)©

f(x,+h), 3f (x,—h)© f (X,) and the limits (in
the metric d)

lim{(f (x,) ©F (x, +h)) (-h)] = lim{(f (x,~h)

of (X )= =T '(x,)
or
iii. For allh> Osufficiently small, 3f (x,+h)e©

f (%), 3f (x,—h)© f(X,) and the limits (in the
metric d)
lm(f (3 +h)©F (x))/h] = lim{(f (x, ~h)e

f (X)) /(=h)]=F"(x,)
or
iv. For allh>Osufficiently small, 3f (x,)©

f (%, +h), 3f (x,)© f (% —h) and the limits (in
the metric d)

lim[(f (x,) ©f (x, +h))/(=h)]=lim(f (x,)

f (x,—h))/h]=f"(x,)

Definition 4. (4) Let f (X )be continuous fuzzy-
f(x)e™ s

improper fuzzy Rimann-integrable on [0,00), then

valued function. Suppose that

_[:f (x )e ™dx is called fuzzy Laplace transform
and is denoted as:

L[f (x )]z.[:f (x )e ™dx, (p >0 and integer)
We have:

[ 1 (x) e™dx =(] f (x;a) e™ax,

[ (x:a) e™dx),

also by using the definition of classical Laplace
transform:

E[f_(x;a)]:.f:f_(x;a) e Pdx

and

E[f_(x ;a)] = j:f_(x ;o) e Pdx,
then, we follow:

L[f (x)]:(f[f_(x;a)],é[f_(x;a)]).

Theorem 1. (6, 7) Suppose that f (t), f '(t),...

,f " D(t)are differentiable  fuzzy  valued
functions such that
f @), f 12@),..., f (n)(t) are (ii)-
differentiable functions for

0<i;<i,<...<ip<n-1  when 0<m<n
and  f®@t) is  (i)-differentiable  for
p=ij,j=L2,...,m, and if o -cut
representation of fuzzy- valued function f (t) is
denoted by f (t) =[f (t;),f (t; )], then:
(@) If m isaneven number then

fWe) =Lt a)f Ot )
(b) If m isan odd number then

f ™M) =If ™ (;a).f ;)

Theorem 2. (6, 7) Suppose that f (t),f '(t),...

, f " D(t) are continuous fuzzy-valued functions
on [0,00)and of an exponential order and that

f M(t)is a piecewise continuous fuzzy-valued
function on [0,00). Let f () f (2)t),...

f (im)(t)
0<i;<i,<...<ip,<n-1 and f® be (i)
differentiable function for p ;tij,j =12,....m
and f (t)=(f (t;a).f (t;a)); then

(D)If mis an even number, we have:

LIf ™ ©)]=p"LIf ¢)]©p"f (0)

n-1
®Z p n—(k +1)f (k) (0),

k=1

be (ii)-differentiable functions for

such that
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{ O, if q isaneven number,
® =

where q is the number of (ii)-differentiable
functions f () when i <k .

—, if g isan odd number,

(2) If mis an odd number, we have:

LIf ™@)]=-p"f (0) © (—p")L[f ()]

n-1
® pn—(k+1)f (k)(o) ,

such that

.

where g is defined as in (1) above.

O, if q isanodd number,

—, if g isaneven number,

A suggested method for solving nth-order fuzzy
linear initial value problems

In this section, we are going to introduce a
theorem and some corollaries which can be used for
solving FIVPs of the nth-order.

Notations: First of all, we shall define the symbols
¥ + F.¢ and F, , which are essential in

Fiea T

this article. If n is the order of the fuzzy
differential equation which is to be solved and m is
the number of derivatives in form (ii) among

y(t), y'(t),..., y" (). Then
1- Let the symbol ®; be© or + (i.e. ®).
2- Let ; ¢ be defined as:

i,o!

Fif =

@)

{ + (i.e. @), if g isan even number,

(-1) ©, if q is an odd number,

where q is the number of (ii)-differentiable

functions f @) when | <iand "f "in the above
subscript  refers to the word  fuzzy  for
i=12,..,n.

