
Open Access Baghdad Science Journal P-ISSN: 2078-8665

Published Online First: December 2020 E-ISSN: 2411-7986

163

DOI: http://dx.doi.org/10.21123/bsj.2021.18.1.0163

Smart Flow Steering Agent for End-to-End Delay Improvement in Software-

Defined Networks

Omar F. Hussain

1* Bilal R. Al-Kaseem
2
 Omar Z. Akif

 3

1 Quality Assurance and Academic Performance Department, University of Baghdad, Baghdad, Iraq
2 Department of Computer Engineering, College of Engineering, Al-Iraqia University, Baghdad, Iraq
3 Department of Computer, College of Education for Pure Science (Ibn al-Haitham), University of Baghdad, Baghdad,

Iraq
Corresponding author: omar_alberqdar@uobaghdad.edu.iq , bilal.al-kaseem@aliraqia.edu.iq ,

omar.z.a@ihcoedu.uobaghdad.edu.iq
ORCID ID: https://orcid.org/0000-0002-2638-5135 , https://orcid.org/0000-0001-8264-6339 , https://orcid.org/0000-

0003-1773-103X

Received 21/10/2019, Accepted 21/1/2020, Published Online First 6/12/2020, Published 1/3/2021

 This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract
To ensure fault tolerance and distributed management, distributed protocols are employed as one of

the major architectural concepts underlying the Internet. However, inefficiency, instability and fragility could

be potentially overcome with the help of the novel networking architecture called software-defined

networking (SDN). The main property of this architecture is the separation of the control and data planes. To

reduce congestion and thus improve latency and throughput, there must be homogeneous distribution of the

traffic load over the different network paths. This paper presents a smart flow steering agent (SFSA) for data

flow routing based on current network conditions. To enhance throughput and minimize latency, the SFSA

distributes network traffic to suitable paths, in addition to supervising link and path loads. A scenario with a

minimum spanning tree (MST) routing algorithm and another with open shortest path first (OSPF) routing

algorithms were employed to assess the SFSA. By comparison, to these two routing algorithms, the

suggested SFSA strategy determined a reduction of 2% in packets dropped ratio (PDR), a reduction of 15-

45% in end-to-end delay according to the traffic produced, as well as a reduction of 23% in round trip time

(RTT). The Mininet emulator and POX controller were employed to conduct the simulation. Another

advantage of the SFSA over the MST and OSPF is that its implementation and recovery time do not exhibit

fluctuations. The smart flow steering agent will open a new horizon for deploying new smart agents in SDN

that enhance network programmability and management.

Key words: E2E Delay, SDN, Smart Agent, Traffic Steering.

Introduction:
The network landscape has undergone

unprecedented transformations in recent times. The

shift from static networks to mobile and dynamic

networks has been catalyzed by a variety of

innovations, including the introduction of smart

devices, mobility, wireless access, virtualization and

the cloud (1). An increase in large data and network

traffic, as well as novel categories of connected

devices (e.g. industrial machines, thermostats,

sensors, actuators, smart vehicles, wearable devices,

and smart appliances), can all be supported by

mobile networks thanks to the development of the

Internet-of-Things (IoT) (2,3).

The number of connected devices is 9

billion at the moment and, by 2020, it is estimated

to reach 24 billion (4). However, problems of

element control and excessive network loading have

already started to confront carriers (5,6). This may

lead to network breakdown if adequate measures

are not taken to deal with the influx of IoT in which

the things are not merely network consumers, but

also traffic generators (2). The processing, analysis

and secure storage of the terabytes of data produced

by smart IoT devices must be ensured (7).

To be able to keep up with the dynamic

requirements of network bandwidth and

computational power, networks must evolve better

intelligence, speed, security, reliability and

scalability. In earlier times, gateways and routers

executed proprietary applications on proprietary

http://dx.doi.org/10.21123/bsj.2021.18.1.4300
mailto:omar_alberqdar@uobaghdad.edu.iq
mailto:bilal.al-kaseem@aliraqia.edu.iq
mailto:omar.z.a@ihcoedu.uobaghdad.edu.iq
https://orcid.org/0000-0002-2638-5135
https://orcid.org/0000-0001-8264-6339
https://orcid.org/0000-0003-1773-103X
https://orcid.org/0000-0003-1773-103X
https://creativecommons.org/licenses/by/4.0/

Open Access Baghdad Science Journal P-ISSN: 2078-8665

Published Online First: December 2020 E-ISSN: 2411-7986

164

hardware satisfied the needs of static networks.

However, since programmable networks have

substituted static networks, those gateways and

routers are unable to handle the issues posed by

dynamic networks. Under these circumstances,

service providers do not only deal with the network

requirements and manage the high number of

connected devices, but also to maintain their

competitiveness should explore alternatives like

software-defined networking (SDN). Network and

bandwidth problems can be effectively solved by

SDN by dividing the control and data planes and

therefore depriving the forwarding function of

control and promoting dynamic networks that can

be centrally programmed (8).

Transmission of information as digital

packets at global level is made possible by the

distributed control and transport network protocols

contained in routers and switches. Standard IP

networks display great complexity and their

management is challenging, even though they are

used on a broad scale (9). Configuration of every

network device has to be undertaken separately by

network operators with low-level commands that

also frequently differ between vendors, in order to

apply the targeted high-level network policies.

