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Abstract: 
 The aim of this paper is to present a new methodology to find the private key of RSA. A new initial 

value which is generated from a new equation is selected to speed up the process. In fact, after this value is 

found, brute force attack is chosen to discover the private key. In addition, for a proposed equation, the 

multiplier of Euler totient function to find both of the public key and the private key is assigned as 1. Then, it 

implies that an equation that estimates a new initial value is suitable for the small multiplier. The 

experimental results show that if all prime factors of the modulus are assigned larger than 3 and the 

multiplier is 1, the distance between an initial value and the private key is decreased about 66%. On the other 

hand, the distance is decreased less than 1% when the multiplier is larger than 66. Therefore, to avoid 

attacking by using the proposed method, the multiplier which is larger than 66 should be chosen. 

Furthermore, it is shown that if the public key equals 3, the multiplier always equals 2. 
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Introduction: 

Nowadays, communication which is sent 

through opening a network such as internet and the 

machine is very popular because data is rapidly 

transmitted. However, opening a network is known 

as unsecure channel. With this problem, security 

and confidentiality of information becomes 

exceedingly important. Cryptography (1), which is 

one of security methods, is a technique to protect 

information by converting original message or 

plaintext as the unreadable message, or ciphertext. 

It is called the encryption process. In fact, ciphertext 

will be transmitted via the channel instead of 

plaintext. That means intruders cannot understand 

data which is trapped on the network. After 

ciphertext is arrived to receivers, they can use the 

decryption process to recover original plaintext.  

 The first generation of cryptography is 

called symmetric key cryptography (2). The secret 

key is selected for both of senders and receivers. 

Advanced Encryption Standard (AES) (1, 2) is the 

highest performance in this group. However, the 

problem is about how to exchange the secret key 

over unsecure channel. Later, this problem was 

solved when W. Diffie and M. E. Hellman proposed 

the new technique which is called asymmetric key 

cryptography or public key cryptography (3) in 

1976. A pair of keys, the public key and the private 

key, is selected for the processes. Nevertheless, this 

algorithm can be chosen for only exchanging the 

secret key. In 1978, RSA (4) which is the best well 

known of public key cryptography was presented by 

R.L. Rivest, A. Shamir and L. Adleman. In fact, 

RSA can be chosen to solve many problems such as 

data encryption, digital signature and key exchange. 

In addition, if the modulus is a big number, then it 

becomes very difficult to recover both prime 

numbers by using mathematical techniques such as 

factoring. However, the difficulty to break this 

system is also based on the type of computer and 

updating method. Therefore, RSA is still very hard 

to be attacked. 

 Assuming all parameters of RSA are strong 

and at least 4096 bits of modulus is chosen (5), no 

one can break RSA in polynomial time. One the 

other hand, if one of parameters becomes a 

weakness, RSA may be broken by using some of 

disclosed algorithms. The examples of weak 

parameters which are already solved consist of 
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prime numbers (6), small private key (7, 8), small 

public key with some disclosed parameters (9) and 

common modulus attack (10) etc. 

 In this paper, it is shown that if the 

multiplier, k, of Euler totient function is very small, 

time to break RSA can be decreased by using the 

proposed method. In fact, the proposed method 

which is suitable for small value of k is about 

estimating a new initial value, f, for the private key 

before finding the private key by using brute force 

attack. In addition, the distance is decreased about 

66% when k equals 1. Furthermore, it is shown that 

when the public key equals 3 and prime factors are 

larger than 3, k always equals 2.  

 

 RSA Cryptosystem 

 RSA is the best well known public key 

cryptography. It can be applied with many tasks 

such as data encryption, digital signature and key 

exchange. For data encryption, it is divided into 3 

processes as follows: 

1) Key Generation: First, two secret prime numbers 

(p and q), p > q, are randomly generated to compute 

modulus, n = p*q and Euler totient function,  (n) 

= (p – 1)*(q – 1). Next, the public key, e, is 

randomly chosen with the following condition, 1 < 

e <  (n) and gcd(e,  (n)) = 1 . The last process is 

to find the private key, d, from ed   1 mod  (n) 

or ed = 1 + k (n), by using Extended Euclidean 

algorithm (11, 12). The published parameters are 

{e, n} and the secreted parameters are {d,  (n), p, 

q}. 

 

2) Encryption process: Assuming m is represented 

as plaintext, the encryption equation is: 

 

c = me mod n  (1) 

 

where c is ciphertext which will be sent to receiver. 

 

3) Decryption process: After c is arrived, m is 

recovered by using the decryption equation: 

 

m = cd mod n  (2) 

 

However, for digital signature (13, 14), the process 

is different from data encryption. Assuming z is 

represented as a hash value of the signature and h is 

the signed text. Therefore, h is computed from the 

following equation: 

    

h = zd mod n  (3) 

 

In addition, the equation to verify the signed text is 

shown in the equation (4): 

 

z = he mod n  (4) 

 

 Exploit parameters to break RSA 

 In this section, the techniques to break RSA 

are presented. In fact, RSA is simply attacked when 

some parameters are weak.  

