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Abstract: 
        In this paper, the Magnetohydrodynamic (MHD) for Williamson fluid with varying temperature and 

concentration in an inclined channel with variable viscosity has been examined. The perturbation technique 

in terms of the Weissenberg number (𝑊𝑒 ≪ 1) to obtain explicit forms for the velocity field has been used. 

All the solutions of physical parameters of the Darcy parameter(𝐷𝑎), Reynolds number(𝑅𝑒), Peclet number 

(𝑃𝑒) and Magnetic parameter (𝑀) are discussed under the different values as shown in plots.  
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Introduction: 
          In physiology, the Non-Newtonian fluids that 

modify their consistency in line with the forces they 

managed. The molecule mixture traps them in situ, 

nevertheless, the opposite section assumes that 

hanging these substances expels fluids from the 

colloids and pushes them nearer along and hardens. 

However, a recent analysis has tested each 

assumption. The thickness of this liquid depends 

primarily on the friction between its molecules and 

hydraulics forces  that play a role for the chemical 

process once the mixture becomes less dense. 

       This classic model includes an accurate benefit 

over non-Newtonian fluids, because it is derived 

from the kinetic theory of gases and not from the 

interactions of inquiry. Formulating flows of newly 

established materials such as black lead residue and 

glycerol may be common.  

       In (2016) some necessary contributions may be 

mentioned by Bhatti et al. (‎0). In (2018) the 

Swedish engineer Alexander, initiated the study of 

Magneto hydrodynamic (MHD) (‎2). 

       Viscosity is a fluid's inner asset that has flow 

stability. Consistency could also be a fundamental 

fluid property that is essential in some respects as 

used in fossil fuel, industrial chemistry, packaging 

and writing, meat and drink, engineering, energy, 

and environment, etc. Consistency is regarded as a 

performance of either temperature or strain in 

natural science. 

      There are several studies in the scientific works 

on fluid movement in the channel, for example; the 

movement of Williamson fluid for two types 

(Poiseuille flow and Couette flow) in an inclined 

channel dependent on the viscosity studied by 

Nadeem et al. (‎3) in (2015). 

       In (2016) the effect of temperature on (MHD) 

for Jeffrey liquid with flexible viscosity model in to 

porous channel was considered by Al-Khafajy (‎4). 

        In (2017) Jassim (‎5) studied the effects of 

Williamson fluid of wall tapered and magnetic field 

on peristaltic movement in an inclined channel. In 

(2014) the flexible viscosity flows in channel with 

great temperature generation was studied by Ting 

(‎6). 

       In (2017) Immaculate et al. (‎7) discussed the 

Williamson Nano-fluid with unsteady flow MHD in 

a porous channel and oscillating wall temperature to 

solve the momentum equations by using the 

homotopy analysis method.   

       This study aims to employ a series of 

perturbation method to fix the issue of an elevated 

medium with variable viscosity for the impact of 

(MHD) of Williamson fluid with varying 

temperature and concentration. 

 

Formulation of the problem  

Let us consider the flow for Magneto hydrodynamic 

(MHD) of Williamson fluid with varying 

temperature and concentration in an inclined 

channel with variable viscosity and at height (𝑎) 

http://dx.doi.org/10.21123/bsj.2021.18.3.0531
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(Fig.1). Consider the Cartesian Coordinates system 

is considered such that (𝑢(𝑦, 𝑡), 0,0) is velocity 

vector in which 𝑢 is the 𝑥-component of velocity 

and 𝑦 is perpendicular to 𝑥-axis. 