3- Let +; , be defined as:

{ +, if g is an even number,
Foo=

)

—, if g is an odd number,

where g is defined as in equation (1) above and
"0"inthe above subscript refers to the word

ordinary for i=1,2,...,n. Therefore, we note that:

n, f

+ (i.e. @), if Misaneven number,
¥ ={ ®3)

(-1) ©, if M is an odd number,

+, if M is an even number,
¥ —{ 4)

—, if M is an odd number,

Theorem 3. Suppose that we have the following
FDE:

a,y " + ®n—lan—1y (= +"'+®1a1y '+®any =
f(t),aeR,i=01..,n, (5)
with given fuzzy initial conditions y (0),y '(0),...,
y D) and y @),y 2(),....y " (t)are
functions in form (ii) for 0<i,<i,<...<i,

<n-1,0<m<n. Then the solution y(t)
satisfies the following relation:

n-1 .
(in,f a,p" + 0@y +D O, Fi( gp' JL[Y ®)]=
i=1
LIf (®©)]+u(p), (6)
where F;  and +, ; are defined in equations (1)

and (3) respectively and u(p) is a polynomial of
p whose degree is less than or equal to n —1.
Proof. The FDE (5) can be written as:

Iy . ) .
Opdyy +any(n) +Z®iaiy(l) + z ®iaiy(l) +

i=1 i=i;+1
im ) n-1 )
o Y 0y Y ey =t (). (7)
=i+l i=i,+1

We suppose that n, is the number of derivatives in
form (ii) which is less than the ith derivative for
1<i <iy, n, is the number of derivatives in form
(i) which is less than the ith derivative for
i, +1<i <i, when kK =1,2..m -1 and n, is
the number of derivatives in form (ii) which is less
than the ith derivative for i, +1<i <n-1.

It is clear that n, =i, 1 =0,1,...,m.

Now, Let M be an even number then m =1 is an
odd number and m—2 is an even number.
Therefore equation (7) can be written as follows:
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iy ) m/2 izj )
Oy +Z®iaiy(l)+z > O3y "+
i=1 j=L i=ip; g+l
(m-2)/2 izjn _ n-1 )
Z Z O3y ")+ Z 0,3,y ") +ay ™
j=1 i:i2j+1 =i+l
=f (t). (8)
We take FLT to both sides of equation (8):

Ol [y]+a,Lly (”)]+Zl:®iai L[y D1+

i=1
m/2  ipj (m=2)/2 izju

> > eaLlyPl+ Y Y oa.

j=li=iy; 4+1 j=1 i=ip+l
n-1

Lly U1+ > @aLly V1=LIf 0] (9)

i=ip,+1

Since Ny =0(even), n,; ; =2j—1(odd) for

j=1..,2 m-2
2 2

and n, =m (even), then by using Theorem 2,

equation (9) becomes:

Oo2oLLyl+ Y ®,a[p'LLy®)] © p' 'y (0) ®,
i=1

i-1 m/2 i )

1|0"‘“”y‘k’(0)]+2 > Oa-p't

=1

j=1 i=ip g+l

, Nyj =2]j(even) for i=1..,

k

y(©)e (-p )Ly ©)1®, Y. p' Py ®(0)]+

k=1
(m-2)/2 izjn : _
> > elp'Llyt)le p'ly(0)
j=1 =iy

n-1 )
2. G [p'LLy ()]

i=i,+1

) i-1
o Py (0)®, > p )y o)1+ a,[p".

k=1

n-1
LIy )] © p"y (0)®, D p" Py (0]

k=1
= L[f ()],
where

i1
®, > p' Py © )]+
k=1

®, =

O, if q isaneven number,
{ (10)

—, if g isanodd number,

O, if q isanodd number,

B, ={ (11)
—, if g isaneven number,

where qis the number

functions f®when | <k.
Then, we can get:

of (ii)-differentiable

Ih

. 2 . n-1 .
[ ®iaipl+z Z ©,ap' + z ©a,p'

i=0 =1 i+l i=i 41
m/2 g .

