DOI: http://dx.doi.org/10.21123/bsj.2020.17.4.1250

A Generalization of \boldsymbol{t}-Practical Numbers

Saad A. Baddai
Department of mathematics, College of Science for Women University of Baghdad, Iraq E-mail: baddai1955@gmail.com
ORCID ID: https://orcid.org/0000-0001-7943-6955

Received 10/10/2019, Accepted 4/2/2020, Published 1/12/2020

This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract

: This paper generalizes and improves the results of Margenstren, by proving that the number of t practical numbers $n, n \leq x,(t \geq 1)$, which is defined by $N(x)$ has a lower bound in terms of t. This bound is more sharper than Mangenstern bound when $t=1$. Further general results are given for the existence of t practical numbers, by proving that the interval $\left(x, x+2\left(\frac{x}{t}\right)^{1 / 2}\right), t \geq 1$ contains a t-practical for all $x \geq \frac{t}{3}$.

Keywords: Bound for the t-practical numbers, Existence of t-practical numbers in an interval, Practical numbers, t -practical numbers.

Introduction:

The t-practical numbers $n,(t \geq 1)$ is a generalization of practical numbers when $t=$ 1 which is defined in (1). Nicholas Schwab and Lola Thompson (2) adopted the multiplicative function $f(d)$, where $d^{\prime} s$ the divisors of n and referring to each n as f-practical proved series of results related to the distribution of f-practical numbers. P. Leonetti and C.Sanna (3) proved that the most of the binomial coefficients $\binom{n}{k}, 0 \leq k \leq$ n are practical numbers and

$$
f(n)<n^{1-(\log 2-\delta)} / \log \log n
$$

when $f(n)$ denotes the number of coefficients $\binom{n}{k}$ that are not practical for all $n \in[3, x], x>3,0<$ $\delta<\log 2$. Further results proved by Wang. L-Y and Sun. Z-W (4) showing that $n^{2}+b n+c$ is practical for some integer $n>1, b \geq 0$ and $c>0$. They proved that there are infinitely many practical numbers of the form $q^{4}+2$ with q practical number.
Shapiro (5), Saias (6) prove that

$$
p(x) \geq \frac{c x}{(\log x)}
$$

which is analogous with the asymptotic behavior of primes. In (7) Weingartner gave non explicit bound by proving that

$$
p(x)=\frac{c x}{\log x}\left[1+O\left(\frac{\log \log x}{\log x}\right)\right]
$$

Margenstren (1) noted that the number of practical number $n, n \leq x$ is

$$
\begin{gathered}
p(x) \geq \frac{A x}{\exp \cdot\left[\frac{1}{2 \log 2}(\log \log x)^{2}+3 \log \log x\right]}, \\
A=\frac{2^{5 / 2}}{5}
\end{gathered}
$$

In this paper the bound above is generalized and improved in Theorem (3), for all $t \geq 1$.
Finally, in this paper the bound given by Theorem (3) sharper than the bound mentioned above. Further general result proved for the t - practical number is by showing that there exists a t-practical number in an interval $\left(x, x+2\left(\frac{x}{t}\right)^{1 / 2}\right), t \geq 1$, where the case $t=1$ represent the result of (5).

Preliminary Results and Definitions:

Definition (1) (1): Let $n \geq 1$. Then n be called a practical number if for every integer $m, 1 \leq m<n$ having the form

$$
m=\sum_{d \mid n} c_{d} d, \quad c_{d}=0,1
$$

Definition (2): The number $n,(n \geq 1)$ is called a t practical number if every integer $m, 1 \leq m \leq$ $t n,(t \geq 1)$ is of the form

$$
m=\sum_{d \mid n} c_{d} d, \quad 1 \leq c_{d} \leq t
$$

Definition (3): Define $N(x)$ to be the number of t practical numbers $n, n \leq x$.