Aside from the complicated configuration, fault

dynamics and load modifications also burden

network environments. Existing networks display

vertical integration and most IP networks lack

automatic reconfiguration and response

mechanisms. The difficulty of making the

networking infrastructure more flexible and

innovative stems from the incorporation of the

control and data planes, respectively responsible for

network traffic decisions and traffic forwarding

based on prior decision-making, into the networking

devices (10,11).

Figure 1 presents the new networking

paradigm that shows great potential in enhancing

the weaknesses of existing network infrastructures,

the new infrastructure is called software-defined

networking (SDN) (12)(13). It works by separating

the control and data planes, as a result of which the

network is no longer vertically integrated. This

division facilitates policy implementation and

network reconfiguration and innovation, since

network switches become mere forwarding devices

and the control logic is applied in a controller with

logical centralization (14). SDN was developed to

increase network programmability and management

through the centralized controller.

Figure 1. The SDN architecture

However, this solution is hindered by the

necessity to ensure that the networks perform well

and are scalable and reliable. Consequently,

physical distribution of control planes is undertaken

in production-level SDN network designs (15,16).

The introduction of a clearly defined software

routine between SDN-based switches and the

controller can help to disassociate the network

planes (data and control). OpenFlow is a well-

known application program interface (API) (17,18)

in SDN. This interface empowers the control plane

to straightway handle the status of the data plane

components.

At least one table of packet managing rules,

known as a flow table, is contained in an OpenFlow

switch and every rule corresponds to a traffic subset

on which it conducts specific tasks, like dropping,

forwarding, editing, etc. A controller application

can order an OpenFlow switch to adopt the behavior

of a router, firewall, or other components, including

load balancer, traffic shaper and middle box

components, according to the rules applied by that

controller. The division of the aspects of network

policy formulation, application of network policies

in switching hardware and traffic forwarding is a

key implication of the SDN concepts. Without such

division, it would be impossible to achieve the

wanted flexibility, separate the issue of network

control into smaller, manageable issues, as well as

improving network management and enabling

network development through facilitation of the

creation and implementation of novel abstractions

in networking.

An enhanced routing algorithm for the SDN

environment is put forth in this study. To this end, a

simulation is conducted with the POX controller

serving as an open source SDN controller. Equipped

with SDN Python libraries and APIS, the POX

controller determines the shortest path and the

source-to-destination paths with the Open Shortest

Open Access Baghdad Science Journal P-ISSN: 2078-8665

Published Online First: December 2020 E-ISSN: 2411-7986

165

Path First (OSPF) algorithm and the Minimum

Spanning Tree (MST) algorithm, respectively.

However, whereas the shortest path with minimal

number of hops is the target of the OSPF and MST

applied in the POX controller, the ideal path with

least number of hops and minimal delay is assessed

in the suggested scheme, as the shortest path may be

unsuitable if the link delay among connected nodes

in a network is uneven. Hence, the POX controller

is reconfigured in this study to be able to determine

the best path, which is not the path with this least

number of hops but the path with that least delay,

based on this information about the delay of every

network link.

The structure of the remainder of the paper consists

of six further parts. In Section 2, relevant existing

research is reviewed, while Section 3 addresses

proactive and reactive flow tables, and Section 4

focuses on the traffic engineering and routing

mechanisms. In Section 5, the suggested scheme is

presented and, in Section 6, the outcomes of the

performance assessment are provided. The study

conclusion is given in Section 7.

Related Works

In the following part, research pertinent to

the incorporation of algorithms for path

identification in the SDN controller is reviewed.

Additionally, the existing opportunities for

integrating these algorithms with the OpenFlow

protocol in the SDN framework are explored.

Hindering occurrence of congestion or

regulating the traffic in such a way as to minimize

the implications of congestion has been proposed by

numerous researchers as a strategy for improving

load balancing. Unlike other congestion-aware

protocols that took into account just the local status

because of the problems of path congestion

measurement, one study put forth a new congestion-

aware routing protocol capable of making routing

decisions based on both local and remote

congestion information (8). The congestion is

innovatively represented for links between routers

and an aggregation protocol facilitated the

dissemination of the congestion statistics to other

network routers. Hence, both local and potential

next-hop status could be considered in routing

decision-making thanks to such an effective

approach amenable to scalability.

A different routing strategy known as

Accumulative Load-Aware Routing (ALAR) for

SDN and considering the aggregating flow load on

every link was suggested in (17). This strategy

improved network resource use and reduced

congestion likelihood, and implicitly, average end-

to-end delay, by establishing routes based on

information regarding the entire network topology

and traffic.

To enhance certain parameters of network

performance (e.g. link congestion and bandwidth

usage) and make the conventional OSPF routing

protocol perform better, one study endowed the

OSPF of the SDN with new attributes (14).

According to the outcomes of the simulation,

besides identifying the site where congestion

occurred or is likely to occur, a network with a

smart dynamic controller could also employ an

intelligent heuristic Flows Distribution Algorithm

(FDA) to avoid congestion through effective

management of chosen flows on chosen network

routers.