+a,p" 1Ly )1+, D, ©i(-Doap'l
=L =iy 44l

LIy ()] =LIf (t)]+u,(p), (12)

where u,(p) is a polynomial of pits degree is

less than or equal to n —1. It is clear that equation
(12) can be written as:

a,p" +®oao+ni:®i Tir & pijL[y(t)]=
=
L[f ©)]+u(p), u(p)=uy(p), (13)

where F; ¢ is defined as in equation (1).

Similarly, if m is an odd number, (i.e., m —1 is an
even number and m—2 is an odd number).
Therefore, equation (7) can be written as follows:

I . (m-1)/2  iyj
1
Opayy +Z®iaiy( S

i=1 j=1 =iy 4l

Oy ")+

(m-1)/2 izju ) n-1 )

> 0ay+ > ey +ay®
=l i=ip i+l

=f (t).

By taking FLT to both sides of the above equation

and making some simplifications, we get:
n-1

[(-D03,p" + O3+ 0; ¥ ¢ ap'ILLy ()]
i=1

=L[f @)]+u(p), u(p)=v(p), (14)

where F; ¢ is defined as in equation (1).

It is clear that equations (13) and (14) can be written

as in equation (6).

By equation (6) and determining ©; ,F; ; and

Fo¢ . wecanget I[y (t;a)] and I[Y(t; )], then

i=ip,+1

taking | " gives y(t;e) and y(t;a).
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k .
Corollary 1. Suppose that I[f.(t;a)] = M
h,(p;a)
and |[f_(t;a)]:M. If ® =+and g >0
h,(p; )

for i =0,1,...,n—1and a, > 0. Then the o — cut
representation Yy (t;e) and  y(t;a) of the
solution y (t) are given as follows:

y(ta)=1"] %(pic) ]

- hhzap (ao+2+.o.
(15)

Jtia) =1 9.(pic) ],

hhzap (a0+z+|o i

o IS deflned as in equation (2), g,and @,
are polynomials of p such that:

deg(;) < 2n +deg(h,(p;a)) +deg(h,(p; ),

i =12

Proof. The proof can be made by considering that
®; =+ Viand g >0 Vi inequation (6). Then:

where +;

+ (i.e. @), if g is an even number,
{ (-1) ©, if q is anodd number,

=+i >

where q s defined as in equation (1).
Also, we note that if M is an even number then
Fo¢ =+, and if M is an odd number then

T, =(-1) o.

Corollary 2. Suppose that I[f (t;@)] = %

awd ()= 2PD e o L
hZ(p!a)

8 <0 for i =0,1,...,n—1 and a, >0. Then
y ;) and y(t;«) aregiven as follows:

y(t,a)=

| 71[ ql(pa)

hlhzzaipi(+no np —a, — Z+| o
i=0

y(t;a)=
Ifl[ q (pa)
hlhzzaipi(_'_n 0 np —q — z+| o

where +

,and F;  are defined as in equatlons 4)

and (2) respectively, g,and qg,are polynomials of
p such that:

deg(;) < 2n +deg(h,(p;a)) +deg(h,(p; ),

i =12

Proof. We can prove by achieving similar steps in

the proof of Corollary 1 with regarding that

k
Corollary 3. Suppose that |[f (t; )] = ky(p;a)
hl(p!a)
_ k :
and |[f (t;a)]=M. If ® = 6 and
h,(p; @)

8 =0 for i=0,1...,n—1 and a, >0.Then
y(t;a) and ¥ (t;a) are given as follows:

Yty =1 — @)
hlhz(anpn—zaip')

1

]
(+no np —q - Z_I_I o
(16)
yta) =12
hlhz(anp“—Zaip')
i=0
1
: ]
(+no np —q - Z+|o i
where ¥  and F; , are defmed as in equations (4)

and (2) respectively, g,and qg,are polynomials of
p such that:

deg(q;) < 2n +deg(h,(p;a)) +deg(h,(p; ),

i =12

Proof. The proof can be achieved by considering
that ® = © and a >0,Vi in equation (6).
Then:
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O, if q isaneven number,
A7)
—, if g isan odd number,

where g is defined as in equation (1).

