DOI: http://dx.doi.org/10.21123/bsj.2020.17.3(Suppl.).1041

Matrix Form of Deriving High Order Schemes for the First Derivative

Hassan Abd Salman Al-Dujaly¹ Yinlin Dong²

¹Mustansiriyah University - College of Science, Baghdad, Iraq, 009647800552540, hassanaldujaly@uomustansiriyah.edu.iq, https://orcid.org/0000-0001-9771-0129 ²*Corresponding author: Yinlin Dong, ²University of Central Arkansas, Conway, Arkansas, USA 0015014505684 / ydong5@uca.edu, https://orcid.org/0000-0003-4030-3383

Received 27/10/2019, Accepted 10/3/2020, Published 8/9/2020

This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract:

(cc)

 \odot

For many problems in Physics and Computational Fluid Dynamics (CFD), providing an accurate approximation of derivatives is a challenging task. This paper presents a class of high order numerical schemes for approximating the first derivative. These approximations are derived based on solving a special system of equations with some unknown coefficients. The construction method provides numerous types of schemes with different orders of accuracy. The accuracy of each scheme is analyzed by using Fourier analysis, which illustrates the dispersion and dissipation of the scheme. The polynomial technique is used to verify the order of accuracy of the proposed schemes by obtaining the error terms. Dispersion and dissipation errors are calculated and compared to show the features of high order schemes. Furthermore, there is a plan to study the stability and accuracy properties of the present schemes and apply them to standard systems of time dependent partial differential equations in CFD.

Key words: Compact Scheme, Dispersion, Dissipation, High Order, Wave Number

Introduction

Many phenomena in physics like turbulent fluid flows have a range of time scales and space scales. The length scales that are resolved by computation models are determined by the spectral resolution (1), and the accuracy with which these scales are represented depends upon the numerical scheme (2). Fourier analysis of finite difference schemes (3) shows that the errors in computing the derivatives can be quite large for smaller scales. This small scale inaccuracy becomes increasingly important as the energy in the small scales becomes increasingly comparable to that of the large scales, which may result in overwhelming numerical errors in computations such as large eddy simulation of high Reynolds number turbulence (4). Therefore, the numerical schemes should represent all the relevant scales properly.

Finite difference schemes can be classified as explicit and implicit schemes (2). Explicit schemes express the nodal derivatives as an explicit weighted sum of the function values at the adjacent nodes. On the other hand, implicit or compact schemes equate a linear combination of the nodal derivatives to a weighted sum of the function values so that the derivatives must be calculated by solving for a matrix system implicitly. It is well known (4-6) that implicit schemes are significantly more accurate for the small scales than explicit schemes with the same stencil width, i.e., the number of nodes in the scheme. Many implicit or spectral-like compact schemes have been developed (4, 7-9). Since the spectral methods require the flow to be simple in both domain and boundary condition, many attempts have been made to overcome this drawback of the spectral methods (9-10).

In this paper. finite difference approximations of the first derivative will be derived for a discrete data set. In reference (3), such approximations are performed by implicit schemes in which the maximum stencil sizes on the left-hand-side and right-hand-side of the equations are 5 and 7 respectively. In this work, a generalized framework that can handle any stencil size on both sides will be derived, and a matrix form of the approximation will be built, so it is easy to obtain the coefficients in the scheme by solving a linear system. A variety of high order

schemes will be presented with dispersion and dissipation error analysis.

