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Abstract: 
This paper generalizes and improves the results of Margenstren, by proving that the number of 𝑡-

practical numbers 𝑛, 𝑛 ≤ 𝑥, (𝑡 ≥ 1), which is defined by 𝑁(𝑥)  has a lower bound in terms of 𝑡. This bound 

is more sharper than Mangenstern bound when 𝑡 = 1. Further general results are given for the existence of 𝑡-

practical numbers, by proving that the interval (𝑥, 𝑥 + 2 (
𝑥

𝑡
)

1
2⁄

) , 𝑡 ≥ 1 contains a 𝑡-practical for all 𝑥 ≥
𝑡

3
. 

 

Keywords: Bound for the 𝑡-practical numbers, Existence of 𝑡-practical numbers in an interval, Practical 

numbers, t-practical numbers. 

 

Introduction: 
The 𝑡-practical numbers 𝑛, (𝑡 ≥ 1)is a 

generalization of practical numbers when 𝑡 =
1which is defined in (1). Nicholas Schwab and Lola 

Thompson (2) adopted the multiplicative 

function 𝑓(𝑑), where 𝑑′𝑠  the divisors of 𝑛 and 

referring to each n as 𝑓-practical proved series of 

results related to the distribution of 𝑓-practical 

numbers. P. Leonetti and C.Sanna (3) proved that 

the most of the binomial coefficients(
𝑛
𝑘

), 0 ≤ 𝑘 ≤

𝑛 are practical numbers and  

𝑓(𝑛) < 𝑛
1−(log 2−𝛿)

log log 𝑛⁄
 

when𝑓(𝑛) denotes the number of coefficients (
𝑛
𝑘

) 

that are not practical for all 𝑛 ∈  [3, 𝑥],    𝑥 > 3, 0 <
𝛿 < log 2. Further results proved by Wang. L-Y and 

Sun. Z-W (4) showing that 𝑛2 + 𝑏𝑛 + 𝑐 is practical 

for some integer 𝑛 > 1, 𝑏 ≥ 0and 𝑐 > 0. They 

proved that there are infinitely many practical 

numbers of the form 𝑞4 + 2 with 𝑞 practical 

number. 

Shapiro (5), Saias (6) prove that  

𝑝(𝑥) ≥
𝑐𝑥

(log 𝑥)
 

which is analogous with the asymptotic behavior of 

primes. In (7) Weingartner gave non explicit bound 

by proving that 

𝑝(𝑥) =
𝑐𝑥

log 𝑥
[1 + 𝛰 (

log log 𝑥

log 𝑥
)]. 

Margenstren (1) noted that the number of practical 

number 𝑛, 𝑛 ≤ 𝑥 is 

𝑝(𝑥) ≥  
𝐴𝑥

exp . [
1

2 log 2
(log log 𝑥)2 + 3 log log 𝑥]

,

𝐴 =
2

5

5
2⁄

 

In this paper the bound above is generalized and 

improved in Theorem (3), for all 𝑡 ≥ 1. 
   Finally, in this paper the bound given by Theorem 

(3) sharper than the bound mentioned above. 

Further general result proved for the 𝑡- practical 

number is by showing that there exists a 𝑡-practical 

number in an interval (𝑥, 𝑥 + 2 (
𝑥

𝑡
)

1
2⁄

) , 𝑡 ≥ 1, 

where the case 𝑡 = 1 represent the result of (5). 

Preliminary Results and Definitions: 

Definition (1) (1):  Let 𝑛 ≥ 1. Then n  be called a 

practical number if for every integer 𝑚, 1 ≤ 𝑚 < 𝑛 

having the form  

𝑚 = ∑ 𝑐𝑑𝑑,      𝑐𝑑 = 0, 1

𝑑|𝑛

 

Definition (2): The number 𝑛, (𝑛 ≥ 1) is called a 𝑡-

practical number if every integer 𝑚, 1 ≤ 𝑚 ≤
𝑡𝑛, (𝑡 ≥ 1) is of the form  

𝑚 = ∑ 𝑐𝑑𝑑,     1 ≤ 𝑐𝑑 ≤ 𝑡.

𝑑|𝑛
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Definition (3): Define 𝑁(𝑥) to be the number of 𝑡- 

practical numbers  𝑛, 𝑛 ≤ 𝑥. 