Figure 1. Geometry of the problem 
 

The Williamson fluid governing equations are (‎8): 

𝑺 = −𝑝̅𝑰 + 𝜏               
      (1) 

τ̅ = [μ∞ + (μ0 − μ∞)(1 + Γγ̅̇)
−1]A1     

      (2) 

where 𝜇∞ is the infinite shear rate viscosity, 

𝜇0 = 𝜇(𝑇) , Γ is the time constant, 𝑰 is the unit 

tensor, 𝑝̅ is the pressure and 𝜏̅ is the extra stress 

tensor,. Then  𝛾̇ is given by: 

γ̇ = √
1

2
∑ ∑ 𝛾̇𝑖𝑗𝛾̇𝑗𝑖𝑗𝑖 = √

1

2
∏ ,and 

 ∏ = 𝑡𝑟(A1)
2, A1 = ∇𝑉̅ + (∇𝑉̅)

𝑇       (3)  

The Williamson fluid extra stress tensor as follows:  

𝜏̅ = 𝜇(𝑇)[(1 + Γ𝛾̅̇)]A1             (4)  

The momentum, temperature and concentration 

equations are given by:  

𝜌 (
𝜕𝑢̅

𝜕𝑡̅
+ 𝑢̅

𝜕𝑢̅

𝜕𝑥̅
+ 𝑣̅

𝜕𝑢̅

𝜕𝑦̅
) = −

𝜕𝑝̅

𝜕𝑥̅
+
𝜕𝜏̅𝑥𝑥̅̅ ̅̅

𝜕𝑥̅
+
𝜕𝜏̅𝑥𝑦̅̅ ̅̅

𝜕𝑦̅
+

𝜌𝑔𝛽𝑇(𝑇 − 𝑇0)𝑆𝑖𝑛(𝛼) + 𝜌𝑔𝛽𝐶(𝐶 − 𝐶0)𝑆𝑖𝑛(𝛼) −

𝜎𝐵0
2𝑆𝑖𝑛2(𝛼)𝑢̅ −

𝜇(𝑇)

𝑘
𝑢̅ + 𝜌𝑔 𝑆𝑖𝑛 (𝛿)        (5) 

𝜕𝑇

𝜕𝑡̅
=

𝐾

𝜌𝐶𝑝

𝜕2𝑇

𝜕𝑦̅2
−

1

𝜌𝐶𝑝

𝜕𝑞

𝜕𝑦
+

𝑄𝐻

𝜌𝐶𝑝
(𝑇 − 𝑇0)     (6) 

𝜕𝐶

𝜕𝑡̅
= 𝐷

𝜕2𝐶

𝜕𝑦̅2
− 𝐾𝑟

∗(𝐶 − 𝐶2) +
𝐷𝐾𝑇

𝑇𝑚

𝜕2𝑇

𝜕𝑦̅2
     (7) 

The stress variable viscosity for Williamson fluid is: 

𝜏̅𝑥𝑦̅̅̅̅ = 𝜇(𝑇)[(1 + Γ𝛾̅̇)] (
𝜕𝑢̅

𝜕𝑦̅
)                 (8) 

where (𝑢̅) is the axial velocity, (𝑔) is the 

acceleration due to gravity, (𝜎) is the electrical 

conductivity, (𝜌) is the density of the fluid, (𝐵0) is 

the strength of the magnetic field, (𝑇, 𝐶) are 

temperature and is the concentration, (𝐾) is thermal 

conductivity, (𝑄𝐻) is heat generation, (𝐷) is the 

coefficient of mass diffusivity (𝐶𝑝)  is specific heat 

at constant pressure and (𝐾𝑇) is the thermal 

diffusion ratio.  

The corresponding boundary conditions are given 

below: 
𝑢̅ = 0, 𝑇 = 𝑇0 , C = 𝐶0 at  𝑦̅ = 0 
 𝑢̅ = 0, 𝑇 = 𝑇𝑤 , C = 𝐶𝑤  at  𝑦̅ = 𝑎

}              (9) 

𝜕𝑞

𝜕𝑦
= 4𝑏2(𝑇0 − 𝑇)           (10) 

where (𝑏) is the radiation absorption and (𝑞) is the 

radioactive heat flux. The non-dimensional 

conditions are as follows (8):

 