The following lemmas will be required
Lemma (1): For any t-practical, $t \geq 1$,

$$
(t+1) n \leq t \sigma(n)+1
$$

where some $\sigma(n)$ is the sum of positive divisors of n.
Proof: If $n=1$, then (1) follows. Let $n \geq 2$ and $d_{1}, d_{2}, \ldots, d_{r}$ and all positive divisors of n, then from Theorem (1)

$$
\begin{gathered}
d_{r}<t \sigma_{r-1}+1 \\
d_{r}+t d_{r} \leq t \sigma_{r-1}+t d_{r}+1 \\
(t+1) d_{r} \leq t \sigma_{r}+1
\end{gathered}
$$

where $_{r}=n, \sigma_{r}=d_{1}+d_{2}+\cdots+d_{r}$

$$
(t+1) n \leq t \sigma(n)+1
$$

Lemma (2): Let $\ell \in \mathbb{N}$. Then $(t+1)^{\ell},(t \geq 1)$ is a t-practical number.
Proof:Let $m \in \mathbb{N}, 1 \leq m \leq(t+1)^{\ell}$, then we can write

$$
m=\sum_{i=1}^{\ell-1} c(t+1)^{i}, \quad\left(1 \leq c_{i} \leq t\right)
$$

since $(t+1)^{i}$ are distinct divisors of $(t+1)^{\ell}$, then $(t+1)^{\ell}$ is a t-practical.
Lemma (3): The number $s^{\ell}, 1 \leq s \leq t+1$ and $\ell \in \mathbb{N}$ is t-practical.
Proof: For any integer $m, 1 \leq m<s^{\ell}$, we can write

$$
m=\sum_{i=1}^{\ell-1} c_{i} s^{i}, \quad 1 \leq c_{i} \leq t
$$

thens ${ }^{i}$ are distinct divisors of s^{ℓ} and therefore s^{ℓ} is t-practical.
The following theorems are required.
Theorem (1) (4): Let $p_{1}<p_{2}<\cdots<p_{k}$ be distinct primes and let $a_{1}, a_{2}, \ldots a_{k} \in \mathbb{N}$. Then $n=p_{1}^{a_{1}} \cdot p_{2}^{a_{2}} \ldots p_{k}{ }^{a_{k}}$ is practical number if and only if $p_{1}=2$ and

$$
p_{j}<\sigma\left(p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{j-1}\right)+1, \quad(1 \leq j \leq k)
$$

where $\sigma(n)$ is the sum of all positive divisors of n. Robinson (8) prove the following
Theorem (2) (8): Let $d_{1}, d_{2}, \ldots, d_{r}$ be the positive divisors of . Then n is a practical number if and only if

$$
d_{k+1} \leq \sigma_{k}+1, \quad(1 \leq k \leq r-1)
$$

where $\sigma_{k}=d_{1}+d_{2}+\cdots+d_{k}$.
A generalization of Robinson's results (8) given by the following:

Theorem (3): n is t-practical if and only if

$$
d_{k+1} \leq t \sigma_{k}+1, \quad(0 \leq k \leq r-1)
$$

Proof: Suppose that

$$
d_{k+1} \leq t \sigma_{k}+1
$$

In fact, by proving that for any $k, 0 \leq k \leq(r-$

1) every integer m such that
$t \sigma_{k}<m \leq t \sigma_{k+1}$ can be express as:

$$
\begin{equation*}
\sum_{i=1}^{k+1} c_{i} d_{i}, \quad 0 \leq c_{i} \leq t \tag{1}
\end{equation*}
$$

wheret $\sigma_{0}=0$ and $\quad t \sigma_{r}=t\left(d_{1}+d_{2}+\cdots+\right.$ $\left.d_{r}\right), d_{r}=n$, this shows that every integer $m, 1 \leq$ $m \leq n$ has the required representation for n to be t practical number. The
proof of (1) is by induction on k. If $=0$, then (1) implies that every integer
$m, 0<m \leq t$ is of the form $c_{1} d_{1}, 0 \leq c_{1} \leq t$, where $d_{1}=1$ and hence m is $\quad t$-practical. Assume that (1) is true for $k=\mathrm{K}$, with $\mathrm{K}<r-1$, then we will show that (1) is true for $k=\mathrm{K}+1$. Therefore, let
$t \sigma_{\mathrm{K}+1}<m \leq \sigma_{\mathrm{K}+2}$
sincet $\sigma_{\mathrm{K}+2}<m \leq t \sigma_{\mathrm{K}+1}+1$, then