 

Factoring 

 If n is factored, p and q are disclosed. After 

that, d can be easily recovered. In fact, it is very 

difficult to find p and q from at least 4096 bits of n 

when both of them are assigned as a strong 

parameter. On the other hand, RSA becomes an 

unsecured algorithm in the case that prime factors 

are a weak parameter because they are found by 

using some of factoring algorithms. The examples 

of factorization algorithms are as follows: 

1) Trial division algorithm (TDA) (15, 16) is 

the simplest algorithm. It chooses 3 as the first 

divisor and it will be increased by 2 when the result 

has a remainder. Therefore, TDA is suitable for 

small value of q. In addition, there is a different 

technique (17) to implement TDA by changing the 

sequence of divisor. The value of n 
 

 is selected 

as the first divisor and it will be decreased by 2 

when the result has a remainder. In fact, n 
 

 is 

very close to p and q when p – q is small.  

2) Fermat’s Factorization algorithm (FFA) 

(18, 19, 20, 21) was discovered by P. der Fermat in 

1600. He found that n can be rewritten as the 

difference between two perfect square numbers 

which are mathematically relative with p and q. In 

fact, FFA can find p and q very fast when the result 

of p – q is small. 

3) Pollard’s p - 1 (22, 23) was proposed by J. 

Pollard in 1974. Fermat’s little theorem (24) is the 

main theorem of this algorithm. In fact, Pollard’s p-

1 has a very high performance when all prime 

factors of p – 1 or q – 1 are small. 

4) Generalized Trial Division (25) was 

presented by M. Sahin. The technique behind this 

algorithm is to find the result of gcd(x, n), where x 
 , which does not equal 1, because it is one of 

two prime factors of n. In fact, ip and jq, where i, j 
 , 1 <  i < q and 1 < j < p, are all integers that 

gcd(ip, n) = p and gcd(jq, n) = q.  

 

Wiener’s attack 

 In 1990, M. Wiener (7, 8) showed that d 

will be recovered very simple by using  continued 

fraction to find 
k

d
 which is a convergence of 

e

n
, 
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when it is a small value, d < 
1

4
1

3
n . Moreover, in 

1999, D. Boneh and G. Durfee (26) showed that if 

the following condition occurred, 
1

4
1

3
n < d < n0.292, d 

is simply recovered.  

 

 Hastad Broadcasting Attack 

 Hastad Broadcasting Attack (9) is the 

technique to find d when e = 3. The condition for 

this method to finish the process is that the same 

message must be selected to be encrypted with e = 3 

and the different values of modulus. For example, c1 

= me mod n1, c2 = me mod n2 and c3 = me mod n3.  

Then, m can be recovered by using Chinese 

Remainder Theorem (CRT) (27, 28). 

 

 Common Modulus Attack 

  Common Modulus Attack (10) is the idea 

to find m when it is encrypted two times with 

different public keys and common modulus, from c1 

= me1 mod n and c2 = me2 mod n, where gcd(e1, e2) = 

1. 

 

 Partial Key Exposure attack 

Assuming x is represented as bit length of n and the 

4

x
 least significant bits of d is disclosed. The 

technique which is called Partial Key Exposure 

attack (10) can be chosen to recover d. 

 

 Brute force Attack 

 In fact, d should be assigned in the 

following condition, 1 < d <  (n), and it is always 

an odd number. Therefore, the concept of brute 

force attack is to find d by choosing d = 3 as the 

first value to compute t = ed mod  (n). If t = 1, 

then d is the private key. On the other hand, d must 

be increased by 2 when the result is not equal to 1 

until the correct answer is found. 

 

The proposed method to attack RSA 

 In this paper, a new method to recover d in 

order to attack RSA is proposed. The key is to find 

an integer (f), where 3 < f < d, to be a new initial 

value instead of 3 for brute force attack. In general, 

if brute force attack is selected to find d, then the 

initial value is begun as 3. On the other hand, if f is 

chosen as an initial value, then the distance between 

the f to d decreased when it is compared with the 

distance between 3 and d. In fact, f can be estimated 

by finding the smallest integer which is possible to 

be  (n). 

Lemma 1 The highest value of p + q is 3 + 
3

n
 

Proof:   Because p > q, then assigning p = n  + a 

and q = n  - b, where a, b 
  

 So, p*q = ( n  + a)*( n  - b) = n + a n  - 

b n  - ab 

Because n = p*q, then a n  - b n  - ab = 0. That 

means it implies that a is always larger than b. 

Therefore, assuming n is very close to p'*q', where 

p' = p + x, q' = q – y and x, y 
 ,  the result of p' 

+ q' must be larger than p + q. The reason is that x 

is always larger than y.  

Because 3 is the smallest prime number which is an 

odd integer and the result of 3*
3

n
 equals n, the 

highest value of p + q is 3 + 
3

n
.   