The derivation of the schemes using the matrix form

In deriving the finite difference schemes, an approximation of the derivative f' can be expressed as a linear combination of $\{f_{k-i}, f_{k-i+1}, ..., f_{k-1}, f_k, f_{k+1}, ..., f_{k+j-1}, f_{k+j}\}$. A uniform space with mesh size h is considered. The approximation of the first derivative f'_k can be expressed as follows:

$$c_{0}f'_{k-i} + c_{1}f'_{k-i+1} + \dots + c_{i-2}f'_{k-2} + c_{i-1}f'_{k-1} + f'_{k} + c_{i+1}f'_{k+1} + c_{i+2}f'_{k+2} + \dots + c_{n-1}f'_{k+j-1} + c_{n}f'_{k+j} = \frac{1}{h}[d_{0}f_{k-l} + d_{1}f_{k-l+1} + \dots + d_{i-2}f_{i-2} + d_{i-1}f_{k-1} + d_{i}f_{k} + d_{i+1}f_{k+1} + d_{i+2}f_{k+2} + \dots + d_{n-1}f_{k+l-1} + d_{n}f_{k+l}]$$

$$(1)$$

The traditional approach is using Tayler series expansion to find the relations between the coefficients $c_0, \ldots, c_n, d_0, \ldots, d_n$ as in (1). In this work, the derivation is based on the following system:

$$P'c = \frac{1}{h}Pd \quad (2)$$

Letting $x_0 = 0$ and the mesh size h = 1 gives the system as follows:

$$P = \begin{bmatrix} 1 & 1 & \cdots & 1 & 1 & 1 & \cdots & 1 & 1 \\ -l & 1-l & \cdots & -1 & 0 & 1 & \cdots & l-1 & l \\ l^2 & (1-l)^2 & \cdots & 1 & 0 & 1 & \cdots & (l-1)^2 & l^2 \\ -l^3 & (1-l)^3 & \cdots & -1 & 0 & 1 & \cdots & (l-1)^3 & l^3 \\ \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ l & l & l & l & l & l & l & l & l \\ (-l)^{m-1} & (1-l)^{m-1} & \cdots & (-1)^{m-1} & 0 & 1 & \cdots & (l-1)^{m-1} & l^{m-1} \\ (-l)^m & (1-l)^m & \cdots & (-1)^m & 0 & 1 & \cdots & (l-1)^m & l^m \end{bmatrix}_{(m+1)\times(2l+1)},$$

The elements of the matrices P and P' are derived by assuming that

$$P = [f_{-l} \ \cdots \ f_{-2} \ f_{-1} \ f_0 \ f_1 \ f_2 \ \cdots \ f_l]_{(m+1)\times(2l+1)}$$

and

$$f_{k} = \begin{bmatrix} 1 \\ x_{k} \\ x_{k}^{2} \\ x_{k}^{3} \\ \vdots \\ x_{k}^{m-1} \\ x_{k}^{m} \end{bmatrix}_{(m+1)\times 1} \text{ and } f'_{k} = \begin{bmatrix} 0 \\ 1 \\ 2x_{k} \\ 3x_{k}^{2} \\ \vdots \\ (m-1)x_{k}^{m-2} \\ mx_{k}^{m-1} \end{bmatrix}_{(m+1)\times 1}$$

				$\begin{bmatrix} d_0 \end{bmatrix}$	
	C ₁			d ₁	
	÷			d ₂	
	C_{t-1}			d ₃	
<i>c</i> =	1		, and $d =$	1	
	C_{t+1}			1	
	:			1	
	c_{n-1}			d_{2l-1}	
	L c _n	$(n+1)\times 1$		L d ₂₁ _	(2 <i>l</i> +1)×1

where *i* and *j* are positive integers with n = i + jand $l = \max\{i, j\}$.

Remarks:

1. All approximations from eq. (2) are called compact because of using derivatives in the left-hand side, and eq. (2) represents the traditional finite difference approximations for the first derivative if i = j = 0.

2. If i = j, the schemes obtained from eq. (2) are central, and the highest order that can be reached is equal to $m = \max\{2n, 2\}$.

3. If i = j + 1, the schemes obtained from eq. (2) are backward, and the highest order that can be reached is equal to m = 2n + 1.

4. If j = i + 1, the schemes obtained from eq. (2) are forward, and the highest order that can be reached is equal to m = 2n + 1.