Also, we note that if m is an even number then
F,¢ =+, and if M is an odd number then

n,

_T—n,f :(_1) O.
k .
Corollary 4. Suppose that I[f (t;a)]= M
hl(paa)
J k .
and |[f (t;a)]:M_ f © - 0 and
h,(p; )

8 <0 for i =0,1,...,n—1 and a, >0. Then
y ;) and y(t;«) aregiven as follows:
yt;a)=

1 q,(p; ) 1,

n-1 X n .
hhy(a,p" =D ap )@+ > F ,ap’)
i=0 i=1

Vvt a)=
|71[ n_lqz(p;a) - ],
hh,(a,p" _Zai p')(a +Z¢i,oai p')

where +,; _is defined in equation (2), g,and q,are

polynomials of p such that:

deg(a;) < 2n +deg(h,(p;a)) +deg(h,(p; @),
=12

Proof. We can prove by regarding that ®; = ©
Vi and 8; <0 Vi.

The main result in this paper is the following
Corollary. In Corollary 5, we shall find the

solutions of the FDE (5) when ®, = © for some
i and ®, =+(i.e. @) for the others, as follows:

k .
Corollary 5. Suppose that I[f (t;@)] = M
hl(p’a)
_ k :
and |[f (t;a)]=M @ >0 for 1 =0, 1,

h,(p;a)
.., N —1and a, > 0. For the FDE (5), we define a

universal set S of the subscripts that appear in the
FDE (5) except i=0 and 1i=n e,

S={L2,..,n-1L}and two disjoint subsets S, and
S, of Ssuchthat ieS LS, if ® = 6 and
ie(S,US,) if ® =+, i S. Also, we suppose
that two subsets S, and S, of S form a partition for

S suchthat S, (S,) contains all i €S such that the

number of derivatives in form (ii)- which is less

than the ith derivative is an even (odd) number.

Then y(t;) and ¥ (t;c) are given as follows:

y(t:ia)=

| —1[ ql(p;a)_
hh,(a,p" —a, - Z ap' +

> ap')

ies,Us, 1S —(s;Us,)
: ]
$n,oanpn_a0_ Z a‘ipl+ Z aipI ’
i(sys)-s2 ie(syUsg )-S5
(18)
y(tia)=
—1[ q 2 ( p ; a) i
hh@p"-a- > ap'+ > ap')
ies,Us, 1S —(s;Us,)
1

Frod P —3— D ap'+ Y, aipi]’

i(sys)-s2 ie(s,Usg )5

where +  is defined as in equation (4), g,and g,
are polynomials of p such that:

deg(q;) < 2n +deg(h,(p;a)) +deg(h,(p; 2)),
=12

Proof. We shall consider that ®, = © . We take
the subscripts 1, | =1,2,...,n =1 which appear in
the FDE (5) to be the universal set
S={L2,..,n-1}, and define two subsets S, = S
and S, = S as follows:

S, ={i €S, if the number of derivatives of type
(ii)-differentiable which is less than the ith
derivative is an even number},

S, ={i €S, if the number of derivatives of type

(ii)-differentiable which is less than the ith
derivative is an odd number},

where "e™ and "o in the above subscripts refer
to an even and odd respectively. Now, we determine

the elements of S;and S, as follows:
For i €S,,wesupposethat ieS, if ® = 0O and
1eS,—S,if ©, =+,
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and for i €S_, we suppose that i€S, if O, =
© and ieS, S, if O, =+.

Itisclear that S, =S ,and S, =S, .

By using equation (1) and definitions of S_,S,,S,
and S,, then ©; F; ; can be written as:

O,if i €8Sy,
O F; ¢ ={ (19)
' +, 1f 1 € Se—Su.
or
B 1 ifies,
O Fi 1 ={ (20)

(1) 6, ifie S-S

Now, let m be an even number, then +  =+.
Then equation (6) gives:
n-1 .
[a,p" +02,+> O, F ; ap'ILly (t)]=
i=1
LIf (O] +u(p).
(21)
Since Mis an even number, then S, and S, can be

written as follows:
S, ={i2j +k, k =1,2,...,i2j+1—i2j, j=01...,

mT_Z}u{im +k, k=12...n-1-i },
i, =0,
and
S, =iy 1 +K, k =12,...,i5 —iy 1, ] =12,
m
o