In a different study, a user-based strategy of

traffic improvement was applied, whereby users’

application trends documented via generic NetFlow

records were used to characterize those users to

improve understanding of individual user usage

(15). Furthermore, Linux-based hierarchical token

bucket (HTB) queues with real-time adjustment to

each user profile depending on priorities identified

by the users was used to implement an SDN

application for supervising and managing traffic.

Thanks to this approach, packet loss and latency

were significantly reduced for chosen high-priority

users as dynamic distribution of bandwidth

according to users’ profile priority ensured the

efficiency of the traffic management strategy under

upstream as well as downstream network

congestion.

Problem Statement and Contributions
The overall goal of the present study is to

decrease the network delay through the introduction

of a smart agent in the SDN controller, and thus to

contribute to literature expansion, as not many

studies have used optimized routing algorithms in

SDN controllers. Additionally, validation of proof-

of-concept application, which is concerned with

methods of using the SDN controller in surveillance

of extensive networks and diminishing end-to-end

delay, is also an important objective of the study. In

particular, the contributions of this study are

significant for the following reasons:

1. Prevention and anticipation of congestion

between a source and destination and delay

reduction through the creation of a delay- and

congestion-aware routing algorithm based on

an open-source SDN controller;

2. Enhancement of network performance and

throughput with optimized flow-table entries

underpinned by link quality among OpenFlow

switches;

Open Access Baghdad Science Journal P-ISSN: 2078-8665

Published Online First: December 2020 E-ISSN: 2411-7986

166

3. Removal of the number of packets returned to

the SDN controller for flow-table entry update

and speeding up recovery in the event of

failure through the incorporation of a smart

agent in the SDN controller.

The suggested scheme is based on the smart flow

steering agent (SFSA), which enables both routing

algorithms and agent applications to be deployed in

a dynamic and scalable manner in the SDN

controller. Employing a multi-objective routing

algorithm, the SFSA scheme is geared towards

identifying the best path, thus improving SDN

network management and configuration.

Reactive and Proactive Flow-Table in SDN
Dynamic restoration of flows is enabled by

the flexibility exhibited by the SDN network

configuration. This procedure involves performance

of flow tasks, such as addition or elimination of

flow-entries to/from flow-tables, by network

devices to achieve disrupted flow re-routing (19).

Upon reception of a packet, an attempt is made by

the OpenFlow switch to establish a correspondence

between the packet header and its flow table. The

switch forwards the header to its OpenFlow

controller if it cannot find any packet information.

This results in a packet in event in the controller.

The headers L2, L3 and L4 are assessed by the

controller and the packet is distributed all through

the network along with other packets of the same

flow. The controller returns flow modification to the

switches when it secures a route, so that the

switches can update their flow tables as depicts in

Fig. 2 in which the proactive or reactive techniques

are employed to create such data paths.

Figure 2. Reactive and proactive flow-table in

SDN

Ensuring that packet transmission occurs

after paths are established is the main task of

proactive routing techniques in SDN networks.

What makes these techniques particularly useful is

that, in the process of end-host detection, they do

not produce extra network overhead and do not

interfere with network performance. Since

forwarding rules are already in place, the controller

does not receive any packet transmitted through the

network. On the downside, prior mapping of every

interconnection in the network topology is a

requirement in proactive techniques and this may

not be possible in some networks. In contrast, in

cases where a switch receives a new packet that has

no correspondent in its flow table, reactive routing

techniques are applicable. The packet is sent to the

controller, which undertakes identification of its

end-hosts with control messages and, prior to

forwarding the data traffic in the network, it

acquires the active links. Reactive routing

techniques are advantageous because they do not

require prior information about the entire network

topology. On the downside, given that the controller

receives every initial packet of every new flow prior

to network dissemination, the performance of

extensive networks may be adversely affected by

the volume of control messages.

Path establishment in SDN networks can be

effectively undertaken with both proactive and

reactive techniques. Path-deploying controllers

must be synchronized in the case of proactive

techniques, while extra overhead is generated by

reactive techniques in extensive networks and they

also affect network performance. Furthermore,

owing to the caching of the next flow forwarding

state on the OpenFlow switch, latency is introduced

by reactive techniques only to the initial packet of

flow (16).

Traffic Engineering and Routing Mechanisms

Improvement of network performance and

traffic delivery relies greatly on traffic engineering,

which in turn depends on route optimization,

involving discovery of routes that could help attain

the target network performance (20,21).

Important elements of traffic engineering in

IP networks are quality of service (QoS) and

resilience mechanisms. Alongside bandwidth

requirements, QoS assurance (i.e. end-to-end delay,

jitter, likelihood of packet loss, and energy

efficiency) is also important in many of the novel

multimedia applications. Meanwhile, IP networks

are often affected by various kinds of failures,

including node or link failure, and rapid resilience

mechanisms are needed to address those failures

(19,22,23). Under such circumstances, preventing

Open Access Baghdad Science Journal P-ISSN: 2078-8665

Published Online First: December 2020 E-ISSN: 2411-7986

167

failures from disrupting network performance and

resource usage is the main objective of traffic

engineering solutions. Basic routing models

consisting of shortest path and load-balancing

strategies with traffic divided evenly into a specific

number of paths of equal cost represent the

cornerstone of the majority of IP-based traffic

engineering solutions (23). In the following part,

several popular routing algorithms and their impact

on network traffic performance are discussed.