  

 

Theorem 1 Always d equals or larger than 
2 - 3

3

n

e

 
  

 

Proof: 

From    (n) = (p – 1)*(q – 1) = 

pq – (p + q) + 1 = n – (p + q) + 1 

From Lemma 1,  (n) > n – (3 + 
3

n
) + 1 

From ed = 1 + k  (n) = 1 + k(n – (p + q) + 1) 

Then, ed > 1 + k(n – (3 + 
3

n
) + 1) 

In fact, k 
 , that means the minimum of k is 1. 

Assuming k = 1, then ed > 1 + n – (3 + 
3

n
) + 1 

   3ed > 3 + 3n – 9 - n+3 

Or   d > 
2 3

3

n

e


 

d is always an integer, then d 
2 - 3

3

n

e

 
  

  

  

 From Theorem 1, f can be assigned as 

2 - 3

3

n

e

 
  

. Moreover, the convergence of d equals 

this value whenever k is small.  

 In addition, total loops which should be left 

out of the computation can be calculated by using 

the following equation: 

 

s = 
2

- 3f
  (5) 
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 where, s is the reduced loops and 3 is the 

smallest prime number which is an odd number. 

Example 1: Finding f when n = 

174279334060020221413 and e = 212441, (p = 

41964266303, q = 4153041371, d = 

53323777947306261 (d 5.33 x 1016) and k = 65) 

Sol. From  f = 
2 - 3

3

n

e

 
  

 

= 
2x174279334060020221413 - 3

3x212441

 
  

 

= 546910543194017  5.47 x 1014 

  

From, s = 
2

- 3f
 = 

546910543194017 - 3

2
  

   =  273455271597007                                                  
s  2.73 x 1014    

 

 The information in Fig. 1 is shown that the 

distance between d and f is smaller than the distance 

between d and 3. 

 

 
Figure 1. Some of parameters in example 1 on 

Numbers Line 

 

Example 2: Finding f when n = 

174279334060020221413 and e = 212439, (d = 

135050712179508995819 (d 1.35 x 1020) and k = 

164621)(Fig.2) 

Sol. From  f = 
2 - 3

3

n

e

 
  

  

= 
2x174279334060020221413 - 3

3x212439

 
  

  

= 546915692065394 

 d should be an odd number,  f = f + 1 = 

546915692065395 

Then,  f   5.47 x 1014 

Then, it implies that, 

     

s = 
546915692065395 - 3

2
 =   273457846032696                                                                                                    

s   2.73 x 1014       

 
Figure 2. Some of parameters in example 2 on 

Numbers Line 

 

 From both Examples 1 and 2, it implies that 

the difference between d and f in example 2 is very 

high when it is compared with the result in example 

1. The reason is that k in example 2 is larger than 

the same parameter in example 1. In fact, the 

proposed technique is suitable for small value of k, 

because k = 1 is assigned in Theorem 1. Moreover, 

it is highly efficient with small value of q, because q 

= 3 is assigned in the same theorem.  

 In general, k should be assigned as 1, 

because it is unknown value. However, in the next 

section, it is shown that if e = 3 and q > 3, then k 

always equals 2. Therefore, f can be expanded when 

the parameters are fallen in this case. 

 

Lemma 2 Assigning k 
 , if 

1. e = 3 and gcd(e,  (n)) = 1, then only k = 1 

or 2 can be chosen to generate different values of d. 

2. e = 3, q = 3 and gcd(e,  (n)) = 1, then d 

can be generated from only k = 1.  

3. e = 3, q > 3 and gcd(e,  (n)) = 1, then d 

can be generated from only k = 2. 

 

Proof 1: From  ed = 1 + k (n) 

Assuming k = 3, 3d = 1 + 3 (n) 

d = 
1+ 3Φ( )

3

n
  = 

1

3
 +  (n) 

 That means, d is always larger than  (n) 

when k is higher than 2. However, it is impossible 

to occur. Therefore, assigning e = 3, the result 

which is fallen in range during 3 to  (n) must be 

generated from k = 1 or 2. In addition, it is shown in 

Table 1 that k = 2, k = 5 and k = 8 has the same 

value of d when e = 3 and n = 

174279334060020221413. 

 

Assuming k = 2, 3d = 1 + 2 (n) 

  d = 
1+ 2Φ( )

3

n
 

 Therefore, it is possible to be occurred. 

 

Assuming k = 1, 3d = 1 +  (n) 

  d = 
1+ Φ( )

3

n
 

 Therefore, it is possible to occur. 

3 5.47 x 1014 5.33 x 10
16

 

Traditional initial value f 
d 

3 5.47 x 1014 1.35 x 1020 

Traditional initial value f 
d 

2s 
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Therefore, if e = 3 and gcd(e,  (n)) = 1, then only 

k = 1 or 2 can be chosen to generate different value 

of d.  

 

Proof 2:  

 From, ed = 1 + k (n) 

 Assuming k = 2, 3d = 1 + 2(3 - 1)*(
3

n
-1) 

 Because q = 3, then n = 3p, = 1 + 4(p - 1)  

   d = 
4 - 3

3

p
, 4p – 3 > 3p  

  

 It implies that d is larger than p. Because n 

= 3p, d*e = 3d > 9p > n. Therefore, this case is 

impossible to occur. Therefore, k cannot be 

assigned as 2.  