𝑥 =
𝑥̅

𝑎
  , 𝑦 =

𝑦̅

𝑎
 , 𝑢 =

𝑢̅

𝑈
 , 𝜃 =

𝑇−𝑇0

𝑇𝑤−𝑇0
 , 𝑝 =

𝑝̅𝑎

𝜇𝑈
 , 𝑃𝑒 =

𝜌𝑎𝑈𝑐𝑝

𝐾
 , 𝑁2 =

4𝑏2𝑎2

𝐾
 

𝜇(𝜃) =
𝜇(𝑇)

𝜇0
,𝑊𝑒 =

Γ𝑈

𝑎
, 𝜏𝑥𝑥 =

𝑎

𝜇0𝑈
𝜏̅𝑥𝑥̅̅̅̅ , 𝜏𝑥𝑦 =

𝑎

𝜇0𝑈
𝜏̅𝑥𝑦̅̅̅̅ , γ̇ =

𝑎

𝑈
γ̅̇, Φ =

𝐶−𝐶0

𝐶𝑤−𝐶0

𝐾𝑟 =
𝑎𝐾𝑟

∗

𝑈
, 𝑡 =

𝑡̅𝑈

𝑎
, 𝑅𝑒 =

𝜌𝑎𝑈

𝜇
 , 𝐷𝑎 =

𝑘

𝑎2
, 𝐺𝑟 =

𝜌𝑔𝛽𝑇𝑎
2(𝑇−𝑇0)

𝜇𝑈
, 𝑆𝑟 =

𝐷𝐾𝑇(𝑇𝑤−𝑇0)

𝑈𝑇𝑚ℎ(𝐶𝑤−𝐶0)

𝐹𝑟 =
𝑈

𝑔𝑎
, 𝑀2 =

𝜎𝐵0
2𝑎2

𝜇
, 𝑆𝑐 =

𝑈𝑎

𝐷
 , 𝑅 =

4𝛼2𝑎2

𝐾
, 𝑄 =

𝑄𝐻𝑎
2

𝐾
, 𝐺𝑐 =

𝜌𝑔𝛽𝐶𝑎
2(𝑇−𝑇0)

𝜇𝑈
 }
 
 
 

 
 
 

       (11) 

 

where (𝑈) is the mean flow velocity, (𝑆𝑐) is the 

Schmidt number, (𝑆𝑟) is the Soret number, (𝑇𝑚) is 

the mean temperature, (𝑄) is the heat generation 

parameter and (𝐺𝑐) is Solutal Grashof number. By 

substituting equation (10) and (11) into equations 

(5), (6), (7), (8), take following form: 

𝜌
𝑈𝜕𝑢
𝑎

𝑈
𝜕𝑡
= −

𝜇0𝑈

𝑎
𝑑𝑝

ℎ𝑑𝑥
+

𝜇0𝑈

𝑎
𝜕𝜏𝑥𝑦

ℎ𝜕𝑦
+ 𝜌𝑔𝛽𝑇(𝑇𝑤 −

𝑇0) 𝑆𝑖𝑛(𝛼)𝜃 + 𝜌𝑔𝛽𝐶(𝐶𝑤 − 𝐶0)𝑆𝑖𝑛(𝛼)Φ −

𝜎𝐵0
2𝑆𝑖𝑛2(𝛼)𝑈𝑢 −

𝜇0𝜇(𝜃)𝑈

𝑘
𝑢 + 𝜌𝑔 𝑆𝑖𝑛 (𝛿)  (12) 

 
𝜕(𝜃(𝑇𝑤−𝑇0)+𝑇0))

𝑎

𝑈
𝜕𝑡

=
𝑘

𝜌𝐶𝑃

𝜕2(𝜃(𝑇𝑤−𝑇0)+𝑇0))

𝑎2𝜕𝑦2
−

1

𝜌𝐶𝑃
4𝑏2(𝑇0 − 𝑇) +

𝑄𝐾

𝑎2

𝜌𝐶𝑃
(𝑇 − 𝑇0)     (13) 