$$
d_{K+2} \leq m \leq t \sigma_{K+2}
$$

and if $m<(t+1) d_{\mathrm{K}+2}, m$ can be written as

$$
m=u d_{\mathrm{K}+2}+v
$$

with $0 \leq v \leq d_{\mathrm{K}+2}$ and $0 \leq u \leq t$. Therefore,

$$
0 \leq v \leq d_{\mathrm{K}+2} \leq t \sigma_{\mathrm{K}+1}+1
$$

$$
v \leq t \sigma_{\mathrm{K}+1}
$$

where by induction hypothesis,

$$
v=\sum_{i=1}^{\mathrm{K}+1} c_{i} d_{i}, \quad 0 \leq c_{i} \leq t
$$

and

$$
\begin{gathered}
m=u d_{\mathrm{K}+2}+\sum_{i=1}^{\mathrm{K}+1} c_{i} d_{i} \\
\therefore m=\sum_{i=1}^{\mathrm{K}+2} c_{i} d_{i}
\end{gathered}
$$

with $c_{\mathrm{K}+2}=u$ which is the required form. If
$m \geq(t+1) d_{\mathrm{K}+2}$, then

$$
d_{\mathrm{K}+2} \leq m-t d_{\mathrm{K}+2} \leq t \sigma_{\mathrm{K}+2}=t \sigma_{\mathrm{K}+1}
$$

Hence, induction hypothesis, m is t-practical and

$$
m=\sum_{i=1}^{\mathrm{K}+2} c_{i} d_{i}, \quad 0 \leq c_{i} \leq t
$$

Conversely, if $n t$-practical, then for any
$k, 0 \leq k \leq(r-1)$, it follows that

$$
\begin{aligned}
& d_{\mathrm{K}+1}-1=\sum_{i=1}^{r} c_{i} d_{i}, \quad 0 \leq c_{i} \leq t \\
& d_{\mathrm{K}+1}-1=\sum_{i=1}^{\mathrm{K}} c_{i} d_{i} \leq t \sum_{i=1}^{\mathrm{K}} d_{i}=t \sigma_{\mathrm{K}} \\
& \therefore d_{\mathrm{K}+1} \leq t \sigma_{\mathrm{K}}+1
\end{aligned}
$$

The Number of t-Practical Numbers:

Margenstren (1) proved the following.
Theorem (4) (1): The number of practical numbers $n, n \leq x$ and x large real number is at most,

$$
\frac{A x}{\exp \cdot\left[\frac{1}{2 \log 2}(\log \log x)^{2}+3 \log \log x\right]}
$$

where $=\frac{2^{5 / 2}}{5}$.
a generalization of Theorem (4) (1) for the t practical is given by the following.
Theorem (5): Let x be a large real number. Then $N(x)$

$$
\geq(2 \log 2)^{1 / 2} \cdot \frac{x}{\exp \cdot\left[\frac{1}{2 \log 2}(\log \log x)^{2}+(\log \log x)+\log (t+1)\right]}
$$

Proof: Let $x \geq(t+1)^{3}$. Then we can take x such that

$$
\begin{equation*}
(t+1)^{2^{r}+1} \leq x<(t+1)^{2^{r+1}+1} \tag{1}
\end{equation*}
$$

with $r \geq 1$ and $t \geq 1$. Let $y=\frac{x}{t+1}$, then by writing (1) as

$$
\begin{equation*}
(t+1)^{2^{r}} \leq y \leq(t+1)^{2^{r+1}} \tag{2}
\end{equation*}
$$

from Theorem (1), if $n=p_{1}, \ldots p_{r}$, where
$p_{1} . p_{2} \ldots p_{r}$ are distinct primes then

$$
p_{j+1} \leq t \sigma\left(p_{1} p_{2} \ldots p_{j}\right)+1, \quad 1 \leq j \leq r-1
$$