Next, assuming k = 1,  3d = 1 + (3 - 1)*(
3

n
-1) 

Because q = 3, then n = 3p,    = 1 + 2(p - 1)  

   d = 
2 -1

3

p
, d < p <  (n) 

 Then, it is possible to occur. 

Therefore, if e = 3, q = 3 and gcd(e,  (n)) = 1, 

then d is always generated from k = 1.   

 

Proof 3:  

 From,  ed = 1 + k (n) 

 Assuming k = 1, 3d = 1 +  (n) 

 If there is a solution, then(1 +  (n)) mod 3 

= 0 

 Because all odd prime numbers except 3 

have the remainder as 1 or 2 when all of them are 

divided by 3, then there are 4 cases to consider d.  

 Case 1: p mod 3 = 1 and q mod 3 = 1 

  Then,    (p – 1) 

mod 3 = 0 and (q – 1) mod 3 = 0 

  Implies,  (n) mod 3 = 0 

 Therefore,  (1 +  (n)) mod 3 

= 1, the contradiction occurred, then there is no 

solution. 

Case 2: p mod 3 = 1 and q mod 3 = 2 

Then, (p – 1) mod 3 = 0 and (q – 1) mod 3 = 1 

  Implies,  (n) mod 3 = 0 

 Therefore,(1 +  (n)) mod 3 = 1, the 

contradiction occurred, then there is no solution. 

Case 3: p mod 3 = 2 and q mod 3 = 1 

  Then, (p – 1) mod 3 = 1 and (q – 1) 

mod 3 = 0 

  Implies,  (n) mod 3 = 0 

 Therefore,(1 +  (n)) mod 3 = 1, the 

contradiction occurred, then there is no solution. 

Case 4: p mod 3 = 2 and q mod 3 = 2 

Then, (p – 1) mod 3 = 1 and (q – 1) mod 3 = 1 

 Implies,  (n) mod 3 = 1 

 Therefore,  (1 +  (n)) mod 3 

= 2, the contradiction occurred, then there is no 

solution. 

 

From all cases above, there is no result of (1 + 
(n)) mod 3 = 0. Therefore, it is impossible to find d 

from e = 3 and k = 1.  

In fact, there is a solution in case 4 when e = 3 and k 

= 2 as follows: 

 From,  (n) mod 3 = 1 

 Then, k (n) mod 3 = 2 (n) mod 3 = 2 

 Therefore,(1 +2  (n)) mod 3 = (1 + 2) 

mod 3 = 0 

 

Therefore, if e = 3, q > 3 and gcd(e,  (n)) = 1, 

then d is always generated from k = 2.  

 

Theorem 2 Assigning e = 3 and q > 3, then d 

4 - 9

9

n 
  

 

Proof: 

From Lemma 1,  (n) > n – (3 + 
3

n
) + 1 

and ed > 1 + k(n – (3 + 
3

n
) + 1) 

From Lemma 2, 3d = 1 + 2 (n) 

  3d    > 1 + 2(n – (3 + 
3

n
) + 1) 

  9d > 3 + 6n – 18 – 2n + 6 

  9d > 4n – 9 

     d > 
4 - 9

9

n
 

Therefore, if e = 3 and q >3, then d 
4 - 9

9

n 
  

  

 In fact, assuming e = 3, q > 3 and f' = 

4 - 9

9

n 
  

, then it implies that f'   2f.  

 

Example 3: Finding f' when n = 

174279334060020221413 and e = 3, (d = 

116186222675935275827 (d 1.16 x 1020) and k = 

2) 

Sol.Start, f'=
4n - 9

9

 
  

= 

4x174279334060020221413 - 9

9

 
  

 

 = 77457481804453431738 

            

 d should be an odd number,  f' = f' + 1 = 

77457481804453431739 

       f'  7.75 x 1019 
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Then, it implies that, 

  s = 
77457481804453431739 - 3

2
  

     =    38,728,740,902,226,715,868                                                                                                                                                      
s  3.87 x 1019          

In addition,  

f  = 
2 - 3

3

n

e

 
  

 = 
2x174279334060020221413 - 3

9

 
  

  

= 38,728,740,902,226,715,870 

d should be an odd number, f = f + 1 = 

38,728,740,902,226,715,871   

        f    3.87 x 1019 

 

Therefore, it implies that f'   2f. 

 

 
Figure 3. Some of parameters in example 3 on 

Number Line 

 

From Fig. 3, f' which is about 2f is chosen to be a 

new initial value of d. In fact, f' can be estimated as 

2f when e = 3 and q > 3 are selected as parameters 

of RSA algorithm.   