Since a; >0 for 1 =0,1..,n—1 and by using
(19) and (20), equation (21) becomes:
[a,p" —ao— D ap' + D ap Iy Ee)]+

ieS;y ieS,-S;

FYap + Y aplyta)- 2P

ieS, iS,-S, hy(p;a)’
[—Zaipl"' Z ap' Iyt e)l+[a,p" —a
ieS, ieS,-S,
i i [t usz(p;a)
- ap' + ap' Iyt a)]="2"—r,
% I iesezzs1 I h,(p;a)
where
U, (p; @) =k (p;a) +h(p;a)u(p;a),
Us(p; @) =Ky (p; @) + hy (p; 2)U(p; ).
By solving the above system, we get:

Iy (t;a)] =
q,(p; )

hlhz(anpn_ao_ Z aipi"‘ Z aipi)

es,Us, €5 -81) (s, —S;)
1
(a,p"-a,— (Z )aip‘+_ ; )aip‘)’
Iy (t;a)]=
9,(p; )
hlhz(anpn_ao_ Z a-ipi+ Z a‘ipi)

ies;uUs,

1

(@,p"-a,—- > ap'+ D

i es;u(s,—s;) 1€5,U(Se—Sy)

i (se—s1) (s, —52)

ap')’

such that
deg(q; ) <2n +deg(h;; ) +deg(h,; ), i =1,2.

Since

S, =SV -S,) =5 -5, VS,),
S;US,-S,)=(5,US,)-S,,
S,u(S,-S,)=(5,uS,)-S,,

then, after taking 1™, we get:

y(t;a)=
I—l[ ql(pia) i
hlhz(anpn —8;— z aipI + Z aipl)
ies;us, ieS—(s;Usy)
: ]
.(anpn_ao_ Z aipl"' Z aipl)’
ie(sUs))-sy ie(SyUs, )—S1
y(tia)= (22)
Ifl[ qz(p’a) i
hh,@@p" -3~ > ap'+ > ap')
ies;Us, ieS—(s;Us,)
: ]
'(anp”—ao— z aipi+ Z aipi).

ie(s;0s,)-s, ie(s,Us, )—s;

If m is an odd number, then ¥, ; =(-1) © and

S, and S, can be written as follows:
Se={iy; +k, k=12,...,i,,,-i,,]=01..,

and
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Sy ={i,tk, k=121, —i,, j=12
..,T_}u{im +k, k=12,...,n-1-i_}.
In a similar manner, we can get:
y(tia)=
o a,(p;a) '
hlhz(anpn_ao_ Z aipI + Z aipl)
ies;Us, ieS—(s;Usy)
- ]
(_anpn_ao_ Z aipI + Z aipl) ’
ie(s;s)-s; ie(S,Us, )—S1
ytia)= (23)
Ifl[ qz(p’a) _
hh(a,p"—a,— > ap'+ > ap')
ies;Us, ieS—(s;Us,)
- ]
'(—anp”—ao— Z aipI + Z aipl) .
ie(s;Us;)-s; ie(s,Us, )—S;

It is clear that (22) and (23) can be written as in(18).
We note that if we have ®, =+ in Corollary 5,

then we must put +a, instead of —a, in (18).

Hlustrative examples
In this section, we shall introduce
examples by using the proposed method.

several

Example 1. Consider the following FIVP:
y"t)+2y'(t)+4y(t)=2, t>0, (24)
y(0) =(2a,3—a), Y'(0) =B, 4— ).

We note that n=2, a, =1, a, =2, a,=4. Since
I[f ;)] =1 [f t;a)] =

By Corollary 1, We get

(Zap )(ao+Z+. ap')=(p’+2p+4).

[Foop" +(F2)p+4].  (25)

—thenhl h,=p

Now, we shall introduce the following case:

Let y (t) bein (i) formand y'(t) be in (i) form.
Since +, , =+ and +, , = —. Therefore by using
(25), equation (15) becomes:

tg) = G, (p; @) 1
Y& =t ey <3~y —s1
7t _|t qz(p’a) ’
Y& =t e i~y =51
4, =-4,, 9, =—Q,.