(3)

where $1<p_{1}<t+1<p_{2}<\cdots<p_{r}$ is a t practical number. Therefore by writing

$$
\left.\begin{array}{c}
1<p_{1}<t+1 \\
t+1<p_{2}<2(t+1) \\
(t+1)^{2}<p_{3}<2(t+1)^{2} \tag{4}\\
\vdots \\
\left.\left.(t+1)^{2^{r}<p_{r}<2(t+1)^{2^{r}}}\right\}\right\} ~ . ~ . ~
\end{array}\right\}
$$

from (4), since $1<p_{1}<t+1$, then by Lemma (3) p_{1} is a t-practical and by Lemma (1), it follows that

$$
t \sigma\left(p_{1}\right)+1>(t+1) p_{1}, \quad p_{1} \geq 2
$$

then $p_{1} . p_{2}$ is also t-practical. Now, as induction hypothesis, assuming that
$p_{1} . p_{2} \ldots p_{i},(2 \leq i \leq r)$ is a t-practical and

$$
(t+1)^{2^{k}} \leq p_{i} \leq 2(t+1)^{k}, \quad 0 \leq k \leq r
$$

then from the L.H.S of (4), it follows that

$$
\begin{array}{r}
p_{1} \cdot p_{2} \ldots p_{i} \geq 2(t+1)^{1+2+2^{2}+\cdots+2^{k}} \\
=2(t+1)^{2^{k+1}-1}
\end{array}
$$

therefore,

$$
\begin{equation*}
p_{1} \cdot p_{2} \ldots p_{i} \geq 2(t+1)^{2^{k+1}-1} \tag{5}
\end{equation*}
$$

and by Lemma (1)

$$
t \sigma\left(p_{1} \cdot p_{2} \ldots p_{i}\right)+1>p_{1} \cdot p_{2} \ldots p_{i}
$$

using (5) to get

$$
t \sigma\left(p_{1} \cdot p_{2} \ldots p_{i}\right) \geq 2(t+1)^{2^{k+1}}>p_{i+1}
$$

Hence, $p_{1} . p_{2} \ldots p_{i+1}$ is a t-practical. From the
R.H.S of (4) we have also

$$
\begin{gathered}
n=p_{1} \cdot p_{2} \ldots p_{r} \leq 2^{r-1} \cdot(t+1)^{2^{r+1}} \\
\therefore n<(t+1)^{2^{r+1}+1}
\end{gathered}
$$

Since the number of $p_{1}, 1<p_{1} \leq(t+1)$ is estimated to be at least

$$
\frac{(t+1)}{\log (t+1)}
$$

and the number of $p_{i}, 2 \leq i \leq r$ is at least

$$
\frac{(t+1)^{2^{m}}}{2^{m} \cdot \log (t+1)}, \quad m=0,1, \ldots, r
$$

Then,

$$
\begin{aligned}
& N\left((t+1)^{2^{r+1}+1}\right) \\
& \geq \frac{(t+1) \cdot(t+1) \cdot(t+1)^{2} \ldots(t+1)^{2^{r}}}{\log (t+1) \cdot \log (t+1) \cdot 2^{2} \log (t+1) \ldots 2^{r} \log (t+1)}
\end{aligned}
$$

That is
$N\left((t+1)^{2^{r+1}+1}\right) \geq \frac{(t+1)^{2^{r+1}}}{2^{r(r+1) / 2} \cdot[\log (t+1)]^{r}}$
from inequality (2),

$$
\log (t+1) \leq \frac{\log y}{2^{r}}
$$

and this implies that

$$
\begin{equation*}
\frac{1}{[\log (t+1)]^{r}} \geq \frac{2^{r^{2}}}{(\log y)^{r}} \tag{7}
\end{equation*}
$$

where from (2)

$$
\begin{equation*}
y<(t+1)^{2^{r+1}} \tag{8}
\end{equation*}
$$

using (7), (8) in (6) to get

$$
\begin{equation*}
N\left((t+1)^{2^{r+1}+1}\right) \geq 2^{r(r-1) / 2} \cdot \frac{y}{(\log y)^{r}} \ldots \tag{9}
\end{equation*}
$$

by using (2), then
$2^{r} \log (t+1) \leq \log y<2^{r} \log (t+1)^{2}$.
since $x=(t+1) y$, then

$$
\begin{equation*}
\log y \leq \log x \leq 2 \log y \tag{10}
\end{equation*}
$$

and both (9), (11) implies that the number of t practical numbers $n, n \leq x$ is

$$
\begin{equation*}
N(x) \geq 2^{r(r-1) / 2} \frac{x}{(t+1)(\log x)^{r}} \tag{12}
\end{equation*}
$$