 

In addition, if RSA is chosen for digital signature, 

both z and h must be disclosed. Moreover, h can be 

also recovered by using the following equation: 

t = h*z-(d-1) mod n  (6) 

 

In fact, z is always recovered by using equation (6), 

because 

t = h*z-(d-1) mod n  = zd*z-(d-1) mod n   = z 

However, it is not necessary to compute d – 1 times 

of the multiplication. The process to find d is 

improved as follows: 

First, the process to find u,  

u = c * z-f mod n  (7) 

And find t from,    

t = u * (z-1)d-f-1 mod n  (8) 

 

Therefore, it requires only d - f – 1 times of modular 

multiplication and 1 times of modular 

exponentiation. In addition, loops of modular 

multiplication decreased as
-1

2

d - f
. 

 Assuming RSA is applied with digital 

signature, then both z and h can be found. On the 

other hand, only c will be known when RSA is 

chosen for data encryption. Because both of original 

plaintext and ciphertext must be chosen for the 

proposed algorithm, the proposed method can be 

chosen to find d when RSA is applied with digital 

signature.  

 

Algorithm: Finding d 

Input: z, h, e, n 

1. f  
 
  

2n-3

3e
 

2. IF f is an even number then 
3.     f  f + 1 
4. End IF 
5. z   he mod n 
6. u   z-1 mod n 
7. t   h * uf mod n 
8. i   0 
9. While t  z do 
10.     t   t * u mod n 
11.     i   i + 1 
12. End While 
13. d   f + i – 1 
Output: d 

  

 Experimental Results and Analysis 

 The aim of this section is to consider the 

performance of f which is generated from different 

values of k. The experiment is divided into 4 tables: 

Table 1 is the considering f from n = 

174279334060020221413, which is the modulus 

from examples 1 to 3; Table 2 is to consider n = 

10813049747177129789 (p = 85142123993520707, 

q = 127 and  (n) = 10727907623183608956). The 

difference between Table 1 and Table 2 is the 

aspect of p – q. The result of p – q is small in Table 

1 but it is high in Table 2; 

Table 3 is to consider 1024 bits of n, 

n =   

477756556232282306934958435085858426352662

890218217711944188826203881722012091549554

842499439190224875921487955385081949185318

746076771816643561755421090015199346943771

152750832922096937925079925954378807508957

594668823419358103980889190652280538600536

636044432687522879455792700390017046588477

60341877529027 

(p = 

671181655666389379937000761715670080820316

527488591339715163276565465256199993633507

993457115148307574220612561957637316201825

1999924269361701837406637179 

q = 

711814085201623933042426245276793080000833

387697083270627201391087360829606070874685

318775764543740820853728749298016908039304

4000152454003236970494548313 

 (n)   = 

477756556232282306934958435085858426352662

3 3.87 x 1019 1.16 x 1020 

Traditional initial value f 
d 

7.75 x 1019 

f' 
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890218217711944188826203881722012091549554

842499439190224875921487955385081949185318

746076771816643561755421089876899772856969

821452890221397691608997810962860240047923

358202058136749523374438371321057250631331

796536998556397314033368587430016279354828

21533976343536) 

 

Table 1. The pair of (e, d) generated from n = 174279334060020221413 which small result of p – q 

Row k 
Public Key 

(e) 

Private Key 

(d) 

The new initial value 

(f) 
d - f 

Decreased 

Distance 

(%) 

1 1 11 15843575819445719431 10562383882425467964 5281191937020251467 66% 

2 1 253 688851122584596497 459234081844585563 229617040740010934 66% 

3 1 688851122584596497 253 168 85 66% 

4 2 3 116186222675935275827 38728740902226715869 77457481773708559958 33% 

5 2 148691 2344181342702691 781393781107667 1562787561595024 33% 

6 2 74196809 4697758201809 1565919401017 3131838800792 33% 

7 3 1039 503212706488651339 111825045915957793 391387660572693546 22% 

8 3 20107 26002785201258703 5778396712919885 20224388488338818 22% 

9 4 101 6902151842134768861 1150358640660199481 5751793201474569380 16% 

10 4 10949 63669498224094589 10611583040157105 53057915183937484 16% 

11 5 3 116186222675935275827 38728740902226715869 77457481773708559958 33% 

12 5 19 45862982635237608879 6115064352983165663 39747918282254443216 14% 

13 5 171 5095886959470845431 679451594775907295 4416435364694938136 14% 

14 7 173 7051764960100117897 671596663044393917 6380168297055723981 10% 

15 7 3827279 318752653803739 30357395608389 288395258195350 10% 

16 8 3 116186222675935275827 38728740902226715869 77457481773708559958 33% 

17 8 2297 606980701833357993 50581725166164627 556398976667193366 9% 

18 8 6891 202326900611119331 16860575055388208 185466325555731123 9% 

19 11 17 112768980832525414773 6834483688628243977 105934497143897170796 7% 

20 11 714463 2683235764697307 162620349418627 2520615415278680 7% 

21 15 271 9646457602245548731 428731449102140767 9217726153143407964 5% 

22 15 11653 224336223308036017 9970498816328855 214365724491707162 5% 

23 22 3613 1061208233685542237 32157825271707763 1029050408413834474 4% 

24 22 213167 17986580231958343 545047885961149 17441532345997194 4% 

25 45 14341 546863540243053561 8101682079818711 538761858163234850 2% 

26 45 157751 49714867294823051 736516552710791 48978350742112260 2% 

27 66 9883 1163860775565880027 11756169453271287 1152104606112608738 1% 

28 67 42053 277666643971452577 2762852179551521 274903791791901056 < 1% 

29 769682 1453971 92257456553458647011 79909587403517 92257376643871243494 < 1% 

30 5268695 17731261 51785637565336171641 6552620409043 51785631012715762598 < 1% 

 