When i = j = 1

In this case l = 1, n = 2 and m = 4, and from eq. (2), this results in:

I	0	0	ך0			г1	1	ן1	
	1	1	1	$[c_0]$	 1	-1	0	1	[d ₀]
	-2	0	2	1	$=\frac{1}{h}$	1	0	1	d_1
	3	0	3	$[c_2]$	n n	-1	0	1	$\lfloor d_2 \rfloor$
	4	0	4J			L 1	0	1	

From eq. (1), the highest scheme of this set is of order 4, and it is central as follows:

CCSO4:
$$\frac{1}{4}f'_{k-1} + f'_{k} + \frac{1}{4}f'_{k+1} = \frac{1}{h}\left[\frac{-3}{4}f_{k-1} + \frac{3}{4}f_{k+1}\right]$$

When i = 2, j = 1

In this case l = 2, n = 3 and m = 7, and from eq. (1) and eq. (2), this results in:

$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ -4 & -2 & 0 & 2 \\ 12 & 3 & 0 & 3 \\ -32 & -4 & 0 & 4 \\ 80 & 5 & 0 & 5 \\ -192 & -6 & 0 & 6 \\ 448 & 7 & 0 & 7 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ 1 \\ c_3 \end{bmatrix}$$
$$= \frac{1}{h} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ -2 & -1 & 0 & 1 & 2 \\ 4 & 1 & 0 & 1 & 4 \\ -8 & -1 & 0 & 1 & 8 \\ 16 & 1 & 0 & 1 & 16 \\ -32 & -1 & 0 & 1 & 32 \\ 64 & 1 & 0 & 1 & 64 \\ -128 & -1 & 0 & 1 & 128 \end{bmatrix} \begin{bmatrix} d_0 \\ d_1 \\ d_2 \\ d_3 \\ d_4 \end{bmatrix}$$

BCSO7:
$$\frac{1}{18}f'_{k-2} + \frac{2}{3}f'_{k-1} + f'_{k} + \frac{2}{9}f'_{k+1} =$$

 $\frac{1}{h}\left[\frac{-47}{216}f_{k-2} - \frac{8}{9}f_{k-1} + \frac{1}{2}f_{k} + \frac{16}{27}f_{k+1} + \frac{1}{72}f_{k+2}\right]$

When i = 1, j = 2

In this case l = 2, n = 3 and m = 7, and from eq. (1) and eq. (2), this results in:

$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ -2 & 0 & 2 & 4 \\ 3 & 0 & 3 & 12 \\ -4 & 0 & 4 & 32 \\ 5 & 0 & 5 & 80 \\ -6 & 0 & 6 & 192 \\ 7 & 0 & 7 & 448 \end{bmatrix} \begin{bmatrix} c_1 \\ 1 \\ c_3 \\ c_4 \end{bmatrix}$$
$$= \frac{1}{h} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ -2 & -1 & 0 & 1 & 2 \\ 4 & 1 & 0 & 1 & 4 \\ -8 & -1 & 0 & 1 & 8 \\ 16 & 1 & 0 & 1 & 16 \\ -32 & -1 & 0 & 1 & 32 \\ 64 & 1 & 0 & 1 & 64 \\ -128 & -1 & 0 & 1 & 128 \end{bmatrix} \begin{bmatrix} d_0 \\ d_1 \\ d_2 \\ d_3 \\ d_4 \end{bmatrix}$$

FCSO7:
$$\frac{2}{9}f'_{k-1} + f'_k + \frac{2}{3}f'_{k+1} + \frac{1}{18}f'_{k+2} =$$

 $\frac{1}{h}\left[\frac{-1}{72}f_{k-2} - \frac{16}{27}f_{k-1} - \frac{1}{2}f_k + \frac{8}{9}f_{k+1} + \frac{47}{216}f_{k+2}\right]$

When i = 2, j = 2

In this case l = 2, n = 4 and m = 8, and from eq. (2), this results in:

Г 0		0	0	0		ך 0		
1		1	1	1		1		
-4	ł	-2	0	2		4	۲ ^C 0'	1
12		3	0	3		12	C ₁	
-3	2	-4	0	4		32	1	
80)	5	0	5		80	C ₃	
-19	92	-6	0	6	1	92	Lc ₄	
448	3	7	0	7	4	48		
L_{-10}	24	-8	0	8	1	024J		
ſ	1		1	1	1	1	1	
	-2	_	-1	0	1	2		
	4		1	0	1	4	ſ	lol
1	-8	_	-1	0	1	8		\mathbf{l}_1
$=\frac{1}{k}$	16		1	0	1	16		1 ₂
n	-32	_	-1	0	1	32		13
	64		1	0	1	64	lla	1 ₄]
.	-128	3 –	-1	0	1	128	3	
L	256		1	0	1	256	51	

From eq. (1), the highest scheme of this set is of order 8, and it is central as follows:

CCSO8:
$$\frac{1}{36}f'_{k-2} + \frac{4}{9}f'_{k-1} + f'_{k} + \frac{4}{9}f'_{k+1} + \frac{1}{36}f'_{k+2} = \frac{1}{h}\left[\frac{-25}{216}f_{k-2} - \frac{20}{27}f_{k-1} + \frac{20}{27}f_{k+1} + \frac{25}{216}f_{k+2}\right]$$

When i = 3, j = 2

In this case l = 3, n = 5 and m = 11, and from eq. (2), this results in:

L O	0	0	0	0	0 7	1 1	r 1	1	1	1	1	1	1 -	1
1	1	1	1	1	1		-3	-2	-1	0	1	2	3	
-6	-4	-2	0	2	4		9	4	1	0	1	4	9	rd_1
27	12	3	0	3	12	۲ ⁰ ٦	-27	-8	-1	0	1	8	27	
-108	-32	-4	0	4	32	C ₁	81	16	1	0	1	16	81	
405	80	5	0	5	80	$ c_2 = 1$	-243	-32	-1	0	1	32	243	$\begin{bmatrix} u_2 \\ d \end{bmatrix}$
-1458	-192	-6	0	6	192	$ 1 ^{-}h$	729	64	1	0	1	64	729	
5103	448	7	0	7	448	C ₄	-2187	-128	-1	0	1	128	2187	
-17496	-1024	-8	0	8	1024	Lc ₅]	6561	256	1	0	1	256	6561	
59049	2304	9	0	9	2304		-19683	-512	-1	0	1	512	19683	
-196830	-5120	-10	0	10	5120		59049	1024	1	0	1	1024	59049	
L 649539	11264	11	0	11	11264		L-177147	-2048	-1	0	1	2048	177147-	J

From eq. (1), the scheme has the form:

 $\frac{1}{200}f'_{k-3} + \frac{3}{20}f'_{k-2} + \frac{3}{4}f'_{k-1} + f'_{k} + \frac{3}{8}f'_{k+1} + \frac{3}{100}f'_{k+2} = \frac{1}{h}\left[\frac{-71}{3000}f_{k-3} - \frac{71}{200}f_{k-2} - \frac{11}{16}f_{k-1} + \frac{1}{3}f_{k} + \frac{5}{8}f_{k+1} + \frac{107}{1000}f_{k+2} + \frac{1}{1200}f_{k+3}\right]$

BCSO11:

When i = 2, j = 3

In this case l = 3, n = 5 and m = 11, and from eq. (2), this results in:

г О	0	0	0	0	0	1		г 1	1	1	1	1	1	ן 1
1	1	1	1	1	1			-3	-2	-1	0	1	2	3
-4	-2	0	2	4	6			9	4	1	0	1	4	9
12	3	0	3	12	27	۲ ^C 1-	1	-27	-8	-1	0	1	8	27
-32	-4	0	4	32	108	C ₂		81	16	1	0	1	16	81
80	5	0	5	80	405	1	$ _{-}\frac{1}{-}$	-243	-32	-1	0	1	32	243
-192	-6	0	6	192	1458	C ₄	$\int_{-}^{-} \overline{h}$	729	64	1	0	1	64	729
448	7	0	7	448	5103	C ₅		-2187	-128	-1	0	1	128	2187
-1024	-8	0	8	1024	17496	$ Lc_6 $		6561	256	1	0	1	256	6561
2304	9	0	9	2304	59049			-19683	-512	-1	0	1	512	19683
-5120	-10	0	10	5120	196830			59049	1024	1	0	1	1024	59049
L11264	11	0	11	11264	649539-			L—177147	-2048	-1	0	1	2048	177147

From eq. (1), t	the scheme has	s the for	rm:										
FCSO11:						Whe	n <i>i</i>	= 3	, j = 3				
$\frac{\frac{3}{100}f'_{k-2} + \frac{3}{8}f'_{k}}{\frac{1}{200}f'_{k+3}} = \frac{1}{h}\left[\frac{1}{2}\frac{1}{3}f_{k} + \frac{11}{16}f_{k+1}\right]$	$\begin{aligned} f'_{k-1} + f'_{k} + \frac{3}{4}f'_{k-1} \\ \frac{-1}{1200}f_{k-3} - \frac{10}{10} \\ + \frac{71}{200}f_{k+2} + \frac{71}{10}f_{k+2} \end{aligned}$	$\frac{f'_{k+1}}{\frac{57}{00}} + \frac{3}{2}$ $\frac{57}{00}f_{k-2}$ $\frac{71}{3000}f_{k+1}$	$\frac{3}{0}f'_{k+2} + \frac{5}{8}f_{k-1} - 5$			In thi eq. (2	is c 2), tl	ase his r	l = 3 results	3, n = 6 and in:	d m = 1	12, and from	n
	г О	0	0	0	0	0		(ך 0				
	1	1	1	1	1	1			1				
	-6	-4	-2	0	2	4			6				
	27	12	3	0	3	12		2	27	[^C 0]			
	-108	-32	2 -4	0	4	32		1	08	c ₁			
	405	80	5	0	5	80		4	05	C ₂			
	-1458	-19	2 -6	0	6	192		14	58	1			
	5103	448	7	0	7	448		51	.03	C ₄			
	-17496	-102	24 -8	0	8	1024		17-	496	С ₅			
	59049	2304	49	0	9	2304		59	049	Lc ₆ J			
	-196830	-512	20 -10	0	10	5120		196	830				
	649539	1126	4 11	0	11	11264	ł	649	539				
	L-2125764	-245	76 –12	0	12	24576	5 . 1	212	5764 [」]	1	-		
			1		1 2	1	1	1	1	1			
			 Q		- <u> </u>	-1 1	0	1	2 1.	0 0			
			_27		-8	_1 _1	0	1	ч 8	27	rd ₀ 1		
			81		16	1	0	1	16	81	d_1		
		1	-243		-32	_1	0	1	32	243			
		$=\frac{1}{-}$	729		64	1	0	1	64	729	d_{2}		
		h	-2187	_	-128	-1	0	1	128	2187	d₄		
			6561		256	1	0	1	256	6561			
			-19683	-	-512	-1	0	1	512	19683			
			59049		1024	1	0	1	1024	59049			
			-177147	_	-2048	-1	0	1	2048	8 177147			
			- 531441	4	4096	1	0	1	4096	531441]		

From eq. (1), the scheme has the form:

CCSO12:

$$\frac{\frac{1}{400}f'_{k-3} + \frac{9}{100}f'_{k-2} + \frac{9}{16}f'_{k-1} + f'_{k} + \frac{9}{16}f'_{k+1} + \frac{9}{100}f'_{k+2} + \frac{1}{400}f'_{k+3} = \frac{1}{h}\left[\frac{-49}{4000}f_{k-3} - \frac{231}{1000}f_{k-2} - \frac{21}{32}f_{k-1} + \frac{21}{32}f_{k+1} + \frac{231}{1000}f_{k+2} + \frac{49}{4000}f_{k+3}\right]$$