from (10) above, by taking

$$
2^{r}=\frac{\log y}{\log 2}
$$

and from R.H.S of (11)

$$
\begin{equation*}
2^{r} \geq \frac{\log x}{2 \log 2} \tag{13}
\end{equation*}
$$

using (13) in (12), then

$$
(2 \log 2)^{1 / 2} \cdot \frac{N(x) \geq}{(2 \log 2)^{r / 2} \cdot(t+1)(\log x)^{(r+1) / 2}} \cdots
$$

from the L.H.S of (10),

$$
2^{r} \leq \frac{\log y}{\log (t+1)}
$$

where $\log (t+1) \geq \log 2$, using L.H.S of inequality (11), then

$$
\begin{array}{r}
2^{r} \leq \frac{\log y}{\log 2} \leq \frac{\log x}{\log 2} \\
\therefore r \leq \frac{1}{\log 2}[\log \log x-\log \log 2] \tag{15}
\end{array}
$$

using (15), and write

$$
\begin{aligned}
& 2^{r / 2}=\exp \cdot\left[\frac{r}{2} \log 2\right] \\
& \quad \leq \exp \left[\frac{1}{2} \log \log x-\frac{1}{2} \log \log 2\right]
\end{aligned}
$$

$$
\begin{aligned}
(\log 2)^{r / 2}= & \exp \cdot\left[\frac{r}{2} \log \log 2\right] \\
& \leq \exp \left[\frac{\log \log 2}{2 \log 2} \cdot \log \log x\right. \\
& \left.-\frac{(\log \log 2)^{2}}{2 \log 2}\right]
\end{aligned}
$$

and since,

$$
(\log x)^{r+1 / 2}=\exp \cdot\left[\frac{r+1}{2} \log \log x\right]
$$

then by (15),

$$
\begin{gather*}
(\log x)^{r+1 / 2}=\exp \cdot\left[\frac{r+1}{2} \log \log x\right] \\
\leq \exp \cdot\left[\frac{1}{2 \log 2}(\log \log x)^{2}\right. \\
\left.-\frac{\log \log 2}{2 \log 2} \log \log x+\frac{1}{2} \log \log x\right] \\
\therefore(2 \log 2)^{r / 2} \cdot(\log x)^{r+1 / 2} \\
\leq \exp \cdot\left[\frac{1}{2 \log 2}(\log \log x)^{2}\right. \\
+\log \log x]
\end{gathered} \quad \begin{gathered}
\therefore \frac{1}{(2 \log 2)^{r / 2} \cdot(\log x)^{r+1 / 2}} \\
\geq \frac{1}{\exp \cdot\left[\frac{1}{2 \log 2} \cdot(\log \log x)^{2}+\log \log x\right]}
\end{gather*}
$$

Insert (16) in (14), then the number of t-practical numbers $n, n \leq x$ is $N(x)$ and
$N(x) \geq(2 \log 2)^{1 / 2} \cdot \frac{x}{\text { exp. }\left[\frac{1}{2 \log 2} \cdot(\log \log x)^{2}+\log \log x+\log (t+1)\right]}$
This end the proof. This bound is more sharper than Margenstren result in (1) even when $t=1$, for $x \geq 64$.

t-Practical Numbers in an Interval

In (5) Hausman and Shapiro proved the following:
Theorem (6) (5): For all $x \geq \frac{1}{3}$ the interval $(x, x+$ $2 x^{1 / 2}$) contains a practical number.

A generalization of Theorem (6) (5) given by the following:
Theorem (7): The interval $\left(x, x+2\left(\frac{x}{t}\right)^{1 / 2}\right),(t \geq 1)$ contains a t-practical number for all $x \geq \frac{t}{3}$.
Proof: Considering $x>4 t, t \geq 1$ and $\frac{t}{3} \leq x \leq 4 t$.
For if $x>4 t$ and

$$
\begin{equation*}
2^{a}<\left(\frac{x}{t}\right)^{1 / 2} \leq 2^{a+1}, \quad a \in \mathbb{N} \tag{1}
\end{equation*}
$$