Table 2. The pair of (e, d) generated from n = 10813049747177129789 which high result of p – q 

Row k 
Public Key 

(e) 

Private Key 

(d) 

The new initial value 

(f) 
d - f 

Decreased 

Distance 

(%) 

1 1 11 975264329380328087 655336348313765441 319927981066562646 66% 

2 1 187 57368489963548711 38549196959633261 18819293003915450 66% 

3 1 688851122584596497 187 125 62 66% 

4 2 1961 10941262236801233 3676032550459673 7265229686341560 33% 

5 2 307877 69689568387269 23414220066623 46275348320646 33% 

6 2 2328283 9215295239611 3096144167805 6119151071806 33% 

7 3 566107 56850953741167 12733811508163 44117142233004 22% 

8 4 5 8582326098546887165 1441739966290283971 7140586132256603194 16% 

9 4 25 1716465219709377433 288347993258056795 1428117226451320639 16% 

10 5 131 409462123022275151 55028242988178777 354433880034096374 14% 

11 7 8713 8618771188142461 827349917531439 7791421270611022 10% 

12 7 136751 549139336182443 52714055703077 496425280479366 10% 

13 7 374659 200436539259127 19240695756545 181195843502582 10% 

14 7 5880293 12770682236801 1225908272165 11544773964636 10% 

15 9 955 101100700113772231 7548376786860125 93552323326912106 8% 

16 9 12557 7689031505029265 574078189969851 7114953315059414 8% 

17 9 334805 288380306771561 21531039952961 266849266818600 8% 

18 11 7943 14856727162913219 907553799754679 13949173363158540 7% 

19 11 729769 161704572070093 9878057072103 151826514997990 7% 

20 11 2624063 44971094007659 2747151966797 42223942040862 7% 

21 15 32969 4880906741112989 218650848720051 4662255892392937 5% 

22 15 626411 256889828479631 11507939406319 245381889073312 5% 

23 22 6949 33963731142616117 1037372259526755 32926358883089362 4% 

24 25 326171 822260993710631 22100983323015 800160010387616 3% 

25 45 40073 12046910464483877 179889197999935 11867021266483942 2% 

26 45 915673 527214238099477 7872570045695 519341668053782 2% 

27 66 7001 101134395533512097 1029667166326441 100104728367185656 1% 

28 67 13079 54956021924711507 551165978396775 54404855946314732 < 1% 

29 123 1605341 821964079688729 4490447718865 817473631969864 < 1% 

30 769682 60844009 135708963477853777 118478383491 135708844999470286 < 1% 
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Table 3. The pair of (e, d) generated from 1024 bits of n  

Row k 
Public Key 

(e) 

Private Key 

(d) 

The new initial value 

(f) 
d - f 

Decreased 

Distance 

(%) 