𝜕(Φ(𝐶𝑤−𝐶0)+𝐶0)
𝑎

𝑈
𝜕𝑡

=
𝑈ℎ

𝑆𝑐

𝜕2(Φ(𝐶1−𝐶2)+𝐶2)

𝑎2𝜕𝑦2
−

𝐾𝑟𝑈

𝑎
((Φ(𝐶𝑤 − 𝐶0) + 𝐶0) − 𝐶0) +

𝐷𝐾𝑇

𝑇𝑚

𝜕2(𝜃(𝑇𝑤−𝑇0)+𝑇0))

𝑎2𝜕𝑦2
      (14) 

where 𝜏𝑥𝑥 = 0 , 𝜏𝑥𝑧 = 0 , 

 𝜏𝑥𝑦 =  𝜇(𝜃) [(1 + Γ
𝜕𝑣

𝜕𝑦
)]

𝜕𝑢

𝜕𝑦
 .   

Therefore the non-dimensional equations are: 
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𝑅𝑒
𝜕𝑢

𝜕𝑡
= −

𝑑𝑝

𝑑𝑥
+ (𝜇(𝜃) [

𝜕𝑢

𝜕𝑦
+𝑊𝑒 (

𝜕𝑢

𝜕𝑦
)2]) +

𝐺𝑟𝜃 𝑠𝑖𝑛(𝛼) + 𝐺𝑐𝛷 𝑠𝑖𝑛(𝛼) − (𝑀1
2 +

𝜇(𝜃)

𝐷𝑎
)𝑢 +

𝑅𝑒

𝐹𝑟
 𝑠𝑖𝑛(𝛿)           (15) 

𝑃𝑒  
𝜕𝜃

𝜕𝑡
=

𝜕2𝜃

𝜕𝑦2
+ (𝑅 + 𝑄)𝜃            (16) 

𝜕Φ

𝜕𝑡
=

1

𝑆𝑐

𝜕2Φ

𝜕𝑦2
− 𝐾Φ+ 𝑆𝑟

𝜕2𝜃

𝜕𝑦2
               (17) 

where 𝑀1
2 = 𝑀 𝑆𝑖𝑛2(𝛼). 

With the boundary conditions:  
𝑢(0) = 0, 𝜃(0) = 0, Φ(0) = 0 at 𝑦 = 0

 𝑢(1) = 0 , 𝜃(1) = 1, Φ(1) = 1 at 𝑦 = 1
}    (18) 

To solve equations (16) and (18), let 

𝜃(𝑦, 𝑡) = 𝜃𝑓(𝑦)𝑒
𝑖𝜔𝑡              (19) 

(𝜔) Is the frequency of the oscillation. Substituting 

equation (19) into equation (16), can be written as: 
𝜕2𝜃𝑓

𝜕𝑦2
+ (𝑅 + 𝑄 − 𝑖𝜔𝑃𝑒)𝜃𝑓 = 0          (20) 

The solution of equation (20) is: 

𝜃𝑓(𝑦) = Csc(𝐴) Sin (𝐴𝑦)             (21) 

where 𝐴 = √𝑅 + 𝑄 − 𝑖𝜔𝑃𝑒  

Now, the solution of equations )17) and (20), will 

be discussed. Let 

Φ(𝑦, 𝑡) = Φ𝑓(𝑦)𝑒
𝑖𝜔𝑡               (22) 

Substituting the equations (22) and (21) into the 

equation (17), 
𝜕2Φ𝑓

𝜕𝑦2
− 𝑆𝑐(𝐾𝑟 + 𝑖𝜔)Φ𝑓 + 𝑆𝑐 𝑆𝑟

𝜕2𝜃𝑓

𝜕𝑦2
= 0  (23) 

The solution of equation (23), is:  

Φ𝑓(𝑦) =

𝑒√𝐵𝑦(
𝑒√𝐵(𝐴+𝐵+𝐴(𝑆𝑟𝑆𝑐))