Then the interval $\left(x, x+2\left(\frac{x}{t}\right)^{1 / 2}\right)$ is of the length $\left(\frac{x}{t}\right)^{1 / 2}$, therefore it contains at least one multiple of 2^{a} such as $2^{a} m$ on the other word

$$
\begin{equation*}
x<2^{a} m<x+\left(\frac{x}{t}\right)^{1 / 2} \tag{2}
\end{equation*}
$$

Thus, either m or $m+1$ is even integer, where since

$$
2^{a}(m+1)=2^{a} m+2^{a}<x+2\left(\frac{x}{t}\right)^{1 / 2}
$$

then

$$
x<2^{a} m<2^{a}(m+1)<x+2\left(\frac{x}{t}\right)^{1 / 2}
$$

Now, by showing that one of these integers $2^{a} m, 2^{a}(m+1)$ is a t-practical, suppose that neither is a t-practical number and, without loss of generality, let m be an even integer. Then since $2^{a} m$ is not t-practical number.
then there exists a prime p_{1} of $2^{a} m$ such thats
$p_{i}>t \sigma\left(n_{i-1}\right)+1$
with $2^{a} m=p_{1}^{k_{1}} \cdot p_{2}^{k_{2}} \ldots, p_{l}^{k_{l}}, p_{1}=2, n_{i-1}=$
$p_{1}{ }^{k_{1}} \cdot p_{2}^{k_{2}} \ldots p_{i-1}^{k_{i-1}, i \geq 2}$ and $n_{0}=1$.
Particularly, (3) implies that

$$
p_{i}>t+1
$$

and p_{i} is odd prime for $i \geq 2$. Therefore $2^{a+1} \mid n_{i-1}$ and

$$
\begin{gather*}
p_{i}>t \sigma\left(2^{a+1}\right)+1=t\left(2^{a+2}-1\right)+1 \\
p_{i} \geq t \sigma\left(2^{a+2}-1\right)+2 \tag{4}
\end{gather*}
$$

$2^{a} m \geq 2.2^{2(a+1)} \cdot t-2^{a+1} \cdot t+2^{a+2}$, and from (2),

$$
\begin{align*}
& x+\left(\frac{x}{t}\right)^{1 / 2} \geq 2 x-2^{a+1} \cdot t+2\left(\frac{x}{t}\right)^{1 / 2} \\
& 2^{a+1} \cdot t \geq x+\left(\frac{x}{t}\right)^{1 / 2} \tag{5}
\end{align*}
$$

It follows from the L.H.S of (1), that

$$
2 x^{1 / 2} \cdot t>2^{a+1} \cdot t
$$

therefore (5) implies that

$$
\begin{gathered}
2 x^{1 / 2} \cdot t^{1 / 2}>x+\left(\frac{x}{t}\right)^{1 / 2} \\
2 t^{1 / 2}-\left(\frac{1}{t}\right)^{1 / 2}>x^{1 / 2} \\
2 t^{1 / 2}>x^{1 / 2}
\end{gathered}
$$

and this implies that $x<4 t$ a contradiction. A similar procedure can be followed for $2^{a}(m+1)$ which also leads to a contradiction.

If $t<x \leq 4 t$, then

$$
2 \leq 2\left(\frac{x}{t}\right)^{1 / 2} \leq 4
$$

and

$$
\begin{gather*}
x+2 \leq x+2\left(\frac{x}{t}\right)^{1 / 2} \leq 4+x \\
1<t+1<x+2 \leq x+2\left(\frac{x}{t}\right)^{1 / 2} \leq 4(t+1) \tag{6}
\end{gather*}
$$

By Lemma (2), the inequality (6) shows that the interval

$$
\left(x, x+2\left(\frac{x}{t}\right)^{1 / 2}\right)
$$

contains the integer $(t+1)$ which is a t-practical. If $\frac{t}{3} \leq x<t$, then

$$
2\left(\frac{1}{3}\right)^{1 / 2}<2\left(\frac{x}{t}\right)^{1 / 2}<2
$$

i.e

$$
x+2\left(\frac{1}{3}\right)^{1 / 2}<x+2\left(\frac{x}{t}\right)^{1 / 2}<x+2<t+2
$$