1 1 7 6.82 x 10306 4.55 x 10306 2.27 x 10306 66% 

2 1 2275679 2.09 x 10301 1.39 x 10301 6.99 x 10300 66% 

3 1 2.09 x 10301 2275679 1517119 758560 66% 

4 2 2623 3.64 x 10304 1.21 x 10304 2.42 x 10304 33% 

5 2 1757281 5.43 x 10301 1.81 x 10301 3.62 x 10301 33% 

6 2 2492887 3.83 x 10301 1.27 x 10301 2.55 x 10301 33% 

7 3 457 3.14 x 10305 6.96 x 10304 2.43 x 10305 23% 

8 4 709 2.69 x 10305 4.49 x 10304 2.69 x 10305 16% 

9 4 3545 5.39 x 10304 8.98 x 10303 4.49 x 10304 16% 

10 5 23 1.04 x 10307 1.38 x 10306 9.00 x 10306 14% 

11 8 203 1.88 x 10306 1.56 x 10305 1.72 x 10306 9% 

12 8 2291 1.67 x 10305 1.39 x 10304 1.52 x 10305 9% 

13 8 43529 8.78 x 10303 7.31 x 10302 8.04 x 10303 9% 

14 8 304703 1.25 x 10303 1.04 x 10302 1.14 x 10303 9% 

15 9 25 1.72 x 10307 1.27 x 10306 1.59 x 10307 8% 

16 9 6895519 6.24 x 10301 4.61 x 10300 5.77 x 10301 8% 

17 9 34477595 1.24 x 10301 2.92 x 10299 1.15x 10301 8% 

18 13 103 6.03 x 10306 3.09 x 10305 5.72 x 10306 6% 

19 13 18121 3.43 x 10304 1.75 x 10303 3.25 x 10304 6% 

20 16 37 2.07 x 10307 8.61 x 10305 1.97 x 10307 5% 

21 16 1155547 6.62 x 10302 2.75 x 10301 6.34 x 10302 5% 

22 22 353 2.98 x 10306 9.02 x 10304 2.89 x 10306 4% 

23 22 2471 4.25 x 10305 1.29 x 10304 4.12 x 10305 4% 

24 25 22399 5.33 x 10304 1.42 x 10303 5.19 x 10304 3% 

25 47 393947 5.69 x 10303 8.08 x 10301 5.61 x 10303 2% 

26 47 10743361 2.09 x 10302 2.96 x 10300 2.06 x 10302 2% 

27 66 3269449 9.64 x 10302 9.74 x 10300 9.54 x 10302 1% 

28 67 4971403 6.44 x 10302 6.41 x 10300 6.37 x 10302 < 1% 

29 100 761 7.72 x 10306 4.18 x 10304 7.72 x 10306 < 1% 

30 769682 44059 2.24 x 10307 7.22 x 10302 2.24 x 10307 < 1% 

 

The results from Table 1, Table 2 and Table 3 imply 

that: 

1) The ratio between the decreased distance, d – f, 

and d is quite stable for the same value of k when d 

=  
1+ Φ( )k n

e
 <  (n).  

2) In fact, an exception is occurred when d  > 
(n), because d must be decreased in the following 

condition, 1 < d <   (n),  and it also decreases 

value of k. Therefore, the ratio of this case is similar 

to the same pair of (e, d) which is generated from a 

smaller value of k. The example that the same pair 

of (e, d) can be generated from the different values 

of k, k = 2, k = 5 and k =8, and the ratio of them are 

33% is shown in 4th row, 11th row and 16th row of 

Table 1. 

3) The size of e does not affect the ratio; it is shown 

in the 2nd Row and the 3rd Row that although e is 

alternated with d, the ratio is not changed. In fact, 

only size of k affects the ratio. 

4) The maximum decreased distance is 66% for all 

the values of q > 3 and k = 1. 

5) The ratio that is less than 1% is begun at k > 66. 

Therefore, to avoid attacking by using the proposed 

method k > 66. 

6) From Theorem 2 and the results in Table 1, 

Table 2 and Table 3, it implies that d is rapidly 

recovered when e = 3, because k is stable (k = 2) 

and the ratio is always 33%. Therefore, we can 

estimate 99% of the ratio by using the equation f = 

99
*

34
f

 
  

 * 2.91f    , 34 is from 33.xx   % to 

prevent f  > d. The example is as follows: 

 

From 4th Row of Table 1, f = 

38728740902226715869, then 

       f = 

387287409022267 *2.9115869    

         = 

112700636025479743179 

         = 1.12 * 1020  

 

In Table 4, q = 3 (n = 24473764731015097203, p = 

8157921577005032401 and  (n) = 

16315843154010064800) is chosen for the 

experiment to consider the performance of f. The 

reason is that q = 3 is assigned with the main 

equation in Theorem 1. 
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Table 4. The pair of (e, d) generated from n = 24473764731015097203 with q = 3 (p = 

8157921577005032401) 
Row k Public Key 

(e) 

Private Key 

(d) 

The new initial value 

(f) 

d - f Decreased 

Distance 

(%) 

1 1 3779 4317502819267019 4317502819267019 0 100% 

2 1 43019 379270628187779 379270628187779 0 100% 

3 1 379270628187779 43019 43019 0 100% 

4 2 761671 42842232811831 21421116405915 21421116405916 50% 

5 3 64849 754792355503249 251597451834417 503194903668833 33% 

6 3 453943 107827479357607 35942493119203 71884986238404 33% 

7 3 1094957 44702695596293 14900898532097 29801797064196 33% 

8 4 4049 16118392841699249 4029598210424813 12088794631274436 25% 

9 4 28225579 2312206690819 578051672705 1734155018114 25% 

10 5 221 369136722941404181 73827344588280837 295309378353123344 20% 

11 5 182579 446815985245019 89363197049003 357452788196016 20% 

12 7 47 2430019193150435183 347145599021490741 2082873594128944442 15% 

13 7 23206801 4921441006801 703063000971 4218378005830 15% 

14 8 907 143910413706814243 17988801713351781 125921611993462462 13% 

15 8 7841 16646696241816161 2080837030227021 14565859211589140 13% 

16 9 28211 5205153606256091 578350400695121 4626803205560970 12% 

17 11 12572633 14274995117897 1297726828899 12977268288998 10% 

18 15 101 2423145022872781901 161543001524852127 2261602021347929774 7% 

19 15 437 560040382860757373 37336025524050491 522704357336706882 7% 

20 15 44137 5544954285750073 369663619050005 5175290666700068 7% 

21 16 1523 171407413305424187 10712963331589011 160694449973835176 7% 

22 16 11420977 22857369423313 1428585588957 21428783834356 7% 

23 22 108613 3304839654444877 150219984292949 3154619670151928 5% 

24 22 6300011 56975860738691 2589811851759 54386048886932 5% 

25 45 696359 1054359808562039 23430217968045 1030929590593994 3% 

26 45 4874513 150622829794577 3347173995435 147275655799142 3% 

27 66 263 4094470145112791927 62037426441102907 4032432718671689020 2% 

28 100 329 5008815071595794969 49592228431641535 4959222843164153434 1% 

29 102 5471 304188631275640031 2982241483094511 301206389792545520 < 1% 

30 769682 769682 12894267308382733921 249932494202143 12894017375888531778 < 1% 

 