The connected graph 𝐺(𝑉, 𝐸) can be

derived from the SDN topology, the generated

graph is weighted and directed, where 𝑉 is the

vertices (SDN switches) and 𝐸 is the connected

edges of the graph (connected links).

Open Shortest Path First (OSPF)

An OpenFlow interface is included in

numerous new Internet routers, which are also

compatible with a hybrid OpenFlow/OSPF mode.

For optimal forwarding of packets, the distributed

legacy routing protocol is usually applied by hybrid

control plane frameworks and is augmented with

high-priority rules by the SDN controller to allow

more elaborate routing configurations (24).

In the case of IP networks, the OSPF

algorithm frequently serves as an interior gateway

protocol (IGP) based on the link state. A network

topology graph is created by OSPF with

information about link state derived from existing

routers. Furthermore, it applies a hop-counts

technique to determine the shortest path for packet

routing.

In the connected graph 𝐺(𝑉, 𝐸), the links

weights are given by the weight function 𝑤: 𝐸 →
[0, ∞], the cost of the link can be expressed as the

number of hops between two switches. Therefore

𝑤(𝑢, 𝑣) is the non-negative cost of moving directly

from 𝑢 ∈ 𝑉 to 𝑣 ∈ 𝑉 with a cost of 𝑑(𝑣).

The shortest path algorithm can be executed as

follows from source node 𝑠 to 𝑣:

1. Set 𝑆 to empty, where 𝑆 is a set of nodes whose

shortest paths from the source have already

been determined;

2. Add the source 𝑠 to 𝑆 and 𝑑(𝑠) = 0, if there is

a link from 𝑠 to 𝑣, 𝑑(𝑣) = 𝑤(𝑠, 𝑣), for all

other nodes, 𝑑(𝑣) = ∞;

3. Add node 𝑢 to 𝑠, where 𝑑(𝑢) is the minimum

hops in 𝑉 − 𝑆, if 𝑆 = 𝑉, complete the task;

4. If there is a link from 𝑢 to 𝑣 ∈ 𝑉 − $;

; min {𝑑(𝑣), 𝑑(𝑢) + 𝑤(𝑢, 𝑣)}. Then go back to

step 3.

Minimum Spanning Tree (MST)

To prevent the issue of packet broadcast

storm in a legacy network with loops, a spanning

tree is created with the IEEE 802.11d distributed

spanning tree protocol. The same issue can be

addressed in an SDN network through central

creation of a spanning tree based on the overall

information of network topology gathered by the

SDN controller (14). The basic bridge protocol that

was initially devised for loop prevention in bridge

network is known as the Spanning Tree Protocol.

Data are disseminated through the tree constructed

by this protocol and encompassing all network

bridges, with only the links included in the tree

being allowed. If the bridged network breaks down,

it can repair itself through activation of the links

that have been previously blocked. However, the

algorithm presents limitations in that recovery in the

event of failure does not occur fast enough and

backup links can only be used for forwarding under

conditions of failure (20).

The spanning tree 𝑇 of the graph 𝐺(𝑉, 𝐸) is

the graph 𝑇 = (𝑉, 𝐸′) such that 𝑇 is a tree and

𝐸′ ⊆ 𝐸 if 𝐺 is a weighted graph, 𝑇 will be a

weighted graph. The total edge weight of 𝑇 is

defined as the sum of the edge weight in 𝐺. the

minimum spanning tree 𝑇 of 𝐺, is the spanning tree

of 𝐺, such that no other spanning tree of 𝐺 has

lower total edge weight.

Proposed Smart Traffic Steering

Quality deterioration is mainly caused by

network congestion, which occurs when the traffic

is not distributed homogeneously or network

resources are insufficient. This issue is compounded

by the fact that current routing algorithms are

designed to detect just the shortest paths from a

source to a destination, and that routing and

congestion control do not work together (25).

Packet drop ratio (PDR), latency (end-to-end delay)

and error rate are all heightened by the rise in

queuing delay due to congestion.

Building on the extended Dijkstra’s

algorithm, the approach put forth in this study aims

to identify the best path from a source to a

destination in an SDN. The information collected by

the OpenFlow switches is used by the SDN

controller to create a general network topology. The

suggested approach involves appraisal of

congestion rate during network traffic by the

OpenFlow switches through gauging of link delay

via hello and acknowledgement messages for

detection of connected switches. The detection

information sent by every switch to the SDN

controller enables the latter to construct a general

network topology. Flow table entries are generated

by an agent application with a smart flow steering

mechanism working within the SDN controller.

Subsequently, the flow tables are sent to the

Open Access Baghdad Science Journal P-ISSN: 2078-8665

Published Online First: December 2020 E-ISSN: 2411-7986

168

OpenFlow switches. Applying a technique

underpinned by Dijkstra’s algorithm, the smart flow

steering mechanism determines the shortest path for

every route, thus achieving packet routing.

Furthermore, weights are allocated by the SFSA to

all network links in order to identify the shortest

paths. The allocation of link weights takes the form

of link states, with the SDN controller receiving

link state messages from all OpenFlow switches.

For routing to be considered optimal, it must

prevent network congestion by employing existing

network resources for effective traffic distribution.