since $x>\frac{t}{2}$, then

$$
1<\frac{t}{3}+1<x+2\left(\frac{x}{t}\right)^{1 / 2}<t+2
$$

and

$$
1<\frac{t}{3}+1 \leq t+1
$$

Therefore, by Lemma (3) $m=\left(\frac{t}{3}+1\right)$ is a t practical number which end the proof.
Theorem (6) (5) follows immediately when $t=1$.
Corollary: The interval $\left(x^{2},\left(x+\left(\frac{1}{t}\right)^{2}\right), t \geq 1, x \geq\right.$ 1 contains a t-practical number.
Proof:From Theorem (7) we have $\left(x, x+2\left(\frac{x}{t}\right)^{1 / 2}\right)$ that contains a t-practical number for $x \geq \frac{t}{3}$, then this implies $\left(x^{2}, x^{2}+2\left(\left(\frac{x}{t}\right)^{2}\right)^{1 / 2}\right)$ that also contains a t-practical number for $x \geq 1$. Since

$$
\begin{aligned}
\left(x^{2}, x^{2}+2\left(\frac{x}{t}\right)^{1 / 2}\right) & \subseteq\left(x^{2}, x^{2}+2 \frac{x}{t}+\frac{1}{t^{2}}\right. \\
& =\left(x^{2},\left(x+\frac{1}{t}\right)^{2}\right)
\end{aligned}
$$

this shows that there is a t-practical number between x^{2} and $\left(x+\frac{1}{t}\right)^{2}$.

Conclusion:

This work gives a new lower bound for all t-practical numbers to be at most

$$
(2 \log 2)^{1 / 2} \cdot \frac{x}{\exp \cdot\left[\frac{1}{2 \log 2}(\log \log x)^{2}+\log \log x+\log (t+1)\right]}
$$

and this lower bound is the sharper bound in which one can determine these numbers $n, n \leq x$ for any real number x. Further results in this paper show that the interval $\left(x, x+2\left(\frac{x}{t}\right)^{1 / 2}\right)$, containing t practical numbers for all $x \geq \frac{t}{3},(t \geq 1)$.

Author's declaration:

- Conflicts of Interest: None.
- I hereby confirm that all the Figures and Tables in the manuscript are mine. Besides, the Figures and images, which are not mine, have been given the permission for re-publication attached with the manuscript.
- Ethical Clearance: The project was approved by the local ethical committee in University of Baghdad.

References:

1. Margenstren. M. Les NombrsPractiques; Theorie, Observations et Conjectures. JNT, 37, 1991; 1-36.
2. Nicholas S, Lola Th.A Generalization of the Practical Numbers", IJNT, 14(05) 2018; 1487-1503.
3. Leonetti P, Sanna C.Practical Numbers Among the Binomial Coefficients. 2019 (to appear).
4. Wang LY, Sun ZW. On practical numbers of some special forms. arXiv :1809.01532. 11 Jul 2019.
5. Hausman M, Shapiro HN. On practical numbers. COMMUN PUR APPL MATH. 1984 Sep; 37(5):705-13.
6. Saias E.Entiers a^{\prime} diviseurs denses 1. JNT, 62 1997; 163-191.
7. Weingartner A.Practical Numbers and Distribution of Divisors.Q. J. Math, 66 2015; 743-758.
8. Robinson D. F.Egyptian Fraction Via Greek Number Theory", The New Zeal. Math. Magazine. $16 \mathrm{~N}^{0}{ }^{0}$ 1979; 47-52.

tتعميم في الاعداد العملية ذات التكرار

سعد عبود بداي

قس الرياضيات، كلية العلوم للبنات، جامعة بغاد،، بغداد، العراق.

$$
\begin{aligned}
& N(x) \geq(2 \log 2)^{1 / 2} \cdot \frac{x}{\exp \cdot\left[\frac{1}{2 \log 2}(\log \log x)^{2}+\log \log x+\log (t+1)\right]} \\
& \text { وهذا الحد الادنى يعتبر افضل من الحد المعطى من قبل Margenstren عندما }
\end{aligned}
$$

الكلمات المفتحاحية: الحد الادني لعدد الاعداد العملية ذات تكرار t، الاعداد العملية، الاعداد العملية بتكرار t، وجود الاعداد العملية بتكرار t
من فترة.