 

    The following lemmas will be required 

 

Lemma (1):  For any 𝑡-practical,𝑡 ≥ 1, 

(𝑡 + 1)𝑛 ≤ 𝑡𝜎(𝑛) + 1    … (1)  

where some 𝜎(𝑛) is the sum of positive divisors of 

𝑛.    

Proof: If 𝑛 = 1, then (1) follows. Let 𝑛 ≥ 2 and 

𝑑1, 𝑑2, … , 𝑑𝑟 and all positive divisors of 𝑛, then 

from Theorem (1) 

𝑑𝑟 < 𝑡𝜎𝑟−1 + 1, 
𝑑𝑟 + 𝑡𝑑𝑟 ≤ 𝑡𝜎𝑟−1 + 𝑡𝑑𝑟 + 1 

(𝑡 + 1)𝑑𝑟 ≤ 𝑡𝜎𝑟 + 1 

where𝑑𝑟 = 𝑛, 𝜎𝑟 = 𝑑1 + 𝑑2 + ⋯ + 𝑑𝑟 

(𝑡 + 1)𝑛 ≤ 𝑡𝜎(𝑛) + 1 

Lemma (2): Let ℓ ∈ ℕ. Then (𝑡 + 1)ℓ, (𝑡 ≥ 1) is a 

𝑡-practical number. 

Proof:Let 𝑚 ∈ ℕ, 1 ≤ 𝑚 ≤ (𝑡 + 1)ℓ, then we can 

write 

𝑚 = ∑ 𝑐(𝑡 + 1)𝑖 , (1 ≤ 𝑐𝑖 ≤ 𝑡)

ℓ−1

𝑖=1

 

since(𝑡 + 1)𝑖 are distinct divisors of  (𝑡 + 1)ℓ, then 

(𝑡 + 1)ℓ is a 𝑡-practical. 

Lemma (3):  The number 𝑠ℓ, 1 ≤ 𝑠 ≤ 𝑡 + 1 and 

ℓ ∈  ℕ is 𝑡-practical. 

Proof:  For any integer 𝑚, 1 ≤ 𝑚 < 𝑠ℓ, we can 

write  

𝑚 = ∑ 𝑐𝑖𝑠𝑖, 1 ≤ 𝑐𝑖 ≤ 𝑡.

ℓ−1

𝑖=1

 

then𝑠𝑖 are distinct divisors of 𝑠ℓ and therefore 𝑠ℓ is 

t-practical. 

 The following theorems are required.                            

Theorem (1) (4):  Let 𝑝1 < 𝑝2 < ⋯ < 𝑝𝑘 be 

distinct primes and let 𝑎1, 𝑎2, … 𝑎𝑘 ∈ ℕ. Then 

𝑛 = 𝑝1
𝑎1 . 𝑝2

𝑎2 … 𝑝𝑘
𝑎𝑘is  practical number if and 

only if 𝑝1 = 2 and 

𝑝𝑗 < 𝜎(𝑝1
𝑎1𝑝2

𝑎2 … 𝑝𝑗−1) + 1, (1 ≤ 𝑗 ≤ 𝑘), 

where𝜎(𝑛) is the sum of all positive divisors of 𝑛.  

Robinson (8) prove the following 

Theorem (2) (8):  Let 𝑑1, 𝑑2, … , 𝑑𝑟 be the positive 

divisors of  . Then 𝑛 is a practical number if and 

only if  

𝑑𝑘+1 ≤ 𝜎𝑘 + 1, (1 ≤ 𝑘 ≤ 𝑟 − 1) 

where𝜎𝑘 = 𝑑1 + 𝑑2 + ⋯ + 𝑑𝑘 . 
        A generalization of Robinson's results (8) 

given by the following: 

 

Theorem (3):𝑛 is 𝑡-practical if and only if  

𝑑𝑘+1 ≤ 𝑡𝜎𝑘 + 1, (0 ≤ 𝑘 ≤ 𝑟 − 1) 
Proof:   Suppose that  

𝑑𝑘+1 ≤ 𝑡𝜎𝑘 + 1. 