To take into account both the edge weights and the

switch congestion for all routes obtained from the

underpinning SDN topology, the modified

Dijkstra’s shortest path algorithm is applied.

Dijkstra’s algorithm is classified as a label-setting

algorithm because the label of a node that has been

visited remains permanently fixed if it does not

become out of reach. All nodes in label-setting

algorithms have such a label, which informs about

the cost and route for reaching a specific node from

a source. The link delay and estimated congestion

give the route cost function, which enables the

SFSA to identify every potential path between

source and destination. By contrast to the OSPF and

MST algorithms, the route hop count and minimum

segment are respectively disregarded in label-

setting algorithms, which choose the route with

least delay and congestion from among all potential

routes. In SDN, the SFSA can achieve significant

improvement in PDR and end-to-end delay. Fig. 3

presents the SFSA framework.

Figure 3.The proposed architecture of smart flow steering agent

At the controller, the global SDN topology

is constructed based on the connected graph

𝐺(𝑉, 𝐸) introduced by Huang (26), in which the

SDN network consists of 𝑁 switches denoted by

{𝑉}𝑖=1
𝑁 connected through link sets 𝐸 = 𝑒𝑖,𝑗 where

𝑒𝑖,𝑗 is the link incident from node 𝑣𝑖 to 𝑣𝑗. On the

controller, 𝑃𝑗 is defined

𝑃𝑗 = [𝐿1 , 𝐿2 ⋯ 𝐿𝑁] … (1)

As a set of 𝑁 links from path 𝑗, and let

𝐶𝑜𝑛𝑔𝑖 is the congestion level of link 𝐿𝑖, the

congestion level is being estimated at the switch

using the following formula:

𝐶𝑜𝑛𝑔𝑠. 𝑆𝑤𝑖𝑡𝑐ℎ =
𝑑𝑎𝑡𝑎 𝑟𝑎𝑡𝑒

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
× 𝑃𝑎𝑐𝑘𝑒𝑡𝑖𝑛 … (2)

Where the 𝑃𝑎𝑐𝑘𝑒𝑡𝑖𝑛is the of packets passed

across the given switch. The congestion status (𝑃𝑗
𝑚)

of path 𝑗 is the maximum congestion level of all the

links of path 𝑗:

𝑃𝑗
𝑚 = 𝑚𝑎𝑥(𝑐𝑜𝑛𝑔𝑠1, 𝑐𝑜𝑛𝑔𝑠2, ⋯ , 𝑐𝑜𝑛𝑔𝑠𝑁) … (3)

Where 𝑐𝑜𝑛𝑔𝑠𝑖 is the congestion level of

link at switch 𝑖 on the other hand, the congestion

weight of the path 𝑃𝑗
𝑚 is the sum of all the links

congestion level in path 𝑗:

𝑃𝑗
𝑤 = 𝑠𝑢𝑚(𝑐𝑜𝑛𝑔𝑠1, 𝑐𝑜𝑛𝑔𝑠2, ⋯ , 𝑐𝑜𝑛𝑔𝑠𝑁) … (4)

Once all the network information is being

reported at the controller, the controller starts

Open Access Baghdad Science Journal P-ISSN: 2078-8665

Published Online First: December 2020 E-ISSN: 2411-7986

169

building up the flow table entries for each switch,

for a given source/destination pairs, let 𝐾 be equal

cost shortest paths where congestion level are

𝑃1
𝑚 , 𝑃2

𝑚 , ⋯ , 𝑃𝑘
𝑚 respectively. Among these paths,

the controller defines a set 𝑆𝑥 such that:

𝑆𝑥 = {𝑥|𝑃𝑥
𝑚 = min{𝑃1

𝑚 , 𝑃2
𝑚 , , 𝑃𝐾

𝑚}} … (5)

𝑆𝑦 = {𝑦|𝑃𝑦
𝑤 = min{𝑃𝑥

𝑤 . 𝑥 ∈ 𝑆𝑥}} … (6)

𝑆𝑥 contains all the paths that have the same

minimum congestion level, 𝑆𝑦 contains source

destination pairs with lowest congestion weight.

Finally, the paths is 𝑆𝑦 is the Flow Table entities for

each switch in the SDN controller.

Performance Evaluation Results
A Windows-based Oracle virtual box and

MATLAB software for the Mininet emulator and

algorithm analysis, respectively, were employed to

perform the simulation scenarios. There are two

sequential procedures undertaken by the SDN

controller. Prior to selection of a routing algorithm,

it conducts network discovery to uncover the

network topology. The identification of the

OpenFlow switches is followed by application of

the SFSA in the SDN controller and provision of

optimum flow tables to the OpenFlow switches for

storage and initiation of data routing.

Two scenarios concerned with end-to-end delay and

PDR are explored in this study via the following

steps:

 Creation of the general network topology and

execution of the default routing algorithm

OSPF or MST in POX controller by the

Mininet;

 Use of the packet capture method to extract

link quality information from the OpenFlow

switches following completion of the network

discovery process;

 Comparison between the outcome of using

SFSA in the SDN controller and the default

algorithms based on MATLAB analysis;

 Re-simulation in MATLAB of the same

network topology but with the link quality

information derived from the Mininet;

 MATLAB-based application of three distinct

routing algorithms in the same sub-domain,

namely, OSPF and MST in custom as well as

full-mesh topology, and SFSA underpinned by

the extended Dijkstra’s algorithm with

parameters of link quality information (e.g.

link delay, bandwidth utilisation, and number

of hops).