(𝐴+𝐵)(−1+𝑒2√𝐵)
) +

𝑒−√𝐵𝑦(−
𝑒√𝐵(𝐴+𝐵+𝐴(𝑆𝑟𝑆𝑐))

(𝐴+𝐵)(−1+𝑒2√𝐵)
) −

𝐴(𝑆𝑟𝑆𝑐)𝐶𝑠𝑐[√𝐴]𝑆𝑖𝑛[√𝐴𝑦]

𝐴+𝐵
 

       (24) 

where 𝐵 = √𝑆𝑐(𝐾𝑟 + 𝑖𝜔).  
Solution of the problem  
        To solve equation (15), with the boundary 

conditions (18), let 

−
𝑑𝑝

𝜕𝑥
= 𝜆𝑒𝑖𝜔𝑡                         (25) 

𝑢(𝑦, 𝑡) = 𝑢𝑓(𝑦)𝑒
𝑖𝜔𝑡                        (26) 

where (𝜆) is a real constant. 

       The Reynold's model and variation of viscosity 

with temperature is defined as (‎9): 

𝜇(𝜃) = 𝑒−𝜂𝜃                   (27) 

by Maclaurin Series: 

𝜇(𝜃) = 1 − 𝜂𝜃  , 𝜂 << 1             (28) 

       By substituting equation (28) into equation 

(15). It follows that:   

𝑅𝑒
𝜕𝑢

𝜕𝑡
= −

𝑑𝑝

𝜕𝑥
+

𝜕

𝜕𝑦
[(1 − 𝜂𝜃)(

𝜕𝑢

𝜕𝑦
+𝑊𝑒(

𝜕𝑢

𝜕𝑦
)2)] +

𝐺𝑟𝜃𝑓 + 𝐺𝑐Φ𝑓 +
𝑅𝑒

𝐹𝑟
 Sin(δ) − (𝑀1

2 +
(1−𝜂𝜃)

𝐷𝑎
) 𝑢   

        (29) 

The '' perturbation technique'' was used to solve the 

equation (28), as follows (‎10): 

𝑢𝑓 = 𝑢00 +𝑊𝑒𝑢01 +𝑊𝑒
2𝑢02 + O(𝑊𝑒

3)  (30) 

      By substituting equation (30) into equation (29) 

with (18), which equalizes the powers of (𝑊𝑒):  
 

i . Zeros-order system (𝑾𝒆𝟎) 

𝑅𝑒
𝜕𝑢09

𝜕𝑡
= −

𝑑𝑝

𝑑𝑥
+ 𝐺𝑟𝜃𝑓 + 𝐺𝑐Φ𝑓 +

𝑅𝑒

𝐹𝑟
 Sin(δ) −

(𝑀1
2 +

(1−𝜂𝜃)

𝐷𝑎
)𝑢00 + (1 − 𝜂𝜃)

𝜕2𝑢00

𝜕𝑦2
    

  (31) 

𝑢00(0) = 𝑢00(1) = 0           (32) 

 

ii . First-order system (𝑾𝒆𝟏) 

𝑅𝑒
𝜕𝑢01

𝜕𝑡
= −(𝑀1

2 +
(1−𝜂𝜃)

𝐷𝑎
)𝑢01 + (1 − 𝜂𝜃)

𝜕2𝑢01

𝜕𝑦2
+

2(1 − 𝜂𝜃)[
𝜕𝑢00

𝜕𝑦

𝜕2𝑢00

𝜕𝑦2
]  (33) 

𝑢01(0) = 𝑢01(1) = 0           (34) 

 

iii . Second-order system (𝑾𝒆𝟐) 

𝑅𝑒
𝜕𝑢02

𝜕𝑡
= −(𝑀1

2 +
(1−𝜂𝜃)

𝐷𝑎
)𝑢02 + (1 − 𝜂𝜃)