Then, we can write
y(ta)=A+At+Ag™ cos/3t +Age .
sin+/3t + Ae' cosh~/Bt + Ae'sinh+/Bt,

(26)
V(t;a)=B,+Bt+Bg'cos/3t +Be™.
sin~/3t + B.e' cosh /Bt + B e" sinh/5t.

Since

y't)=(y't;a), 7't ),

y't)=("t:a)y "t ).

Then by (26) and (27), equation (24) and the initial

conditions gives A, =B, = % A,=B,=0, and

(27)

the following system:

—2B, —24/3B, +2A,+24/3A, =0,
24/3B, - 2B, —2/3A,+2A, =0,
6B, +2+/5B, +6A, +2+/BA, =0,
24/5B, + 6B, + 2+/5A, +6A, =0,
A+ A+ A, =2a,
B,+B,+B,=3-a,

—A,+\3A, +A+5 A, =3a,
—B,++/3B,+B,+/5 B, =4—a.
Solving the above system vyields:

A3283:%+1’ A4:B4:\/—(E D
A5:3a_3,85:3_3a,A _a- 1
2 2 25"
-«
6 2\/g'

Substituting values of Ai’s and Bi’s in (26) and (27)
gives:

X(t;a):£+(z+l)e_t COS\/§t +\/§(Z+1)e.t
S|n\/§t+

3 t cosh /Bt N tsinh /5t

2.5
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vt )

sin+/3t —

1+(g+1)e‘t cos/3t +\/§(g+l)e't
3¢t co osh /5t — 2= Let sinh 5.

f

Example 2. Consider the following FIVP:
y"()+2y"t)ey'(t)e2y(t) =1 t=0,

y(0) =y'(0) = y"(0) = (&, 2~ ).

We note that:

n=3S={L2}a,=1a,=2 a-=1 a,=2,
0,=+,0,=06, 0,=

S,usS,={1}, S -(S,uS,)={2}.

since I[f (t;a)]=[f (t;)] = L[] ==

hl = hz =p
Now, we shall introduce two cases as follows:
Case 1. Let y(t) and y"(t) be in form (i) and

y'(t) be in form (ii). Since m=21(odd), then

(28)

then

+;,=— and

S, —{|2J+k k=12...i,,-0,,i=01...
—2 }
={1},

Sy ={i,u+k, k=012, -0, j=12.
,T_}u{im +k, k=12,...n-1-i_}
={2},

and we have S, ={1} and S,=¢. Then, from

Corollary 5, we get:
|1 q,(p;a)
t —
G = e o+ 0 + 2707+

d,(p;a)

yt;e)=17"[

4, =-q;, 4, =—Q,.
By using the same manner given in example 1, we

can find the level sets of the solution Y(t)as
follows:

X(t;a):_—l+zet ile Lo +(a-1).

2 6 2
(cost +sint),

1

p?(p —1)(p +1)(p +2)*(p* +1)]’

_ -1 7., 1 .
tia)=—+—-6 +—e" ——
yt;a) 775 >

(cost +sint).

2 (a-1).

Case 2. Let y'(t) be in form (i) and y (t) and
y "(t) be in form (ii). Since m=2 (even), then
+;, =+ and
S, ={ +k, k=L2,...i,, -5, ] =01,...,
T_}u{im +k, k=12,...,n-1-i }
=9,
S, ={i,;,+k, k=12, —i,4, 1 =12,
?}
={1.2},

and we have S, =¢ and S, ={1}. Then, from
Corollary 5, we get:
yt;a)=

e q,(p; ) 1
p*(p—D(p +1)(p +2)(p -2)(p* +1)
vt a)=

|

d,(p;a)
p?(p —D(p+1)(p+2)(p—-2)(p*+1)

1

Therefore, we can get:

-1 07001 - 2
tia)=—+—- +—e" ——e " +(a-1).
ya)=—+ee +7 (a-1)
(cost —sint),
-1 7 1 ot
t;a)=—+—-e'+=e" —(a-1).
ya)=—+ze +3 (a-1)
(cost —sint).
Remark. If we have @& <0 for some
i{0,1,...,n=1} in the FDE (5), or any FDE is

not in the formulas given in the Corollaries 1, 2, 3, 4
and 5, we can use Theorem 3 to solve this FDE, as
in the following example:

Example 3. Consider the following FIVP:
y't)-y't)+2y t)=t,

(29)

y(0)=(QQ+a,3—a), ¥'(0) =1+ a,5-3c).
We note that:

n=2a=1a-=

t>0,

-1, a,=2,0,=+, O, =+
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Since I[f (t;)]=I[f t;a)]=1[t]= %then

h, =h, = p®. By Theorem 3, we get:
[%,, p* = (F, )P+ 2Ly O]=LIf ©)]

+u(p). (30)
Now, we suppose that y'(t) is in form (i) and
y (t) is in form (ii). Since m=1 (odd), then
F,¢ =(-1) ©. We have F, =(-1) © , then
equation (30), becomes:
[(-1) © p*—(-1) © p+2]L[y (t)]=LIf (t)]

+u(p),

where u(p)is a polynomial of p its degree is less

than or equal to 1.
This equation gives:

2p* =)y )]+ p Iy (t; )] =u,(p),
Py (t; )]+ (2p* - p)IY (t; @)l =us(p),
where

Uy(p) =1+ p°u(p;a),

Us(p) =1+ p(p;a).

Solving the above system gives:

Iy el =— hpia) TR
P*(p +2)(p ~DI(p )"+ 1]
I )= %(P:2)

P(p+2(P-DI(P—2) + 11

Then, we can get:

1 1 13 2c
ta)==+=t +(a—-1e ™ +(—=-=X5).
yha)=g+otrla=d NG ﬁ)
t t
ezsin£t+zezcosﬂt,
4 2
_ 1 1 o 13 2«
ta)=—+—t—-(a-1e° +(—=——).
y(t;a) 25 (a-1) N ﬁ)
t t
ezsinﬂt+ze2cos£t.
4 2
Discussion

In this paper we suggest a method for finding
analytical solutions for FIVPs of higher orders by
using fuzzy Laplace transform by the concept of
strongly generalized H-differentiability.  This
method depends on introducing the subscripts
which appear in the fuzzy differential equation as a
universal set , and defining other subsets which
form a partition of that universal set. Several rules
have been given for solving FIVPs directly by
obtaining easy algebraic systems. For a FDE,
multiple exact solutions can be found by the
concept of strongly generalized H-differentiability,
but the level sets are not necessarily identical for all
the exact solutions even for the same FIVP as
follows:

For example 1, the level sets of the solution y(t)

for the FIVP (24) are valid for te[0,0). The

graph of the solution of the FIVP (24) has been
shown in Fig. 1.

600

400

200

o

-200

-400

_600 L L L L
0.2 o.4a o.6 o.8

1 1.2 1.4 1.6 1.8

Figure 1. The level sets of the solution y(t) for example 1.

For example 2 casel, the level sets of the solution

y(t) of the FIVP (28) are valid for t e [0,377[] . The

graph of the solution in this case is given in Fig. 2a

while for example 2 case 2, the level sets of the

solution of the FIVP (28) are valid for t e [0,%] :

The graph of the solution in this case has been
shown in Fig. 2b.
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10

n L
o 0.5 1

L L
1.5 2 2.5

Figure 2a. The level sets of the solution y(t) for example 2 case 1.

Figure 2b. The level sets of the solution y(t) for example 2 case 2.

The level sets of the solution y(t) for the FIVP
(29) are valid for t €[0,0.39235725487259].

o _///////
s i

The graph of the solution of the FIVP (29) is given
in Fig. 3.

o 0.05 o.1 0.15

Figure 3. The level sets of the solution y(t) for example 3.

Conclusion:

An analytical method for solving FIVPs is
introduced by using fuzzy Laplace transform and
the concept of strongly generalized H-
differentiability. The suggested method depends
on defining a universal set and some certain subsets
of that universal set for each FIVP. Also, multiple
exact solutions can be found such that the level sets
of solutions may be various for the same FIVP.
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