Several assumptions were formulated before the

two simulation scenarios and related analysis were

initiated:

 The computation capacity and traffic

handling are the same for every OpenFlow

switch;

 The creation of the general topology does

not include the connection between every

OpenFlow switch and a remote SDN

controller;

 The SDN switches and hosts are bi-

directionally connected via SDN links;

 The simulation is conducted with the POX

controller.

Mesh Topology Scenario

For both Mininet (Fig. 4) and MATLAB

(Fig. 5), the mesh topology was made up of five

OpenFlow switches with ten links ensuring their

connection. Fig. 6 illustrates the round-trip

comparison and it can be seen that, by contrast to

the default Mininet routing algorithms, the SFSA

was associated with less delay by achieving a 23%

decrease in packet round trip time (RTT) even when

the generated packets across the network have been

increased. On the other hand, Fig. 7 presents the

algorithm execution time and failure recovery time,

indicating that, by comparison to the other

algorithms, the SFSA can identify the optimal path

from all possible paths much faster in the event of

network failure.

Open Access Baghdad Science Journal P-ISSN: 2078-8665

Published Online First: December 2020 E-ISSN: 2411-7986

170

Figure 4. Mesh topology simulation run for the Mininet

Figure 5. Mesh topology architecture using

MATLAB

Figure 6. Mesh topology round-trip comparison

Figure 7. Mesh topology scenario for SFSA

execution and recovery time

The values associated with the worst-case

scenario in mesh topology are listed in Table I. It

can be seen that, in the selection of the optimal path

between two nodes, the SFSA successfully balanced

path length and congestion cost. As a result, the

end-to-end delay was 15-30% lower in the case of

the SFSA than in the case of the default Mininet

routing algorithm, which is influenced by the traffic

load and node position.

Table 1. Mesh Topology Worst Case Scenario

Source Destination Hop-counts Delay Algorithm

1 4 1 4.24 OSPF

1 4 1 4.24 SFSA

1 4 2 5.77 MST

3 4 2 8.35 OSPF

3 4 2 3.14 SFSA

3 4 2 3.14 MST

Open Access Baghdad Science Journal P-ISSN: 2078-8665

Published Online First: December 2020 E-ISSN: 2411-7986

171

Custom Topology Scenario

For both Mininet (Fig. 8) and MATLAB

(Fig. 9), the custom topology was made up of nine

OpenFlow switches with eleven links ensuring their

connection. Figure 10 presents the algorithm

execution time and recovery time, indicating that,

by comparison to the other algorithms, the SFSA

can identify the optimal path from all possible paths

much faster. Figure 11 illustrates the PDR

comparison and it can be seen that, by contrast to

the default Mininet routing algorithms, MST and

OSPF, the SFSA achieved a 2% decrease in PDR.

The capacity of a control plane to prevent additional

traffic loss in the event of a network failure by

finding a feasible alternative routing with no routing

loops and black holes is known as failure recovery.

Figure 8. Custom topology simulation run for the Mininet

Figure 9. Custom topology architecture using

MATLAB

Figure 10: Custom topology scenario for SFSA

execution and recovery time

Open Access Baghdad Science Journal P-ISSN: 2078-8665

Published Online First: December 2020 E-ISSN: 2411-7986

172

(a) (b) (c)

Figure 11. Packet Drop Ratio (PDR %) for the custom topology scenario

In the process of optimal path

identification, an important factor considered by the

SFSA is the determination of the congestion of

every network link. To achieve route optimization,

it is not the shortest path that is chosen, but the path

with minimal congestion and delay, and this

selection process is undertaken with the multi-

objective routing algorithm. The values associated

with the worst-case scenario in custom topology are

listed in Table 2. It can be seen that, in the selection

of the optimal path between two nodes, the SFSA

successfully balanced path length and congestion

cost. As a result, the end-to-end delay was 15-45%

lower in the case of the SFSA than in the case of the

default Mininet routing algorithm, which is

influenced by the traffic load of the switches.

Table 2. Custom Topology Worst Case Scenario

Source Destination Hop-counts Delay Algorithm

1 2 1 10.75 OSPF

1 2 1 10.75 SFSA

1 2 3 19.83 MST

3 4 3 22.38 OSPF

3 4 4 16.61 SFSA

3 4 4 16.61 MST

Conclusion:
This paper reviewed major research related

to SDN, and proposed a promising approach

involving incorporation of a smart agent in the SDN

controller. SDN is of significant benefit to network

and flow management, but it is not without

limitations, which needs further investigation. One

major problem is the stability of the control plane.

Numerous strategies have been suggested to address

this problem, but all of them involve measuring the

performance of control plane stability in relation to

certain parameters of network QoS (e.g. throughput

and latency). In contrast to these strategies, the

proposed SFSA approach is geared towards

improvement of end-to-end delay, RTT and PDR.

According to the findings of this study, as the

number of requests rise at high traffic, the SFSA

ensures the stability of the execution and recovery

time in the two scenarios employed. In addition, by

transferring knowledge to an external agent, it is

possible to diminish the number of flow entries in

the switches. The results of the simulation confirm

that, by comparison to the MST and OSPF

algorithms, the SFSA approach performs much

better.

Authors' declaration:
- Conflicts of Interest: None.

- We hereby confirm that all the Figures and

Tables in the manuscript are mine ours. Besides,

the Figures and images, which are not mine ours,

have been given the permission for re-

publication attached with the manuscript.

- Ethical Clearance: The project was approved by

the local ethical committee in University of

Baghdad.

References:
1. Braun W, Menth M. Software-Defined Networking

Using OpenFlow: Protocols, Applications and

Architectural Design Choices. Future Internet.

2014;6(2):302.

2. Gubbi J, Buyya R, Marusic S, Palaniswami M.

Internet of Things (IoT): A Vision, Architectural

Elements, and Future Directions. FUTURE GENER

COMP SY. 2013;29(7):1645 – 1660.

3. Al-Kaseem BR, Al-Dunainawi Y, Al-Raweshidy HS.

End-to-End Delay Enhancement in 6LoWPAN

Testbed Using Programmable Network Concepts.

IEEE Internet of Things Journal (IOT-J). 2018 Nov

1;6(2):3070-86.

4. van der Meulen R. Analysts to Explore the Value and

Impact of IoT on Business at Gartner Symposium /

ITxpo 2015, November 8-12 in Barcelona, Spain;

Open Access Baghdad Science Journal P-ISSN: 2078-8665

Published Online First: December 2020 E-ISSN: 2411-7986

173

2015. [Accessed on: Jun. 16, 2019].

http://www.gartner.com.

5. Chin WH, Fan Z, Haines R. Emerging technologies

and research challenges for 5G wireless networks.

IEEE Wireless Communications(IEEEWIRCOM).

2014 May 12;21(2):106-12.

6. Jara AJ, Zamora MA, Skarmeta A. Glowbal IP: An

Adaptive and Transparent IPv6 Integration in the

Internet of Things. Mob Inf Syst. 2012 Jul;8(3):177–

197.

7. Akif OZ, Rodgers GJ, Al-Raweshidy HS. Protecting

a Sensitive Dataset Using a Time Based Password in

Big Data. In: 2017 Computing Conference; 2017. p.

871–879.

8. Al-Shabibi A, Martin B. MultiRoute - a Congestion-

aware Multipath Routing Protocol. In: 2010

International Conference on High Performance

Switching and Routing; 2010. p. 88–93.

9. Sabbeh A, Al-Dunainawi Y, Al-Raweshidy HS,

Abbod MF. Performance Prediction of Software

Defined Network Using an Artificial Neural Network.

In: 2016 SAI Computing Conference (SAI); 2016. p.

80–84.

10. Sood K, Yu S, Xiang Y. Software-Defined Wireless

Networking Opportunities and Challenges for

Internet-of-Things: A Review. IEEE Internet of

Things Journal (IOT-J). 2015 Sep 28;3(4):453-63.

11. Kreutz D, Ramos FMV, Veríssimo PE, Rothenberg

CE, Azodolmolky S, Uhlig S. Software-Defined

Networking: A Comprehensive Survey. Proceedings

of the IEEE. 2015 Jan; 103(1):14–76.

12. Al-Kaseem BR, Al-Raweshidy HS. Enabling

Wireless Software Defined Networking in Cloud

Based Machine-to-Machine Gateway. In: 2016 8th

Computer Science and Electronic Engineering

(CEEC) (CEEC’16). Colchester, Essex, United

Kingdom; 2016. p. 24–29.

13. He J, Song W. Achieving Near-Optimal Traffic

Engineering in Hybrid Software Defined Networks.

In: IFIP Networking Conference (IFIP Networking),

2015; 2015. p. 1–9.

14. Hasan H, Cosmas J, Zaharis Z, Lazaridis P,

Khwandah S. Development of Performance of OSPF

Network by Using SDN Concepts. In:

Communications and Networking (BlackSeaCom),

2016 IEEE International Black Sea Conference on;

2016. p. 1–4.

15. Bakhshi T, Ghita B. User-Centric Traffic

Optimization in Residential Software Defined

Networks. In: 2016 23rd International Conference on

Telecommunications (ICT); 2016. p. 1–6.

16. Jararweh Y, Al-Ayyoub M, Darabseh A, Benkhelifa

E, Vouk M, Rindos A. SDIoT: a Software Defined

Based Internet of Things Framework. J AMB INTEL

HUM COMP. 2015;6(4):453–461.

17. Nguyen TT, Kim DS. Accumulative-Load Aware

Routing in Software-Defined Networks. In: 2015

IEEE 13th International Conference on Industrial

Informatics . 2015. p. 516–520.

18. Gholami M, Akbari B. Congestion Control in

Software Defined Data Center Networks Through

Flow Rerouting. In: 2015 23rd Iranian Conference on

Electrical Engineering. 2015; p. 654–657.

19. Astaneh SA, Heydari SS. Optimization of SDN Flow

Operations in Multi-Failure Restoration Scenarios.

IEEE Transactions on Network and Service

Management. 2016 Sept;13(3):421–432.