𝜕2𝑢02

𝜕𝑦2
+

2(1 − 𝜂𝜃)[
𝜕𝑢00

𝜕𝑦

𝜕2𝑢01

𝜕𝑦2
+
𝜕𝑢01

𝜕𝑦

𝜕2𝑢00

𝜕𝑦2
]             

  (35) 

𝑢02(0) = 𝑢02(1) = 0              (36) 

 

Results and discussion 

          The effect of (MHD) for Williamson fluid 

with varying temperature and concentration in an 

inclined channel with variable viscosity were 

discussed. Numerical assessments of analytical 

consequences and some of the graphically important 

effects obtained are shown in Figures 2-25. The 

numerical calculations have been performed using 

(Mathematical ver.11) using the set of values: 

𝐹𝑟 = 1,𝜔 = 1, 𝑅 = 2, 𝑄 = 2, 𝑃𝑒 = 0.7, 𝛼 =
𝜋

4
, 𝑆𝑟 = 0.1, 𝐾𝑟 = 0.5, 𝑆𝑐 = 0.6,𝑀 = 1, 𝑅𝑒 =

1, 𝐺𝑟 = 1,𝐺𝑐 = 1,𝐷𝑎 = 0.8, 𝜆 = 1, 𝛿 =
𝜋

4
,𝑊𝑒 =

0.05, 𝑡 = 0.5.  

         Figure 2 shows that the velocity distribution 𝑢 

decreases with the increasing of 𝜔. Figure 3 

displays the effect 𝑀 on the velocity distribution 

function. By increasing 𝑀 the velocity distribution 

decreases. Figure 4 illustrates that velocity 

distribution increases with increasing the 

considerations 𝐷𝑎. Figure 5 and 6 illustrate the 

effect 𝐺𝑟 and 𝐺𝑐, on the velocity distribution. It has 

been observed that by the increasing 𝐺𝑟 and 𝐺𝑐 the 

velocity distribution function 𝑢 increases. Figure 7 

shows that the velocity distribution u is rising up by 

increasing the effect of the consideration 𝑅. Figure 

8 illustrates that velocity distribution increases with 

increasing the considerations 𝑄.     
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       Figure 9 shows the velocity distribution 𝑢 

decreases with increasing 𝐾𝑟. Figure 10 shows the 

effect of the parameter of 𝜆. By increasing 𝜆, 

velocity distribution 𝑢 rises up. Figure 11 displays 

the velocity distribution 𝑢 increases with increasing 

𝑅𝑒. Figure 12 shows the velocity distribution 𝑢 

increases with the increasing 𝛼. Figure 13 shows 

that by increasing the 𝛿 then velocity distribution 𝑢 

increases. Figure 14 displays that with increasing 

𝑆𝑐, velocity distribution 𝑢 decreases. Figure 15 

shows that velocity distribution 𝑢 decreases with 

increasing 𝑆𝑟. Figure 16 displays that increasing 𝐹𝑟, 

velocity distribution 𝑢 decreases.   

         Figure 17 illustrates that the temperature 

increases with increasing 𝑅. Figure 18 shows that 

the effect 𝑄 on temperature 𝜃, that 𝜃 increases by 

increasing 𝑄. Figure 19 shows us that temperature 𝜃 

decreases with increasing  𝜔 .  

       The concentration field is shown in Figs. 20 - 

25. Figure 20 shows that with increasing 𝑆𝑟, the 

concentration field Φ decreases. By Fig.21, it is 

observed that the effect frequency of the oscillation 

𝜔 on concentration field Φ by increasing 𝜔, which 

leads to Φ decreases.  

From Fig.22 and 23 it is noted that by increasing 

each of parameters 𝐾𝑟 and 𝑆𝑐 then  

Φ decreases. With increasing 𝑅, then concentration 

field Φ decreases in Fig.24. In Fig.25, it is clear that 

by increasing 𝑄, the concentration field Φ 

decreases. 

 

 
Figure 2. Influence of 𝛚 on 𝒖. 

 

 
Figure 3. Influence of  𝑴 on 𝒖. 