In fact, by proving that for any k,   0 ≤ 𝑘 ≤ (𝑟 −
1)every integer 𝑚 such that  

𝑡𝜎𝑘 < 𝑚 ≤ 𝑡𝜎𝑘+1can be express as: 

∑ 𝑐𝑖𝑑𝑖 ,        0 ≤ 𝑐𝑖 ≤ 𝑡𝑘+1
𝑖=1             … (1) 

where𝑡𝜎0 = 0 and 𝑡𝜎𝑟 = 𝑡(𝑑1 + 𝑑2 + ⋯ +
𝑑𝑟), 𝑑𝑟 = 𝑛, this shows that every integer 𝑚, 1 ≤
𝑚 ≤ 𝑛 has the required representation for 𝑛 to be 𝑡-

practical number. The  

proof of (1) is by induction on 𝑘. If = 0 , then (1) 

implies that every integer  

𝑚, 0 < 𝑚 ≤ 𝑡is of the form 𝑐1𝑑1, 0 ≤ 𝑐1 ≤ 𝑡, where 

𝑑1 = 1 and hence m is               𝑡-practical. Assume 

that (1) is true for 𝑘 = Κ,  with Κ < 𝑟 − 1, then we 

will show    that (1) is true  for𝑘 = Κ + 1. 

Therefore, let 

𝑡𝜎Κ+1 < 𝑚 ≤ 𝜎Κ+2 

since𝑡𝜎Κ+2 < 𝑚 ≤ 𝑡𝜎Κ+1 + 1, then 

𝑑Κ+2 ≤ 𝑚 ≤ 𝑡𝜎𝐾+2, 
and  if𝑚 < (𝑡 + 1)𝑑Κ+2, 𝑚  can be written as 

𝑚 = 𝑢𝑑Κ+2 + 𝑣 

with0 ≤  𝑣 ≤  𝑑Κ+2 and 0 ≤ 𝑢 ≤ 𝑡. Therefore, 

0 ≤ 𝑣 ≤ 𝑑Κ+2 ≤ 𝑡𝜎Κ+1 + 1 

𝑣 ≤ 𝑡𝜎Κ+1 
where by induction hypothesis, 

𝑣 = ∑ 𝑐𝑖𝑑𝑖 , 0 ≤ 𝑐𝑖 ≤ 𝑡

Κ+1

𝑖=1

 

and 

𝑚 = 𝑢𝑑Κ+2 + ∑ 𝑐𝑖𝑑𝑖

Κ+1

𝑖=1

 

∴ 𝑚 = ∑ 𝑐𝑖𝑑𝑖

Κ+2

𝑖=1

 

with𝑐Κ+2 = 𝑢  which is the required form. If 

𝑚 ≥ (𝑡 + 1)𝑑Κ+2, then  

𝑑Κ+2 ≤ 𝑚 − 𝑡𝑑Κ+2 ≤ 𝑡𝜎Κ+2 = 𝑡𝜎Κ+1 

Hence, induction hypothesis, 𝑚 is 𝑡-practical and  

𝑚 = ∑ 𝑐𝑖𝑑𝑖
Κ+2
𝑖=1 ,          0 ≤ 𝑐𝑖 ≤ 𝑡. 

      Conversely, if 𝑛 𝑡-practical, then for any 

𝑘, 0 ≤ 𝑘 ≤ (𝑟 − 1), it follows that 

𝑑Κ+1 − 1 = ∑ 𝑐𝑖𝑑𝑖, 0 ≤ 𝑐𝑖 ≤ 𝑡

𝑟

𝑖=1

 

𝑑Κ+1 − 1 = ∑ 𝑐𝑖

Κ

𝑖=1

𝑑𝑖 ≤ 𝑡 ∑ 𝑑𝑖

Κ

𝑖=1

= 𝑡𝜎Κ 

∴ 𝑑Κ+1 ≤ 𝑡𝜎Κ + 1. 

The Number of t-Practical Numbers:  

Margenstren (1) proved the following. 

Theorem (4) (1): The number of practical numbers 

𝑛, 𝑛 ≤ 𝑥 and 𝑥 large real number is at most, 
𝐴𝑥

exp. [
1

2 log 2
(log log 𝑥)2 + 3 log log 𝑥]
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where =
2

5
2⁄

5
 . 

a generalization of Theorem (4) (1) for the 𝑡-

practical is given by the following. 