Dispersion and dissipation errors from Fourier analysis

When using finite difference approximations for solving differential equations, the approximate solutions generate errors, which associate with odd and even derivatives terms. These terms contribute to numerical dispersions and dissipations. The numerical solution has a dispersion behavior if the derivative of the leading term is odd while it has a dissipative behavior if the derivative of the leading term is even. In flow transition problems with small length scales, the behavior of the numerical solutions can be described by dispersion and dissipation errors because the dispersive error terms lead to oscillated solutions while the dissipation error terms affect the smoothing of gradients, see (11) for more details.

The Fourier analysis is an efficient tool of measuring the dispersion and dissipation errors by quantifying the wave number of the numerical approximation (12). The imaginary part and the real part of the wave number introduce the dispersion error and the dissipation error respectively. The wave numbers for the proposed schemes using Fourier analysis are derived, and the dispersion and dissipation errors terms for these schemes are calculated as listed in Tables 1 and 2 below.

Scheme	Dispersion Error Terms
CCSO4	$3\operatorname{Re}\left[\frac{\sin[k]}{2+\cos[k]}\right] - k$
BCSO7	$\frac{1}{3} \operatorname{Re} \left[\frac{i(-27 + 16\cos[k] + 11\cos[2k]) + 5(16 + 5\cos[k])\sin[k]}{16\cos[k] + \cos[2k] - i(18i + 8\sin[k] + \sin[2k])} \right] - k$
FCSO7	$\frac{1}{3} \operatorname{Re} \left[\frac{4i(19 + 11\cos[k])\sin\left[\frac{k}{2}\right]^2 + 5(16 + 5\cos[k])\sin[k]}{18 + 16\cos[k] + \cos[2k] + 2i(4 + \cos[k])\sin[k]} \right] - k$
CCSO8	$\frac{5}{6} \operatorname{Re} \left[\frac{32 \sin[k] + 5 \sin[2k]}{18 + 16 \cos[k] + \cos[2k]} \right] - k$
BCSO1	$1 \left[2i(16350\cos[k] + 1902\cos[2k] + 5(3140 + \cos[3k])) + 3150\sin[k] + 756\sin[2k] \right]$
1	$-\frac{1}{30} \operatorname{Re} \left[\frac{1}{225 \cos[k] + 36 \cos[2k] + \cos[3k] - i(200i + 75 \sin[k] + 24 \sin[2k] + \sin[3k])} \right]^{-k}$
FCSO1	1 $\left[-2000 + 375\cos[k] + 1488\cos[2k] + 137\cos[3k] + 7875i\sin[k] + 2772i\sin[2k] + 147i\sin[3k]\right]$
1	$\frac{1}{30} \lim_{k \to \infty} \frac{1}{200 + 225\cos[k] + 36\cos[2k] + \cos[3k] + 75i\sin[k] + 24i\sin[2k] + i\sin[3k]}{1}$
	-k
CCSO1	$7 \begin{bmatrix} 375\sin[k] + 132\sin[2k] + 7\sin[3k] \end{bmatrix}$
2	$\overline{10}^{\text{Ke}} \left[\frac{200 + 225\cos[k] + 36\cos[2k] + \cos[3k]}{10} \right]^{-\kappa}$

Table 1. Dispersion	error terms of the	proposed schemes
---------------------	--------------------	------------------