20. Fortz B, Thorup M. Optimizing OSPF/IS-IS weights

in a changing world. IEEE journal on selected areas

in communications (J-SAC) . 2002 Aug 7;20(4):756-

67.

21. Wang SY, Wu CC, Chou CL. Constructing an

Optimal Spanning Tree over a Hybrid Network with

SDN and Legacy Switches. In: 2015 IEEE

Symposium on Computers and Communication

(ISCC). 2015; p. 502–507.

22. Cinkler T, Moldovan I, Kern A, Lukovszki C, Sallai

G. Optimizing QoS Aware Ethernet Spanning Trees.

In: 2005 1st International Conference on Multimedia

Services Access Networks. 2005; MSAN ’05.; 2005.

p. 30–34.

23. Akyildiz IF, Lee A, Wang P, Luo M, Chou W. A

Roadmap for Traffic Engineering in SDN-OpenFlow

Networks. Computer Networks. 2014;71:1 – 30.

24. Caria M, Jukan A, Hoffmann M. SDN partitioning: A

centralized control plane for distributed routing

protocols. IEEE Transactions on Network and Service

Management(IEEE TNSM) . 2016 Jun 28;13(3):381-

93.

25. Nakahodo Y, Naito T, Oki E. Implementation of

smart-OSPF in hybrid software-defined network.

In2014 4th IEEE International Conference on

Network Infrastructure and Digital Content 2014 Sep

19 (pp. 374-378). IEEE.

26. Huang T. Path Computation Enhancement in SDN

Networks ;. Master of Applied Science, Program of

Computer Networks, Ryerson University, Toronto,

Jan. 2015.

Open Access Baghdad Science Journal P-ISSN: 2078-8665

Published Online First: December 2020 E-ISSN: 2411-7986

174

 وكيل توجيه سريان ذكي لتحسين التأخير من النهاية إلى النهاية في الشبكات المعرفة بالبرامجيات

عمر فائز حسين
1

بلال رشيد الكصيم
2

 عمر زياد عاكف
3

 .العراق ،بغداد ،قسم ضمان الجودة والأداء الجامعي ، جامعة بغداد 1
 .العراق ،بغداد ،قسم هندسة الحاسوب ، كلية الهندسة ، الجامعة العراقية 2
 .العراق ،بغداد ،، جامعة بغدادسم علوم الحاسوب ، كلية التربية للعلوم الصرفة)إبن الهيثم(ق 3

 الخلاصة :
لضمان الإستجابة للخطأ والإدارة الموزعة، يتم استخدام البروتوكولات الموزعة كأحد المفاهيم المعمارية الرئيسية التي تتضمنها

الجديدة التي تسمى الشبكات المعرفة شبكة الإنترنت. ومع ذلك، يمكن التغلب على عدم الكفاءة وعدم الاستقرار والقصور بمساعدة بنية الشبكات

الخاصية الرئيسية لهذه المعمارية هي فصل مستوى التحكم عن مستوى البيانات. إن تقليل التصادم سيؤدي إلى تحسين . SDNبالبرمجيات

المروري عبر مسارات سرعة الإستجابة وزيادة البيانات المرسلة بصورة صحيحة، لهذا السبب يجب أن يكون هناك توزيع متجانس للحمل

لتوجيه تدفق البيانات بناءاً على ظروف الشبكة الحالية. لتحسين الإنتاجية SFSA الشبكة المختلفة. تقدم هذه الورقة البحثية أداة توجيه ذكية

سبة ، بالإضافة إلى حركة مرور البيانات داخل الشبكة على مسارات منا توزيعتقوم ب SFSAوتقليل زمن الوصول، فإن الخوارزمية المقترحة

وأخرى مع MSTمسارات نقل البيانات. تم استخدام سيناريو خوارزمية توجيه شجرة الامتداد الدنياالإشراف على الإرتباطات التشعبية وحمل

لنسبة . على سبيل المقارنة ، با SFSAلتقييم جودة الخوارمية المقترحة OSPFخوارزمية التوجيه المعروفة بفتح أقصر مسار أولاً

، وبنسبة PDR٪ في معدل ضياع حزم البيانات 2المقترحة انخفاضاً بنسبة SFSAلخوارزميات التوجيه المذكروة آنفاً ، فقد حققت استراتيجية

 ٪ في زمن رحلة 23٪ في سرعة إستلام البيانات من المصدر إلى الالوجهة النهائية لحزمة البيانات وكذلك انخفاض بنسبة 45-15تتراوح بين

 OSPFو MSTعلى SFSAلإجراء المحاكاة. ميزة أخرى من POX ووحدة التحكم Mininet . تم استخدام محاكي RTTذهاب وعودة

ت. يتقوم أداة التوجيه الذكية المقترحة في هذه الورقة البحثية من فتح أفقاً جديداً لنشر أدوات ذكية هي أن وقت التنفيذ والاسترداد لا يحمل تقلبا

 . تعزز قابلية برمجة الشبكات وإدارتها SDN شبكة جديدة في

 .تأخير من النهاية إلى النهايةال ، حركة المرور الموجهة ،الوكيل الذكي ،الشبكات المعرفة بالبرامجياتالكلمات المفتاحية :