 
Figure 4. Influence of  𝑫𝒂 on 𝒖. 

 

 
Figure 5. Influence of  𝐆𝐫 on 𝒖. 

 

 
Figure 6. Influence of  𝐆𝐜 on 𝒖. 

 

 
Figure 7. Influence of  𝐑 on 𝒖. 
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Figure 8. Influence of  𝐐 on 𝒖. 

 

 
Figure 9. Influence of  𝐊 on 𝒖. 

 

 
Figure 10. Influence of  𝛌 on 𝒖. 

 

 
Figure 11. Influence of  𝐑𝐞 on 𝒖. 

 
Figure 12. Influence of  𝛂 on 𝒖. 

 

 
Figure 13. Influence of  𝛅 on 𝒖. 

 

 
Figure 14. Influence of  𝐒𝐜 on 𝒖. 

 

 
Figure 15. Influence of  𝐒𝐫 on 𝒖. 
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Figure 16. Influence of  𝐅𝐫 on 𝒖. 

 

 
Figure 17. Influence of  𝑹 on 𝑻. 

 

 
Figure 18. Influence of  𝑸 on 𝑻. 

 

 
Figure 19. Influence of  𝝎 on 𝑻. 

 
Figure 20. Influence of  𝑺𝒓 on 𝑪. 

 

 
Figure 21. Influence of  𝝎 on 𝑪. 

 

 
Figure 22. Influence of 𝑲𝒓 on 𝑪. 

 

 
Figure 23. Influence of 𝑺𝒄 on 𝑪. 
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Figure 24. Influence of  𝑹 on 𝑪. 

 

 
Figure 25. Influence of  𝑸 on 𝑪.  

 

Conclusion: 
       The (MHD) oscillatory flow for Williamson 

fluid with varying temperature and concentration in 

an inclined channel with variable viscosity are 

investigated. It is confirmed that the velocity field, 

concentration profile and temperature analyzed by 

using the perturbation method is adequate to solve 

the problem. Different sets of values have been 

employed to tackle the problem. The conclusions 

that can be drawn are: 

 By increasing the 𝑅𝑒, 𝜆, 𝐷𝑎, 𝑄, 𝐺𝑐, 𝛿, 𝛼, 𝑅 and 

𝐺𝑟 the velocity distribution increases. 

 When increasing the  𝑀, 𝜔, 𝑆𝑐, 𝑆𝑟, 𝐹𝑟 and 𝐾𝑟  

the velocity distribution decreases. 

 The concentration profile decreases by 

increasing 𝜔,𝐾𝑟, 𝑆𝑟, 𝑆𝑐, 𝑄 and 𝑅.  

  It is observed that by increasing 𝑅 and 𝑄 the 

temperature increases, while, by increasing 𝜔 

the temperature decreases 𝜃.   
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 متغيرة لزوجة مع مائلة قناة في متباينة حرارة ودرجة بتركيز وليمسون لمائع الديناميكية المغناطيسية دراسة

 

 حسن هادي دويل    وسام صادق خضير 

 
 المديرية العامة لتربية بابل, وزارة التربية, العراق.

 

 الخلاصة :
 اللزوجة عندما الحرارة و التركيز في التغيير عند مائلة قناة خلال وليمسون لمائع (MHDالهايدروديناميكا )في هذا البحث تم دراسة          

𝑊𝑒) . استخدمنا طريقة سلسلة الاضطراب باعتماد عدد وزنبركمتغيرة ≪ . كل النتائج للحصول على صيغة معتمده لحقل السرعة (1

نتائج المشكلة  نوقشت(( حيث M(, معامل المغناطيسي )Pe(, عدد بيكالت )Re(, عدد رينولد )Daللعوامل الفيزيائية ) معامل دارسي )

   .توضيحيةالرسوم في الباستخدام قيم مختلفة كما 

 
  (, الزوجة متغيرة, مائع وليمسون.MHD) الهايدروديناميكاقناة مائلة,   :المفتاحية الكلمات