Table 2. Dissipation error terms of the proposed schemes

Scheme	Dissipation Error Terms
CCSO4	$3 \text{Im}\left[\frac{\sin[k]}{2}\right]$
	$cim^{l}2 + cos[k]$
BCSO7	$1_{Iml}i(-27 + 16\cos[k] + 11\cos[2k]) + 5(16 + 5\cos[k])\sin[k]_{1}$
	$\frac{1}{3}^{111}$ $\frac{1}{16\cos[k] + \cos[2k] - i(18i + 8\sin[k] + \sin[2k])}$
FCSO7	$1 = \frac{4i(19 + 11\cos[k])\sin[\frac{k}{2}]^2 + 5(16 + 5\cos[k])\sin[k]}{1}$
	$-\frac{1}{3}$ Im $\left[\frac{1}{18+16\cos[k]+\cos[2k]+2i(4+\cos[k])\sin[k]}\right]$
CCSO8	$5, 32\sin[k] + 5\sin[2k]$
	$-\frac{1}{6} \ln[\frac{1}{18 + 16\cos[k] + \cos[2k]}]$
BCSO11	$1 = 2i(15700 + 16350\cos[k] + 1902\cos[2k] + 5\cos[3k]) + 3150\sin[k] + 756\sin[2k]$
	$\frac{147 + 10}{30} = \frac{147 + 10}{225\cos[k] + 36\cos[2k] + \cos[3k] - i(200i + 75\sin[k] + 24\sin[2k] + \sin[3k])}$
FCSO11	$1 = -2000 + 375\cos[k] + 1488\cos[2k] + 137\cos[3k] + 7875i\sin[k] + 2772i\sin[2k] + 147i\sin[3k]$
	$\frac{1}{30} = \frac{1}{200 + 225\cos[k] + 36\cos[2k] + \cos[3k] + 75i\sin[k] + 24i\sin[2k] + i\sin[3k]}{100}$
CCSO12	$7 = 375 \sin[k] + 132 \sin[2k] + 7 \sin[3k]$
	$-\frac{10}{10}^{1111}\frac{200 + 225\cos[k] + 36\cos[2k] + \cos[3k]}{10}$

Also, the dispersion and dissipation errors of the proposed schemes are compared to show the features of high order schemes as illustrated in Figure 1 and Figure 2 below.

Figure 1. The dispersions errors of the proposed schemes

Verifying the Order of Accuracy

To verify the order of accuracy of the proposed schemes, the technique of the nth order polynomial $P_n(x) = \sum_{k=0}^n a_k x^k$ is used (6), and the first remained coefficients (a_0, a_1, \dots, a_n) of this polynomial determine the order of the scheme as indicated in Table 3 below.

Table 3. Err	or terms	of the	proposed	schemes
--------------	----------	--------	----------	---------

Schemes	Error terms	Order
CCSO4	a5 + 2a7 + 3a9 + 4a11	4
	+ 5a13	
BCSO7	-8(a8 - 2a9 + 10a10)	7
	-20a11	
	+ 67a12	
	-134a13)	
FCSO7	8(a8 + 2a9 + 10a10 + 20a11)	7
	+ 67 <i>a</i> 12	
	+ 134a13)	
CCSO8	16(a9 + 10a11 + 67a13)	8
BCSO11	-432(a12 - 3a13 + 28a14)	11
FCSO11	432(a12 + 3a13 + 28a14)	11
000012	120((12), 20, 15)	10
CCS012	1296(a13 + 28a15)	12

Conclusion

In this paper, many high order schemes for approximating the first derivatives are constructed by solving the coefficients of a matrix system. By using Fourier analysis, the dispersion and dissipation errors of these schemes are calculated. When comparing dispersion and dissipation errors, the results show that high order schemes have fewer errors, which can be applied in computational problems with high frequency. In addition, the orders of the proposed schemes are verified by polynomial techniques. The upcoming project is to generalize this method to derive schemes of high order derivatives and apply these schemes in some CFD problems.

Acknowledgment

The authors would like to thank Mustansiriyah university www.uomustansiriyah.edu.iq - (Baghdad – Iraq) for its support in the present work.

Author's declaration:

- Conflicts of Interest: None.
- I hereby confirm that all the Figures and Tables in the manuscript are mine. Besides, the Figures

and images, which are not mine, have been given the permission for re-publication attached with the manuscript.

- The author has signed an animal welfare statement.
- Ethical Clearance: The project was approved by the local ethical committee in University of Mustansiriyah.

References

- Krishnan M, A Family of High Order Finite Difference Schemes with Good Spectral Resolution. J. Comput. Phys., 1998; 145(1):332-358.
- 2. Richard L B, Douglas F, Annette M B. Numerical Analysis. 10th Edition: Cengage Learning. 2016.
- 3. Sanjiva K L. Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 1992; 103(1):16-42.
- 4. Canuto C, Hussaini MY, Quarteroni, AM, Zang Th. Spectral Methods in Fluid Dynamics. Springer-Verlag, 1988.
- 5. Ford NJ, Morgado ML, Rebelo M. An implicit finite difference approximation for the solution of the diffusion equation with distributed order in time. ELECTRON T NUMER ANA. 2015;44:289-305.
- 6. Zhao-peng H, Zhi-zhong S, Wan-rong C. A Fourth-Order Approximation of Fractional Derivatives with its Applications. J. Comput. Phys., 2015; 281(1):787-805.
- Sebastiano B, Francis F, Giovanni R. High Order Semi-Implicit Schemes for Time Dependent Partial Differential Equations. J. Sci. Comput. 2016; 68(3):975-1001.
- Chi-Wang S, Stanley O. Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 1989; 83(1):32–78.
- Wang Z, Al-Dujaly HA, Liu C. Construction Methodology of Weighted Upwind Compact Scheme. In54th AIAA Aerospace Sciences Meeting 2016 (p. 2061).
- Hassan A, Yong Y, Chaoqun L. Weighted Upwinding Compact Scheme for Shock Capturing, 55th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum. 2017.
- 11. Wendt J F, Anderson JD. Computational fluid dynamics: The Basics with Applications. McGraw-Hill, International Edition.1995; 236-237.
- 12. Hassan A, Talat A, Mustafa S, Saif H. IOP Conference Series Materials Science and Engineering IOP Conference Series Materials Science and Engineering 571:012035. August 2019.

صيغة المصفوفة لاشتقاق طرق عددية عالية الرتبة للمشتقة الأولى

حسن عبد سلمان الدجيلي¹ ينلين دونغ²

¹ الجامعة المستنصرية – كلية العلوم, بغداد, العراق
² جامعة سنترال أركنساس, كونواي, أركنساس, الولايات المتحدة الأمريكية

الخلاصة:

بالنسبة للعديد من المشكلات في الفيزياء وديناميكا الموائع الحسابية (CFD) ، فإن الحصول على تقريب دقيق للمشتقات يعد مهمة صعبة. يقدم هذه البحث صنف من الطرق العددية عالية الرتبة لتقريب المشتقة الأولى. وتستند هذه التقريبات على أساس حل نظام خاص من المعادلات التي تحتوي على معاملات مجهولة. توفر طريقة الإنشاء أنواعاً متعددة من الطرق العددية برتب مختلفة الدقة. يتم تحليل دقة كل طريقة عددية باستخدام تحليل فورييه الذي يوضح تشتت وتبديد الطريقة العددية. يتم استخدام طريقة متعددة من الطرق العددية برتب مختلفة الدقة. يتم تحليل دقة كل طريقة عددية باستخدام تحليل فورييه الذي يوضح تشتت وتبديد الطريقة العددية. يتم استخدام طريقة متعددة الحدود للتحقق من دقة رتب الطرق العددية المقترحة من خلال الحصول على حدود الخطأ. يتم حساب أخطاء التشتت والتبديد ومقارنتها لإظهار ميزات الطرق العددية عالية الرتبة. علاوة على ذلك ، نخطط لدر اسة خصائص الثبات والدقة للطرق العددية الحالية وتطبيقها على الأنظمة المعيارية للمعادلات التفاضلية الجزئية المعتمدة على الوقت في CFD.

الكلمات المفتاحية: طرق عددية متراصة ، تشتت ، تبديد ، رتبة عالية ، وحدة تردد الموجة