Theorem (5): Let 𝑥 be a large real number. Then 
𝑁(𝑥)

≥ (2 log 2)
1

2⁄ .
𝑥

exp. [
1

2 log 2
(log log 𝑥)2 + (log log 𝑥) + log(𝑡 + 1)]

 

Proof:  Let 𝑥 ≥ (𝑡 + 1)3. Then we can take 𝑥 such 

that  

(𝑡 + 1)2𝑟+1 ≤ 𝑥 < (𝑡 + 1)2𝑟+1+1,     … (1) 

with𝑟 ≥ 1 and 𝑡 ≥ 1. Let 𝑦 =
𝑥

𝑡+1
, then by writing 

(1) as 

(𝑡 + 1)2𝑟
≤ 𝑦 ≤ (𝑡 + 1)2𝑟+1

,           … (2) 

from Theorem (1), if 𝑛 = 𝑝1, … 𝑝𝑟 , where 

𝑝1. 𝑝2 … 𝑝𝑟 are distinct primes then  

𝑝𝑗+1 ≤ 𝑡𝜎(𝑝1𝑝2 … 𝑝𝑗) + 1,    1 ≤ 𝑗 ≤ 𝑟 − 1       … 

(3)  

where1 < 𝑝1 < 𝑡 + 1 < 𝑝2 < ⋯ < 𝑝𝑟 is a 𝑡-

practical number. Therefore by writing 

 

1 < 𝑝1 < 𝑡 + 1 

𝑡 + 1 < 𝑝2 < 2(𝑡 + 1) 
(𝑡 + 1)2 < 𝑝3 < 2(𝑡 + 1)2                  … (4) 

⋮ 

(𝑡 + 1)2𝑟
< 𝑝𝑟 < 2(𝑡 + 1)2𝑟

 

 

from (4), since 1 < 𝑝1 < 𝑡 + 1, then by Lemma (3) 

𝑝1 is a 𝑡-practical and by Lemma (1), it follows  that  

𝑡𝜎(𝑝1) + 1 > (𝑡 + 1)𝑝1, 𝑝1 ≥ 2 
 

then𝑝1. 𝑝2 is also 𝑡-practical. Now, as induction 

hypothesis,  assuming that  

𝑝1. 𝑝2 … 𝑝𝑖, (2 ≤ 𝑖 ≤ 𝑟)is a 𝑡-practical and 

(𝑡 + 1)2𝑘
≤ 𝑝𝑖 ≤ 2(𝑡 + 1)𝑘 , 0 ≤ 𝑘 ≤ 𝑟 

then from the L.H.S of (4), it follows that 

𝑝1. 𝑝2 … 𝑝𝑖 ≥ 2(𝑡 + 1)1+2+22+⋯+2𝑘

= 2(𝑡 + 1)2𝑘+1−1 
therefore, 

𝑝1. 𝑝2 … 𝑝𝑖 ≥ 2(𝑡 + 1)2𝑘+1−1          … (5) 

and  by Lemma (1)  

𝑡𝜎(𝑝1. 𝑝2 … 𝑝𝑖) + 1 > 𝑝1. 𝑝2 … 𝑝𝑖 
using (5) to get 

𝑡𝜎(𝑝1. 𝑝2 … 𝑝𝑖) ≥ 2(𝑡 + 1)2𝑘+1
> 𝑝𝑖+1. 

Hence, 𝑝1. 𝑝2 … 𝑝𝑖+1 is a 𝑡-practical. From the 

R.H.S of (4) we have also 

𝑛 = 𝑝1. 𝑝2 … 𝑝𝑟 ≤ 2𝑟−1. (𝑡 + 1)2𝑟+1
 

∴ 𝑛 < (𝑡 + 1)2𝑟+1+1 

Since the number of 𝑝1, 1 < 𝑝1 ≤ (𝑡 + 1) is 

estimated to be at least 

 
(𝑡 + 1)

log(𝑡 + 1)
 

and the number of 𝑝𝑖 , 2 ≤ 𝑖 ≤ 𝑟 is at least 

(𝑡 + 1)2𝑚

2𝑚. log(𝑡 + 1)
, 𝑚 = 0, 1, … , 𝑟. 

Then,  

𝑁((𝑡 + 1)2𝑟+1+1)

≥
(𝑡 + 1). (𝑡 + 1). (𝑡 + 1)2 … (𝑡 + 1)2𝑟

log(𝑡 + 1) . log(𝑡 + 1) . 22 log(𝑡 + 1) … 2𝑟 log(𝑡 + 1)
 

That is   

𝑁((𝑡 + 1)2𝑟+1+1) ≥
(𝑡+1)2𝑟+1

2
𝑟(𝑟+1)

2⁄ .[log(𝑡+1)]𝑟
         … (6) 

from inequality (2), 

log(𝑡 + 1) ≤
log 𝑦

2𝑟
 

and this implies that  

1

[log(𝑡+1)]𝑟 ≥
2𝑟2

(log 𝑦)𝑟                 … (7) 

where from (2) 

𝑦 < (𝑡 + 1)2𝑟+1
                  … (8) 

using (7), (8) in (6) to get  

𝑁((𝑡 + 1)2𝑟+1+1) ≥ 2
𝑟(𝑟−1)

2⁄ .
𝑦

(log 𝑦)𝑟 … (9) 

by using (2), then  

2𝑟 log(𝑡 + 1) ≤ log 𝑦 < 2𝑟 log(𝑡 + 1)2… (10) 

since𝑥 = (𝑡 + 1)𝑦, then 

log 𝑦 ≤ log 𝑥 ≤ 2 log 𝑦         … (11) 

and both (9), (11) implies that the number of 𝑡-

practical numbers 𝑛, 𝑛 ≤ 𝑥  is 

𝑁(𝑥) ≥ 2
𝑟(𝑟−1)

2⁄ .
𝑥

(𝑡+1)(log 𝑥)𝑟     … (12) 

from (10) above, by  taking 

2𝑟 =
log 𝑦

log 2
 

and from R.H.S of (11) 

2𝑟 ≥
log 𝑥

2 log 2
             … (13) 

using (13) in (12), then 
 𝑁(𝑥) ≥

(2 log 2)
1

2⁄ .
𝑥

(2 log 2)
𝑟

2⁄ .(𝑡+1)(log 𝑥)
(𝑟+1)

2⁄
 … (14) 

from the L.H.S of (10), 

2𝑟 ≤
log 𝑦

log(𝑡 + 1)
 

wherelog(𝑡 + 1) ≥ log 2, using L.H.S of inequality 

(11), then  

2𝑟 ≤
log 𝑦

log 2
≤

log 𝑥

log 2
, 

∴ 𝑟 ≤
1

log 2
[log log 𝑥 − log log 2]       … (15) 

using (15), and write  

2
𝑟

2⁄ = exp. [
𝑟

2
log 2]

≤ exp [
1

2
log log 𝑥 −

1

2
log log 2] 
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(log 2)
𝑟

2⁄ = exp. [
𝑟

2
log log 2]

≤ exp [
log log 2

2 log 2
. log log 𝑥

−
(log log 2)2

2 log 2
] 

and  since, 

(log 𝑥)
𝑟+1

2⁄ = exp. [
𝑟 + 1

2
log log 𝑥] 

then by (15), 

(log 𝑥)
𝑟+1

2⁄ = exp. [
𝑟 + 1

2
log log 𝑥] 

≤ exp. [
1

2 log 2
(log log 𝑥)2

−
log log 2

2 log 2
log log 𝑥 +

1

2
log log 𝑥] 

∴ (2 log 2)
𝑟

2⁄ . (log 𝑥)
𝑟+1

2⁄

≤ exp. [
1

2 log 2
(log log 𝑥)2

+ log log 𝑥] 

∴
1

(2 log 2)
𝑟

2⁄ . (log 𝑥)
𝑟+1

2⁄

≥
1

exp. [
1

2 log 2
. (log log 𝑥)2 + log log 𝑥]

          … (16) 

Insert (16) in (14), then the number of 𝑡-practical 

numbers 𝑛, 𝑛 ≤ 𝑥 is 𝑁(𝑥) and 

𝑁(𝑥) ≥ (2 log 2)
1

2⁄ .
𝑥

exp. [
1

2 log 2
. (log log 𝑥)2 + log log 𝑥 + log(𝑡 + 1)]

 

This end the proof. This bound is more sharper than 

Margenstren result in (1) even when 𝑡 = 1, for 

𝑥 ≥ 64. 

𝒕-Practical Numbers in an Interval 

In (5) Hausman and Shapiro proved the following: 

Theorem (6) (5):  For all 𝑥 ≥
1

3
 the interval(𝑥, 𝑥 +

2𝑥
1

2⁄ ) contains a practical number. 

    A generalization of Theorem (6) (5) given by the 

following: 

Theorem (7):  The interval (𝑥, 𝑥 + 2 (
𝑥

𝑡
)

1
2⁄

) , (𝑡 ≥ 1) 

contains a 𝑡-practical number for all 𝑥 ≥
𝑡

3
. 

Proof:  Considering 𝑥 > 4𝑡, 𝑡 ≥ 1 and 
𝑡

3
≤ 𝑥 ≤ 4𝑡. 

For if 𝑥 > 4𝑡 and  

2𝑎 < (
𝑥

𝑡
)

1
2⁄ ≤ 2𝑎+1,     𝑎 ∈ ℕ           … (1) 

Then the interval (𝑥, 𝑥 + 2 (
𝑥

𝑡
)

1
2⁄

) is of the length 

(
𝑥

𝑡
)

1
2⁄
 , therefore it contains |at least one multiple of 

2𝑎 such as 2𝑎𝑚   on the other word  

𝑥 < 2𝑎𝑚 < 𝑥 + (
𝑥

𝑡
)

1
2⁄                    … (2) 

Thus, either 𝑚 or 𝑚 + 1 is even integer, where 

since 

2𝑎(𝑚 + 1) = 2𝑎𝑚 + 2𝑎 < 𝑥 + 2 (
𝑥

𝑡
)

1
2⁄

, 

then 

𝑥 < 2𝑎𝑚 < 2𝑎(𝑚 + 1) < 𝑥 + 2 (
𝑥

𝑡
)

1
2⁄

. 

Now, by showing that one of these integers  

2𝑎𝑚, 2𝑎(𝑚 + 1) is a 𝑡-practical, suppose that 

neither is a 𝑡-practical number and, without loss of 

generality, let  𝑚 be an even integer. Then since 

2𝑎𝑚 is not 𝑡-practical number. 

then there exists a prime 𝑝1 of 2𝑎𝑚 such thats 

𝑝𝑖 > 𝑡𝜎(𝑛𝑖−1) + 1                 … (3) 

with2𝑎𝑚 = 𝑝1
𝑘1 . 𝑝2

𝑘2 … , 𝑝𝑙
𝑘𝑙 , 𝑝1 = 2, 𝑛𝑖−1 =

𝑝1
𝑘1 . 𝑝2

𝑘2 … 𝑝𝑖−1
𝑘𝑖−1 , 𝑖 ≥ 2 and 𝑛0 = 1. 

Particularly, (3) implies that  

𝑝𝑖 > 𝑡 + 1 

and𝑝𝑖 is odd prime for 𝑖 ≥ 2. Therefore 2𝑎+1|𝑛𝑖−1 

and  

𝑝𝑖 > 𝑡𝜎(2𝑎+1) + 1 = 𝑡(2𝑎+2 − 1) + 1, 
𝑝𝑖 ≥ 𝑡𝜎(2𝑎+2 − 1) + 2, 

2𝑎𝑚 ≥ 2. 22(𝑎+1). 𝑡 − 2𝑎+1. 𝑡 + 2𝑎+2,          … (4) 

and from (2), 

𝑥 + (
𝑥

𝑡
)

1
2⁄

≥ 2𝑥 − 2𝑎+1. 𝑡 + 2 (
𝑥

𝑡
)

1
2⁄

 

2𝑎+1. 𝑡 ≥ 𝑥 + (
𝑥

𝑡
)

1
2⁄                         … (5) 

It follows from the L.H.S of (1), that  

2𝑥
1

2⁄ . 𝑡 > 2𝑎+1. 𝑡 
therefore (5) implies that  

2𝑥
1

2⁄ . 𝑡
1

2⁄ > 𝑥 + (
𝑥

𝑡
)

1
2⁄

 

2𝑡
1

2⁄ − (
1

𝑡
)

1
2⁄ > 𝑥

1
2⁄  

2𝑡
1

2⁄ > 𝑥
1

2⁄  

and this implies that 𝑥 < 4𝑡   a contradiction. A 

similar procedure can be followed for 2𝑎(𝑚 + 1) 

which also leads to a contradiction. 

     If 𝑡 < 𝑥 ≤ 4𝑡, then  

2 ≤ 2 (
𝑥

𝑡
)

1
2⁄

≤ 4 

and 

𝑥 + 2 ≤ 𝑥 + 2 (
𝑥

𝑡
)

1
2⁄

≤ 4 + 𝑥 

1 < 𝑡 + 1 < 𝑥 + 2 ≤ 𝑥 + 2(
𝑥

𝑡
)

1
2⁄ ≤ 4(𝑡 + 1)           

… (6) 

 

By Lemma (2), the inequality (6) shows that the 

interval  

(𝑥, 𝑥 + 2 (
𝑥

𝑡
)

1
2⁄

) 

contains the integer (𝑡 + 1) which is a 𝑡-practical. If 
𝑡

3
≤ 𝑥 < 𝑡, then 
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2 (
1

3
)

1
2⁄

< 2 (
𝑥

𝑡
)

1
2⁄

< 2 

i.e 

𝑥 + 2 (
1

3
)

1
2⁄

< 𝑥 + 2 (
𝑥

𝑡
)

1
2⁄

< 𝑥 + 2 < 𝑡 + 2, 

since𝑥 >
𝑡

2
, then 

1 <
𝑡

3
+ 1 < 𝑥 + 2 (

𝑥

𝑡
)

1
2⁄

< 𝑡 + 2 

and 

1 <
𝑡

3
+ 1 ≤ 𝑡 + 1. 

Therefore, by Lemma (3) 𝑚 = (
𝑡

3
+ 1) is a 𝑡-

practical number which end the proof. 

Theorem (6) (5) follows immediately when 𝑡 = 1. 

Corollary:  The interval(𝑥2, (𝑥 + (
1

𝑡
)2),𝑡 ≥ 1, 𝑥 ≥

1 contains a 𝑡-practical number. 

Proof:From Theorem (7) we have (𝑥, 𝑥 + 2(
𝑥

𝑡
)

1
2⁄  ) 

that contains a 𝑡-practical number for 𝑥 ≥
𝑡

3
, then 

this implies (𝑥2, 𝑥2 + 2((
𝑥

𝑡
)2)

1
2⁄ ) that also 

contains a 𝑡-practical number for 𝑥 ≥ 1. Since  

(𝑥2, 𝑥2 + 2 (
𝑥

𝑡
)

1
2⁄

) ⊆ (𝑥2, 𝑥2 + 2
𝑥

𝑡
+

1

𝑡2

= (𝑥2, (𝑥 +
1

𝑡
)

2

) 

this shows that there is a 𝑡-practical number 

between 𝑥2 and (𝑥 +
1

𝑡
)2. 

 

Conclusion: 
This work gives a new lower bound for all   

𝑡-practical numbers to be at most  

(2 log 2)
1

2⁄ .
𝑥

𝑒𝑥𝑝. [
1

2 log 2
(log log 𝑥)2 + log log 𝑥 + log(𝑡 + 1)]

 

and this lower bound is the sharper bound in which 

one can determine these numbers 𝑛, 𝑛 ≤ 𝑥 for any 

real number 𝑥. Further results in this paper show 

that the interval (𝑥, 𝑥 + 2 (
𝑥

𝑡
)

1
2⁄

), containing 𝑡-

practical numbers for all 𝑥 ≥
𝑡

3
, (𝑡 ≥ 1). 
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 𝒕 تعميم في الاعداد العملية ذات التكرار
 

 سعد عبود بداي
 

 قسم الرياضيات، كلية العلوم للبنات، جامعة بغداد، بغداد، العراق.

 

 : الخلاصة

𝑛التي تمثل عدد الاعداد العملية  N(x)باثبات ان  Margenstrenفي هذا البحث تم تعميم وتحسين نائج ≤ 𝑥, 𝑛   ذات

𝑡)التكرار ≥ 1), 𝑡   له الحد الادنى 

𝑁(𝑥) ≥ (2 log 2)
1

2⁄ .
𝑥

𝑒𝑥𝑝 . [
1

2 log 2
(log log 𝑥)2 + log log 𝑥 + log(𝑡 + 1)]

 

 .t=1عندما  Margenstrenوهذا الحد الادنى يعتبر افضل من الحد المعطى من قبل 

𝑡)وعلاوة على ذلك تم برهنت وجود اعداد عملية بتكرار  ≥ 1), 𝑡  في الفترة(𝑥, 𝑥 + 2(
𝑥

𝑡
)

1
𝑥عندما  𝑥لعدد حقيقي ⁄2 ≥

𝑡

3
. 

 

 𝑡، وجود الاعداد العملية بتكرار 𝑡، الاعداد العملية، الاعداد العملية بتكرار 𝑡الحد الادني لعدد الاعداد العملية ذات تكرار الكلمات المفتاحية: 
ض

 من فترة.