The results in Table 4 imply that, 

1) f = d when k = 1, because q = 3 is chosen in the 

experiment. 

2) For the same value of k, the ratio considered 

from q = 3 is always larger than the others which 

are generated from q > 3. 

 

In addition, the proposed method will be compared 

with some other algorithms. In general, the 

prominent point of each method is different from 

each other. However, k = 1 and a small private key 

are assigned for all values in Fig. 1 to ensure that 

the proposed method is efficient when k is small. 

There are 4 compared methods as follows: 

1) Brute force attack that the initial value is 3, this 

method is efficient when d is small. 

2) The improvement of FFA in (21), this method is 

efficient when the result of p – q is close to 0. 

3) The improvement of TDA in (17), this method is 

efficient when q is close to n    

4) Pollard’s p – 1, this method is efficient when all 

prime factors of p – 1 or q – 1 are small.  

 

 

 
Figure 4. Logarithm of total loops from each algorithm 
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  Assuming l is represented as total loops to 

finish the process of each algorithm, Fig. 4 shows 

the result of log10(l) from the proposed method and 

all compared methods. The experimental results 

show that the proposed method requires the smallest 

loops when k equals 1 and d is small. On the other 

hand, it cannot guarantee that the proposed method 

is the most efficient algorithm whenever k and d are 

not assigned in the conditions suitable for this 

method. 

  Therefore, the conclusion is that the 

proposed method is a special proposed method that 

is suitable for the small values of k and d. 

 

Conclusion: 
 In this paper, the new technique to recover 

the private key (d) is proposed by estimating the 

new initial value, f, before using brute force attack. 

In fact, f can be computed by choosing the smallest 

value which may be Euler totient function, (n), 

instead of the real value of  (n) and selecting 1 

instead of k. The method is suitable for the small 

value of k, especially k equals 1. In fact, assuming a 

prime factor (q) is higher than 3 and k equals 1, the 

distance between f and d decreased about 66%.  On 

the other hand, the decreased distance is less than 

1% when k is larger than 66. Therefore, to avoid 

attacking RSA by using the proposed technique, k 

should be assigned very large. Furthermore, d 

which is computed from 
1+ Φ( )k n

e
 must be less 

than  (n). In addition, it is shown that k always 

equals 2 when e equals 3. However, if e and q equal 

3, then k always equals 1.  
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 ل الخاص المفتاح على للعثور جديدة منهجية  RSAأويلر مؤشر دالةبالاعتماد على 
 

 كرتسانتبونك سومسوك

 
 قسم الحاسوب وهندسة الاتصالات، كلية التكنلوجيا، جامعة ادون تاني رجبات، ادون ثاني تايلاند.

 
 :الخلاصة

معادلـة جديـدة يـتم شنؤـا ها مـن .القيمـة الاوليـة ال  RSA هو تقديم منهجية جديدة للعثور على المفتاح الخاص لـ  بحثالهدف من هذه ال

. بالإضوافة للوى كلو  ، لاكتؤـاف المفتـاح الخـاص القاسـية. في الواقع ، بعد العثور على هذه القيمة ، يتم اختيار هجوم القوو  جديدة لتسريع العملية

حصـلنا ثـم ، ومـن . 1من المفتاح العام والمفتاح الخاص على أنه  كلا لايجادأويلر  مؤشرتعيين مضاعف دالة  تممقترحة ، المعادلة البالنسبة للى 

أنه شذا تم تعيين جميـع العوامـا الوليـة للمعامـا  تبين بية. النتائج التجريأن المعادلة التي تقدر قيمة أولية جديدة مناسبة للمضاعف الصغير على 

٪ 1، تقو  المسوافة عون . مون ااييوة رخور  ٪66، فإن المسافة بين القيمة الأولية والمفتاح الخاص تونخف  بنووو  1وكان المضاعف  3أكبر من 

عـلاوة علـى . 66يجـ  اتتيـار المضـاعف الكبـر مـن  . لذل  ، لتجنب الهجوم باستخدام الطريقة المقترية ،66عندما يكون المضاعف ركبر من 

 .2، فإن المضاعف دائمًا يساوي  3ذلك ، يتضح أنه شذا كان المفتاح العمومي يساوي 

 

 .RSA ، عام مفتاح ، تاص مفتاح ، دالة مؤشر أويلر الكلمات المفتاحية:


