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Abstract: 
In this paper new methods were presented based on technique of differences which is the difference- 

based modified jackknifed generalized ridge regression estimator(DMJGR) and difference-based generalized  

jackknifed ridge regression estimator(DGJR), in estimating the parameters of linear part of the partially 

linear model. As for the nonlinear part represented by the nonparametric function, it was estimated using 

Nadaraya Watson smoother. The partially linear model was compared using these proposed methods with 

other estimators based on differencing technique through the MSE comparison criterion in simulation study. 
 

Key words: DAUGRR, DGJR, DGRR, Differences technique, DMJGR, NW estimator 

 

Introduction:
For the following partially linear model: 

)1...(,...,2,1,)( nitfxy iiii 


   

iy
is an nx1 vector of responses 

),...,( 21
 ipiii xxxx  is an known p-dimensional 

vectors, ),...,( 21
 p is an unknown 

parameter vector, f(.) is an unknown smooth 

function, ti are the values of the variable which the 

dependent variable yi are observed , si '  are 

independent and identically distributed random 

variables with E( i  )=0 and cov( i )=
2 . 

The partially linear model has parametric and 

nonparametric components; this model is more 

flexible than the linear model. There are a lot of 

studies that are interested in estimating the linear 

part represented by,   and the non-linear part 

represented by nonparametric function f (  ). In this 

paper we focused on the technique of differences to 

estimate the parameters of the linear part of the 

partially linear model. This technique depends on 

the removal of the effect of the nonparametric 

function by differencing the data, and then estimates 

the linear part of the model (1) which can remove 

the effect of bias resulting from the existence of the 

nonparametric function. This technique has been 

used in many researches mentioning them, a vector 

of   
was estimated using the difference method(1)  
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In the partially linear model and Higher-order 

differences were applied using a special class of 

differences sequences(2) to estimate the linear part. 

Once a   has become known, )(f  can be 

estimated by any method of nonparametric. In the 

linear part of the model (1) it is usually assumed 

that the regressors are independent however, in 

practice this cannot be achieved since there is a 

linear or close relationship between explanatory 

variables, i.e. , the problem of multicollinearty, and 

with this problem  the (OLS) method  does not 

produce accurate and moral results, and the 

variances are large and far from the truth. To solve 

the problem of multicollinearty in the linear part of 

model (1), there are several methods referred to in 

literatures that began through the famous ridge 

regression estimator (3, 4). Hence, researchers 

assumed many estimators that address the problem 

of multicollinearty, which are either addition or 

expansion on the ridge regression estimator or they 

proposed other new estimators. 

Among the most important studies 

interested in using the technique of differences to 

estimate the parameters of the linear part, which 

suffers from the problem of multicollinearty in 

partially linear model, which enables the researcher 

to see them, are: 

A new estimator called difference-based 

ridge estimator(5) was proposed to estimate the 

linear part in a partial linear model and
 

 new 

estimator called difference- based Liu estimator(6) 

was proposed to estimate the parameters of linear 

part of the semiparametric regression model and 
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compared with difference-based estimator 
diff̂  by 

using MSE criterion. The properties of each of 

difference-based ridge estimator and Liu type 

estimator for the partially linear  semiparametric 

model were studied  when the errors are 

independent with equal variance and compared  the 

two estimators through MSE and were extended the 

results to errors which have the  problems of  

heterogeneity and autocorrelation(7). Also new 

estimates of shrinkage parameter in generalized  

difference-based ridge estimator(8) were proposed 

for semiparametric regression  model, then the risk 

function of the estimator  was calculated and the 

generalized difference -based estimator was 

introduced to the vector of parameters   of 

semiparametric regression  model when errors are 

correlated(9)
 

and suggested the generalized 

restricted difference- based Liu estimator when 

there is a non stochastic constraint. A difference - 

based almost unbiased Liu estimator 

(DBAULE)(10), was proposed to estimate the linear 

part in a partial linear model,    and studied its 

characteristics and
 
the generalized difference-based 

ridge estimator was proposed to the vector of 

parameters   in a partial linear model when the 

errors are dependent(11)
 

and was compared the 

performance of proposed estimator with the 

generalized restricted difference-based ridge 

estimator by using MSE criterion. Also a Jackknifed 

difference- based ridge estimator (12) was proposed 

in partial model;
 

the proposed estimate was 

compared with difference- based ridge estimator 

and difference- based estimator through MSE and a 

MSE matrix. A restricted  difference- based ridge 

estimator(13) was suggested to the semiparametric 

partial linear regression  model, the necessary  and 

sufficient conditions were also derived for a new 

estimator to exceed the restricted least square for 

selecting the ridge parameter .The generalized 

difference -based almost unbiased ridge estimator 

under the constraint r = RB + e  was defined and 

was suggested generalized difference- based on 

weighted mixed almost unbiased ridge estimator, 

and compared the performance of this estimate with 

the generalized difference- based weighted mixed 

estimator, the generalized difference -based 

estimator, and the generalized difference-based 

almost unbiased ridge estimator through MSE 

criterion(14). A set of differences-based estimators 

were presented and was suggested difference-based 

modified jackknifed ordinary ridge estimator(15) 

for estimating the parametric component of 

semiparametric regression model . The achievement 

of this estimate was compared with difference- 

based estimator and difference- based ridge 

estimator by the criterions MSE and a BIAS. The 

generalized difference-based mixed Liu 

estimator(16) when the parameter of regression is 

constrained to a stochastic linear restricted was 

presented in the partially linear model. 

The remainder of the paper is organized as 

follows: In the second and third sections the 

difference-based generalized ridge and difference -

based  almost unbiased generalized ridge estimator 

are presented, in sections 4,5 the proposed methods 

that based to the differences  technique are 

presented. In section 6, biased ridge parameters 

used with the estimation methods are presented. As 

for the seventh and eighth sections the method of 

non-parametric estimation and cross validation are 

presented. In the ninth section the simulation study 

is presented. The final section presents the main 

results and conclusions of the research. 

 

Difference-based Generalized Ridge Regression 

Estimator (DGRR) 

In this study, the explanatory variables in 

Model (1) suffer from the problem of 

multicollinearty, and to address this problem, it was 

suggested adding ridge parameter (k)(3,4), a small 

positive amount to the elements of the diameter of 

the information matrix )'( XX . If the ridge 

parameter (k) is constant for all elements of 

diameter , the estimator is called ordinary ridge 

regression (ORR), if the ridge parameter (k) is 

variable for all elements of diameter of information 

matrix )'( XX ,i.e.

pip kkkkkkkdiagK  ...,0),,...,( 2121 , 

the estimator is called generalized ridge 

regression(GRR). A difference-based generalized  

ridge regression estimator (DGRR)(8) was 

introduced  using the same differences technique  

(1,17) in estimating vector parameters  ,  where it 

begins by removing the nonparametric  part of 

model (1 )by multiplying it with a matrix of 

differences D as follows: 

)2...()(  DtDfDxDy   

Where D(n-m)x n:  represents the difference matrix 

and its components as follows: 
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

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
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Where m is the order of differenceing and 

d0,d1,…dm  is the differencing  weights that achieve 

the following: 

S.t:    1&0 2

jj dd  
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Since the data have been arranged so that 

the data of the nonparametric variable are close, the 

application of the D-matrix will lead to the 

elimination of the nonparametric effect. Thus, the 

model will become as follows: 

𝑦̃ = 𝑋̃𝛽 + 𝜀̃             …(3)     

Where;   𝑦̃ = 𝐷𝑦is an (n-m)x 1 vector of responses, 

𝑥̃ = 𝐷𝑋 is an (n-m)x p matrix of explanatory 

variables.
          :is an px1 vector of unknown 

parameters,𝜀̃ = 𝐷𝜀: is an (n-m)x 1 vector of random 

errors. 

The vector
   

of model (3), which suffers from the 

problem of multicollinearity in its explanatory 

variables, is estimate by difference-based 

generalized ridge regression estimator (DGRR) in 

the following steps(8): 

For the semi-positive definite matrix )
~

'
~

( XX ,there 

exists an orthogonal matrix  such that

 )
~

'
~

( XX ,  : the matrix of the eigen values 

of )
~

'
~

( XX , i.e. ),...,( 1 pdiag   .The model (3) 

becomes as follows:  

)4...(,x~z   ,~~   wherezy  

The difference-based generalized ridge regression 

estimator (DGRR) in the canonical form is as 

follows: 

)5...()(ˆ)(

~)(ˆ

1

1

KAwhereKAI

yzKzz

DOLS

DGRR













Where DOLS̂
:the simple differencing based 

estimator for parameter  , yzzzDOLS
~)(ˆ 1    

)6...(ˆˆ
DGRRDGRR    

In order to calculate the parameter   in the 

model(1), the modified 
2  estimator is used as 

follows: 

)7...(
])([

)()(2

DPIDtr

DyPIDy
D




  

Where, )()]()[( 1   DxDxDxDxP is an (n-m) x 

(n-m) projection matrix   

The characteristics of this estimate are: 

)11...(
)()(

ˆ

)()(ˆ)ˆ(

)10...()()(ˆ)ˆvar(

))ˆ())(ˆ(()ˆvar()ˆ(3

)9...(

)ˆ()ˆ(2

)8...()()ˆ(1

2

22

2

2

111112

1112

1

1

 



























ii

ii

ii

i

DGRR

DGRR

DGRRDGRRDGRRDGRR

DGRRDGRR

DGRR

k

k

k

KAKAKAIKAIMSE

KAIKAI

BiasBiasMSE

KA

EBias

KAIE






















 
 

Difference-based Almost Unbiased Generalized 

Ridge Regression Estimator (DAUGRR) 

A difference-based almost unbiased 

generalized ridge estimator(DAUGRR)(14) was 

defined as follows: 

)14...(ˆˆ

)13...(ˆ]))(([

)12...(ˆ))((ˆ

21

1

DAUGRRDAUGRR

DOLS

DGRRDAUGRR

KKI

KKI

















 
The characteristics of this estimate are: 

)18...(

)()(ˆ)ˆ(

)(

)17...()()(ˆ)ˆvar(

))ˆ((

))ˆ(()ˆvar()ˆ(3

)16...()(

)ˆ()ˆ(2

)15...(]))(([)ˆ(1

22

2122

1

2122

22

21

CC

CICIMSE

KKC

CICI

Bias

BiasMSE

KK

EBias

KKIE

DAUGRR

DAUGRR

DAUGRR

DAUGRRDAUGRRDAUGRR

DAUGRRDAUGRR

DAUGRR













































  

Difference-based Modified Jackknifed 

Generalized Ridge Regression Estimator 

(DMJGR) 
The modified ordinary Jackknifed ridge 

regression estimator (MOJR) was proposed when 

the ridge parameter (k) is constant for the diameter 

elements of the information matrix )'( XX  as in 

the following formula(18): 

)19...(ˆ)(ˆ 22

ORRMOJR AkI  

 
Where ORR̂

: ordinary ridge regression 

estimator(3,4) 

)20...(ˆ))((ˆ 122

OLSMOJR kAIAkI     

Where OLS̂ : ordinary least square estimator (19) 

It was
 
suggested that when applied differencing 

method to model (1), the estimator        ( MOJR̂ ) 

becomes as follows(15,20): 

)21...(ˆ))((ˆ 122

DOLSDMOJR kAIAkI   

  

The resulting estimator is called difference-

based modified ordinary jackknifed ridge regression 

estimator. 

A modified jackknifed ridge regression 

estimator (MJR)(18,21,22,23) was proposed when 

the ridge parameter (K) is variable for the diameter 

elements of the information matrix )'( XX  and its 

formula is: 

)22...(ˆ)(ˆ 22

GRRMJR AKI  
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Where

̇
:ˆ

GRR generalized ridge regression 

estimator (21) 

)23...(ˆ))((ˆ 122

OLSMJR KAIAKI     

Now, in this paper when ridge parameter 

(k) is variable for the diameter elements of the 

information matrix )
~

'
~

( XX , by applying 

differences technique In the same way that 

others(14,20,15,24,10) have applied the technique 

of differences to the model (1) to estimate the linear 

regression coefficients vector    ,we propose a 

new estimator by replace the GRR̂  in (24)  by the 

biased DGRR̂  ,we get the difference-based modified 

jackknifed generalized ridge regression 

estimator(DMJGR): 

)25...(ˆ))((

)24...(ˆ)(ˆ

122

22

DOLS

DGRRDMJGR

KAIAKI

AKI













 

The characteristics of this estimate are: 

)29...(AKW 

M M ˆ)ˆ(MSE

))(K-(I M

...(28)M M ˆ)ˆ(

))ˆ())(ˆ((

)ˆ()ˆMSE( -3

)KA(I

)27(...AKW )ˆ(2

)26...())(()ˆ(1

11-

1-2

122

1-2

21-

1-

1122

KWA

KAIA

Var

BiasBias

Var

KKAW

Bias

AKIAKIE

DMJGR

DMJGR

DMJGRDMJGR

DMJGRDMJGR

DMJGR

DMJGR









































 

Difference-based Generalized Jackknifed 

Ridge Regression Estimator (DGJR) 
The generalized jackknifed ridge regression 

estimator (GJR) (21,22,23)  is a biased estimator 

and its formula : 

)30...(0,ˆ))((ˆ 122   SAKIAKI OLS

S

GJR 

 In this paper by applying differences 

technique to model (1)we proposed new estimator 

called difference-based generalized  Jackknifed 

ridge regression estimator, we get this estimator by 

replace the OLS̂  in (31)  by  DOLS̂  and its form as 

follows: 

)31...(0,ˆ))((ˆ 122   SAKIAKI DOLS

S

DGJR 

 

Its characteristics are: 

)33...()))(

])([)(

)ˆ(2

)32...())(()ˆ(1

11

111

1

122

S

S

DGJR

S

DGJR

KAIKA

KAIIKA

AKBias

AKIAKIE























)35...(ˆ)ˆ(

))((

)34...(ˆ)ˆ(

))ˆ())(ˆ((

)ˆvar()ˆ(3

1112

122

12

KAAKMSE

KAIAKI

Var

BiasBias

MSE

DGJR

S

DGJR

DGJRDGJR

DGJRDGJR

























 
Ridge parameter 

some ridge parameters was proposed by 

modification some shrinkage ridge parameters by 

using differences technique, and get some new ridge 

parameters as follows(8): 

)36...(,...2,1,
ˆ

ˆˆ
2

2

)( pik
i

D
iHBD 




  

In this paper we followed the same way which 

others(8) by applying  differences technique on 

some shrinkage estimators  proposed by some 

researchers(25), and  got the following parameter: 

)37...(
ˆˆ)(

ˆˆ
2

2

)(

iiD

Di
iF

pn
k

D 




  

Also proposed some new shrinkage estimators as 

follows: 

andk
Dii

Di
iSD

,)38...(
ˆˆ

ˆˆ
2

2

)1(





     

 )39...(
ˆˆ

ˆˆ
2

2

)2(

Dii

D

iSD

P
k






  

 

Estimation of the nonparametric regression 

function 
The estimation of the non parametric part of 

the model (1) is done by using the Nadaraya -

Watson (NW) kernel estimator (26) with the 

following formula: 

)40...(/)/()(

,

)(

)(

)(ˆ

1

1

hhkkwhere

xXK

YxXK

xm

h

n

i

ih

n

i

iih

h

















 
  K is a Kernel function, a real-valued function 

assigning weights and it is usually symmetric, 

limited and continuous and integrative equal to one. 

There are many functions of Kernel and the most 

common is Gaussian function. h is a bandwidth or 

shrinking parameter, and it works on rounding the 
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estimated curve to the real curve by balancing both 

the variance and the bias so that the error is as low 

as possible. There are several ways to estimate 

bandwidth, cross validation criterion was used in 

this paper. 

 

Cross Validation 
The basic idea of this method is that each 

time you exclude one of the observations and 

compute )(ˆ
, iih xm  from the formula (41), then 

compute bandwidth through the following 

formula(26) 
 
: 

)41...()](ˆ[y 
n

1
=CV(h)

n

1i

2

,i


 iih xm  

The same process is repeated for all observations 

then we select the corresponding smoothing 

parameter for the smallest CV. 
 

Simulation study 
In this study, the proposed estimators 

namely  (DMJGR) and (DGJR) were tested with 

estimators (DGRR) and (DAUGRR) through a 

simulation study where the  variable Y was 

generated in the  partial linear model (1) which 

consists of the parametric regression function and  

nonparametric  regression function, as well as a 

random error term. We begin with the parametric 

component, where the variable X is generated 

according to the formula (27,28,29):  

)43...(4,,...2,1,,...2,1

)1( )1(

2/12



 

ppjni

UUX piijij 
 

The correlation values between the 

following explanatory variables have been used

99.0,95.0,80.0 . uij are independent standard 

normal random numbers. For   values we will 

compensate for the following default values: 

1,2,1,1 4321  
    

 
As for the nonparametric variable t, it has been 

generated in accordance with the formula: 

ni
n

i
ti ,...2,1),

5.0
( 


 , and the nonparametric 

function : 

)
)05.0(

1.2
()1()(




i

ii
t

SINtttm


 ,(6,11,15,24) 

which is called Doppler function and ij :the 

random error,  9.0,5.0,1.0,),0(~ 22  Nij
 

In order to estimate the linear part of the model (1) 

represented by parameter  , the difference 

technique was used, Where the nonparametric 

function is disposed of, three differencing 

coefficients orders were used, (m = 3,4,5) where the 

difference coefficients were as follows(17): 

1942.0,2809.0

,3832.0,8582.0

3

210





d

ddd
 

1409.0,1901.0

,2464.0,3099.0,8873.0

4

3210





d

dddd
 

1103.0,1420.0,1774.0

,2167.0,2600.0,9064.0

543

210





ddd

ddd
 

The experiment was repeated 1000 times and partial 

linear models were compared using the above-

mentioned methods using comparison criterion 

MSE: 

)44...()ˆ(
1000

1 1000

1





i

ii yyMSE  

When analyzing the simulation’s results of 

Tables(1-9)  using the comparison criterion MSE to 

get the best partially linear model by using the 

differences technique to estimate the parametric part  

and using Nadaria Watson's estimator to estimate 

the nonparametric part we found the following: 

1-When the sample size n = 50, we found from 

Table (1) that the best partially linear models are 

when using the proposed estimators difference-

based modified jackknifed generalized ridge 

regression (DMJGR) and the difference-based 

generalized jackknifed ridge regression (DGJR) by 

using a third-order differences coefficients where 

these two models came in the first and second 

positions for most ridge parameters and for all 

values of correlation and 5.0,1.02  . When the 

variances increased to  9.02    , we found that 

the best partially linear model with  proposed 

estimator (DGJR) which is came in first place and 

the partially linear model when using proposed 

estimator (DMJGR) came in third place in all ridge 

parameters except the parameter( KHB )where 

partially linear model with proposed estimator 

(DMJGR) was in the first position and the partially 

linear model with proposed estimator (DGJR) 

alternated between third or fourth  positions. when 

the order of differencing increased we find from 

Tables (2,3) that the partially linear models with 

proposed estimators (DMJGR)and (DGJR) came in 

last positions, where (DGRR) and (DAUGRR) in 

first and second positions respectively when used 

fourth-order and fifth –order differencing 

coefficients except that the partially linear model 

when used (DAUGRR) estimator came first and 

then followed by estimator(DGRR) at a fifth -order 

differencing coefficients and 9.02  . 
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Table 1. MSE values of partially linear model  using (DGRR), (DAUGRR), (DMJGRR)and(DGJR) 

estimators and  Nadaraya Watson smoother, n=50,m=3 

n=50  Ρ=.80 Ρ=.95 Ρ=.99 

M K 𝝈𝟐 DGRR DAUGR DMJG

R 

DGJR DGRR DAUG

R 

DMJG

R 

DGJR DGRR DAUG

R 

DMJG

R 

DGJR 

 

3 

 
 

 

 
 

 

 

H

K 

.1 0.0717 0.0915 0.0581 0.0734 0.0646 0.0829 0.0538 0.0593 0.0578 0.0748 0.0500 0.0447 

.5 0.0722 0.0946 0.0639 0.0539 0.0651 0.0861 0.0590 0.0446 0.0583 0.0781 0.0542 0.0377 

.9 0.0732 0.0977 0.0583 0.1086 0.0659 0.0894 0.0379 0.2458 0.0590 0.0814 0.1306 2.3275 
S1 .1 0.0698 0.0917 0.0583 0.0719 0.0625 0.0831 0.0543 0.0567 0.0555 0.0751 0.0509 0.0404 

.5 0.0661 0.0951 0.0658 0.0450 0.0587 0.0867 0.0620 0.0296 0.0516 0.0787 0.0586 0.0150 

.9 0.0624 0.0987 0.0751 0.0120 0.0564 0.0904 0.0713 0.0020 0.0522 0.0825 0.0686 0.0191 
S2 .1 0.0716 0.0918 0.0600 0.0630 0.0647 0.0834 0.0566 0.0451 0.0582 0.0755 0.0534 0.0277 

.5 0.0712 0.0952 0.0667 0.0410 0.0647 0.0869 0.0628 0.0237 0.0586 0.0790 0.0581 0.0080 

.9 0.0714 0.0986 0.0720 0.0239 0.0653 0.0904 0.0670 0.0060 0.0599 0.0825 0.0624 0.0120 

F .1 0.0693 0.0914 0.0572 0.0786 0.0619 0.0828 0.0523 0.0671 0.0548 0.0746 0.0479 0.0554 
.5 0.0628 0.0943 0.0614 0.0673 0.0544 0.0858 0.0568 0.0552 0.0459 0.0777 0.0531 0.0409 

.9 0.0367 0.0972 0.0667 0.0529 0.0133 0.0887 0.0644 0.0325 0.0453 0.0807 0.0672 

 

0.0037 

 

Table 2. MSE values of partially linear model  using (DGRR), (DAUGRR), (DMJGRR)and(DGJR) 

estimators and  Nadaraya Watson smoother, n=50,m=4 
n=50  Ρ=.80 Ρ=.95 Ρ=.99 

M K 𝝈𝟐 DGRR DAUGR DMJGR DGJR DGRR DAUGR DMJGR DGJR DGRR DAUGR DMJGR DGJR 

4 HK .1 0.1124 0.1387 0.1779 0.3333 0.1019 0.1249 0.1596 0.2960 0.0920 0.1118 0.1418 0.2590 

.5 0.1213 0.1391 0.1763 0.3185 0.1110 0.1252 0.1579 0.2795 0.1013 0.1118 0.1398 0.2382 

.9 0.1311 0.1391 0.1749 0.112 0.1208 0.1250 0.1692 0.2427 0.1109 0.1113 0.1371 0.1745 
S1 .1 0.1121 0.1386 0.1776 0.3317 0.1016 0.1248 0.1590 0.2931 0.0916 0.1116 0.1408 0.2538 

.5 0.1196 0.1387 0.1749 0.3111 0.1091 0.1245 0.1560 0.2677 0.0992 0.1110 0.1379 0.2225 

.9 0.1289 0.1380 0.1808 0.3232 0.1195 0.1237 0.1578 0.2455 0.113 0.1103 0.1411 0.1927 
S2 .1 0.1122 0.1388 0.1772 0.3280 0.1016 0.1248 0.1581 0.2875 0.0915 0.1113 0.1389 0.2445 

.5 0.1184 0.1386 0.1750 0.3097 0.1072 0.1241 0.1555 0.2632 0.0963 0.1103 0.1375 0.2166 

.9 0.1221 0.1377 0.1734 0.2861 0.1102 0.1229 0.1553 0.2360 0.0988 0.1091 0.1397 0.1894 

F .1 0.1122 0.1386 0.1783 0.3360 0.1017 0.1249 0.1601 0.2997 0.0917 0.1117 0.1425 0.2638 
.5 0.1194 0.1390 0.1762 0.3235 0.1087 0.1252 0.1578 0.2858 0.0984 0.1119 0.1400 0.2475 

.9 0.1240 0.1394 0.1743 0.3114 0.1120 0.1255 0.1562 0.2734 0.0992 0.1121 0.1398 0.2367 

 

Table 3. MSE values of partially linear model  using (DGRR), (DAUGRR), (DMJGRR)and(DGJR) 

estimators and  Nadaraya Watson smoother, n=50,m=5 
n=50  Ρ=.80 Ρ=.95 Ρ=.99 

M K 𝝈𝟐 DGRR DAUG

R 

DMJG

R 

DGJR DGRR DAUG

R 

DMJG

R 

DGJR DGRR DAUG

R 

DMJG

R 

DGJR 

5 
 

H
K 

.1 0.1387 0.1535 0.1762 0.2657 0.1260 0.1383 0.1583 0.2362 0.1139 0.1236 0.1406 0.2055 

.5 0.1513 0.1543 0.1754 0.2557 0.1388 0.1365 0.1568 0.2228 0.1270 0.1237 0.1384 0.1867 

.9 0.1650 0.1546 0.1742 0.2418 0.1530 0.1387 0.1547 0.2005 0.1417 0.1234 0.1374 0.1498 
S1 .1 0.1404 0.1534 0.1759 0.2643 0.1277 0.1381 0.1577 0.2333 0.1157 0.1232 0.1393 0.1998 

.5 0.1538 0.1536 0.1739 0.2482 0.1411 0.1377 0.1543 0.2094 0.1291 0.1224 0.1357 0.1674 

.9 0.1676 0.1527 0.1708 0.2173 0.1550 0.1364 0.1549 0.1843 0.1429 0.1212 0.1393 0.1300 

S2 .1 0.1380 0.1534 0.1753 0.2605 0.1246 0.1378 0.1560 0.2258 0.1116 0.1225 0.1359 0.1852 

.5 0.1464 0.1535 0.1735 0.2461 0.1318 0.1370 0.1533 0.2036 0.1175 0.1212 0.1350 0.1583 

.9 0.1511 0.1525 0.1720 0.2261 0.1354 0.1355 0.1541 0.1786 0.1205 0.1197 0.1408 0.1350 

F .1 0.1414 0.1536 0.1765 0.2677 0.1289 0.1384 0.1589 0.2394 0.1171 0.1239 0.1417 0.2110 

.5 0.1576 0.1546 0.1763 0.2618 0.1455 0.1393 0.1582 0.2315 0.1341 0.1245 0.1402 0.1986 

.9 0.1794 0.1555 0.1758 0.2549 0.1694 0.1400 0.1573 0.2217 0.1616 0.1251 0.1390 0.1841 

 

2-When the sample size is n = 100 we 

found from Table (4) that the partially linear models 

when using the two proposed estimators 

(DMJGR)and (DGJR)  when the third-order 

differences coefficients are used and  1.02  , 

95.0,8.0  , were in the last two positions, 

while the partially linear models with the estimators 

(DAUGRR) and (DGRR) alternated over the first 

two positions.   When the correlation increased to 

99.0  we found that the partially linear model 

when used proposed estimator (DMJGR) comes 

first for all  ridge parameters, but when the variance 

increased to 9.0,5.02  , and for all values of 

correlation we find that partially linear models that 

used the two estimators (DMJGR)and (DGJR)  

most often on the last positions. We observed from 

Table (5) that the partially linear model with 

proposed estimator (DMJGR ) that used fourth -

order differences coefficients, was at most in the 

first position for all values of variances and 

correlations, followed by  partially linear model 

with estimator(DAUGRR)  followed by two 

partially linear models with estimators (DGRR) and 

(DGJR) respectively in  the last positions.  We 

observed from Table (6) that the partially linear 
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model with proposed estimator (DMJGR) for the 

fifth -order differences coefficients,   was at most in 

the second place where the partially linear model 

with estimator (DAUGRR) in the first position, 

followed by partially linear models with estimators 

(DGRR) and (DGJR) in the last two positions for all 

values of variances and correlations. Except that 

when the correlation increase to 99.0  and the 

variance to  9.02   at the parameters Ks1 and 

Ks2, the partially linear model with proposed 

estimator (DMJGR) was in the first place. 

 

Table 4. MSE values of partially linear model  using (DGRR), (DAUGRR), (DMJGRR)and(DGJR) 

estimators and  Nadaraya Watson smoother, n=100,m=3 
n=100  Ρ=.80 Ρ=.95 Ρ=.99 

M K 𝝈𝟐 DGRR DAUGR DMJGR DGJR DGRR DAUGR DMJGR DGJR DGRR DAUGR DMJGR DGJR 

3 

HK 

.1 0.1322 0.2333 0.6597 2.3144 
0.17 

78 
0.2079 0.5703 1.9601 0.1566 0.4911 0.1843 1.6490 

.5 0.1903 0.1968 0.5698 1.7942 0.1690 0.1718 0.4911 1.4721 0.1566 0.1843 0.4911 1.6490 

.9 0.1930 0.1601 0.4556 1.1885 0.1758 0.1354 0.3951 0.8676 0.1604 0.1121 0.3213 0.5142 

S1 

.1 0.2101 0.2333 0.6565 2.2987 0.1885 0.2079 0.5668 1.9446 0.1679 0.4874 0.1843 1.6340 

.5 0.2238 0.2001 0.3208 0.8380 0.1989 0.1723 781.1266 7.4948e+04 0.1679 0.1843 0.4874 1.6340 

.9 0.4315 0.2280 0.1740 0.2651 0.2873 0.1387 4.7605 47.4913 0.2409 0.1110 0.1411 1.8991 

S2 

.1 0.2005 0.2318 0.6385 2.2077 0.1760 0.2067 0.5518 1.8637 0.1519 0.4762 0.1835 1.5695 

.5 0.1953 0.1966 0.0309 2.3837 0.1669 0.1709 0.5587 1.1387 0.1519 0.1835 0.4762 1.5695 

.9 0.1758 0.1760 0.0044 0.5386 0.1442 0.1359 1.2344 0.9526 0.1136 0.1098 0.4736 0.8171 

F 

.1 0.2146 0.2367 0.6938 2.4861 0.1941 0.2108 0.6013 2.1246 0.1749 0.5141 0.1865 1.7833 

.5 0.2848 0.2029 0.5347 1.8016 0.2931 0.1767 0.4317 1.3354 0.1749 0.1865 0.5141 1.7833 

.9 0.1325 0.1711 0.2896 0.2815 0.1537 0.1457 0.2217 0.9784 0.1569 0.1235 0.4103 2.6821 

 

Table 5. MSE values of partially linear model  using (DGRR), (DAUGRR), (DMJGRR)and(DGJR) 

estimators and  Nadaraya Watson smoother, n=100,m=4 
n=100 Ρ=.80 Ρ=.95 Ρ=.99 

M K 𝝈𝟐 DGRR DAUGR DMJGR DGJR DGRR DAUGR DMJGR DGJR DGRR DAUGR DMJGR DGJR 

4 
 

HK .1 0.1061 0.0656 0.0191 0.3562 0.0945 0.0569 0.0327 0.3929 0.0833 0.0493 0.0414 0.4120 
.5 0.1329 0.0589 0.0101 0.0469 0.1204 0.0497 0.0284 1.6665 0.1084 0.0416 0.0308 2.1702 

.9 0.1482 0.0512 0.0033 0.4355 0.1368 0.0415 0.0124 0.4581 0.1261 0.0335 0.0255 0.4544 

S1 .1 0.1152 0.0653 0.0209 0.3634 0.1041 0.0566 0.0342 0.3993 0.0935 0.0491 0.0422 0.4149 

.5 0.1525 0.0551 0.0189 0.4528 0.1404 0.0468 0.0398 0.0317 0.1284 0.0399 0.0186 0.4780 

.9 0.1727 0.0453 0.0284 0.1863 0.1534 0.0395 0.0376 0.5527 0.1289 0.0320 0.0090 0.5030 

S2 .1 0.1060 0.0630 0.0363 0.4365 0.0922 0.0546 0.0487 0.4746 0.0783 0.0519 0.0477 0.4679 

.5 0.1217 0.0529 0.0225 0.5219 0.1028 0.0451 0.0195 0.5176 0.0840 0.0389 0.0080 0.4579 

.9 0.1265 0.0433 0.0316 0.6255 0.1062 0.0362 0.0105 0.5799 0.0865 0.0312 0.0336 0.5002 

F .1 0.1196 0.0697 0.0033 0.2602 0.1095 0.0610 0.0071 0.2759 0.1001 0.0528 0.0186 0.3002 

.5 0.1839 0.0669 7.3438e-

04 

0.2898 0.1788 0.0571 0.0104 0.3323 0.1770 0.0478 0.0216 0.4024 

.9 0.3518 0.0645 0.0140 0.4165 0.4315 0.0538 0.0291 0.5773 0.7516 0.0438 0.0306 0.8412 

 

Table 6. MSE values of partially linear model  using (DGRR), (DAUGRR), (DMJGRR)and(DGJR) 

estimators and  Nadaraya Watson smoother, n=100,m=5 
n=100  Ρ=.80 Ρ=.95 Ρ=.99 

M k 𝝈𝟐 DGRR DAUGR DMJGR DGJR DGRR DAUGR DMJGR DGJR DGRR DAUGR DMJGR DGJR 

5 

 

HK .1 0.1248 0.0609 0.0835 0.6577 0.1121 0.0522 0.0893 0.6552 0.1000 0.0444 0.0927 0.6495 

.5 0.1743 0.0555 0.1561 1.1096 0.1609 0.0457 0.2045 1.4943 0.1476 0.0367 0.3222 2.5868 

.9 0.2053 0.0483 0.1458 1.3726 0.1916 0.0366 0.0777 0.9937 0.1790 0.0266 0.0076 0.8006 
S1 .1 0.1332 0.0603 0.0861 0.6676 0.1211 0.0515 0.0920 0.6667 0.1095 0.0440 0.0946 0.6577 

.5 0.1892 0.0495 0.0908 0.7902 0.1763 0.0404 0.0827 0.7910 0.1636 0.0329 0.0739 0.8128 

.9 0.2320 0.0363 0.2450 1.5269 0.2209 0.0272 0.0021 0.8122 0.2013 0.0207 0.0011 0.7147 

S2 .1 0.1240 0.0575 0.1008 0.7345 0.1091 0.0488 0.1083 0.7502 0.0940 0.0419 0.1061 0.7240 

.5 0.1589 0.0460 0.0872 0.8192 0.1384 0.0373 0.0734 0.7967 0.1172 0.0307 0.0559 0.7349 

.9 0.1719 0.0331 0.0379 0.8353 0.1458 0.0248 0.0175 0.8086 0.1209 0.0193 0.0087 0.7237 
F .1 0.1376 0.0649 0.0673 0.5928 0.1264 0.0568 0.0669 0.5579 0.1159 0.0489 0.0692 0.5373 

.5 0.2146 0.0631 0.0654 0.5953 0.2068 0.0537 0.0649 0.5728 0.2009 0.0443 0.0656 0.5753 

.9 0.3448 0.0614 0.0681 0.6329 0.3607 0.0506 0.0703 0.6644 0.3974 0.0399 0.0680 0.7657 

 

3-From Table 7 when increasing the size of 

the sample to n= 400  and when 1.02   we find 

the partially linear model with proposed estimator 

(DGJR) that used third-order differences 

coefficients at most  in the first place because it has 

less MSE.  And partially linear model with  

proposed estimator(DMJGR ) alternated between  

the second and third position with partially linear 

model with estimator(DAUGRR), while the 

partially linear model with Estimator (DGRR) came 

in the last position. at 9.0,5.02   the partially 

linear model with estimator(DAUGRR)  was at 

most in the first place and  the partially linear model 

with the proposed estimator(DMJGR ) alternates 
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between second and third positions with the 

partially linear model with the estimator(DGRR).  

From Table 8 and 1.02   we find that the partially 

linear model with proposed estimator(DMJGR) 

when using the fourth- order differences 

coefficients topped the first place followed by the 

partially linear model with the estimator 

(DAUGRR) then the estimator (DGJR)and then 

came the partially linear model with the estimator 

(DGRR) in the last position. When the variance  

increased to 9.0,5.02   we find that the partial 

linear model with the  (DAUGRR) estimator  in the 

first place and the partial linear model with 

(DMJGR) estimator alternates with the partially 

linear model with estimator (DGRR) on the second 

and third positions and the partially linear model 

with proposed estimator(DGJR)  was the last. The 

partially linear models with proposed estimators 

(DMJGR) and (DGJR) are in the first places when 

used the fifth-order differences coefficients and 
1.02    as we observe from Table 9. When 

9.0,5.02   then the partially linear model with 

estimator (DAUGRR) at most in the first place, and 

the partially linear models with the proposed 

estimators were at the last positions.  By increasing 

the degree of correlation to 99.0,95.0  i.e. 

Increasing the degree of the multicollinearity  we 

find that the partially linear model with proposed 

estimator (DMJGR)  in second place at most, 

especially at the shrinkage parameters Ks1 and 

KHB and 5.02   

 

Table 7. MSE values of partially linear model  using (DGRR), (DAUGRR), (DMJGRR)and(DGJR) 

estimators and  Nadaraya Watson smoother, n=400,m=3 
n=400  Ρ=.80 Ρ=.95 Ρ=.99 

M K 𝝈𝟐 DGRR DAUGR DMJGR DGJR DGRR DAUGR DMJGR DGJR DGRR DAUGR DMJGR DGJR 

3 HK .1 0.0870 0.0411 0.0381 0.0111 0.0792 0.0364 0.0323 0.0290 0.0718 0.0534 0.0319 0.0251 
.5 0.0880 0.0341 0.5268 3.8382 0.0782 0.0292 17.4648 136.1754 0.0689 0.0245 0.5560 5.6718 

.9 0.0794 0.0290 0.5431 11.4032 0.0696 0.0239 1.0720 31.6807 0.0603 0.0193 2.5461 118.4718 

S1 .1 0.0871 0.0407 0.0424 0.0086 0.0792 0.0360 0.0410 0.0085 0.0717 0.0313 0.0383 0.0028 
.5 0.0980 0.0320 0.0762 0.0561 0.0952 0.0268 0.0510 0.0559 0.0927 0.0223 0.0318 0.1366 

.9 0.1661 0.0253 0.0301 0.2469 0.1922 0.0159 0.0745 0.4327 0.2729 0.0183 1.5578 3.4699 

S2 .1 0.0884 0.0401 0.0432 0.0012 0.0803 0.0353 0.0405 0.0022 0.0723 0.0308 0.0357 0.0121 
.5 0.0803 0.0328 0.0458 0.0881 0.0680 0.0275 0.0398 0.1042 0.0558 0.0227 0.0399 0.1002 

.9 0.0615 0.0264 0.0652 0.1002 0.0485 0.0220 0.0633 0.0928 0.0364 0.0183 0.0603 0.0879 

F .1 0.0870 0.0399 0.0513 0.0223 0.0791 0.0360 0.0408 0.0219 0.0717 0.0321 0.0472 0.0174 
.5 0.0810 0.0378 0.8732 2.7709 0.0783 0.0306 3.8519 8.9843 0.0736 0.0662 29.4580 1.8049 

.9 0.0980 0.0963 694.8653 3.3471e+03 0.0916 0.0260 322.0688 2.4667e+03 0.0854 0.0277 282.3270 1.7594e+03 

 

Table 8. MSE values of partially linear model  using (DGRR), (DAUGRR), (DMJGRR)and(DGJR) 

estimators and  Nadaraya Watson smoother, n=400,m=4 

n=400  Ρ=.80 Ρ=.95 Ρ=.99 

M k 𝝈𝟐 DGRR DAUGR DMJGR DGJR DGRR DAUGR DMJGR DGJR DGRR DAUGR DMJGR DGJR 

4 
 

HK 

.1 0.1092 0.0466 0.0281 0.0782 0.0994 0.0414 0.0255 0.0782 0.0900 0.0362 0.0210 0.0868 

.5 0.1132 0.0401 0.0791 0.7270 0.1012 0.0343 0.1999 1.3951 0.0896 0.0290 1.0190 6.3904 

.9 0.1060 0.0341 0.3256 3.0530 0.0938 0.0288 0.1708 2.2274 0.0822 0.0239 0.2276 3.5786 

S1 

.1 0.1094 0.0462 0.0296 0.0704 0.0995 0.0409 0.0309 0.0555 0.0900 0.0357 0.0300 0.0499 

.5 0.1480 0.0384 0.1837 0.5191 0.1208 0.0322 0.0638 0.0160 0.1209 0.0267 0.0446 0.0968 

.9 0.2468 0.0311 0.0612 0.1375 0.3274 0.0259 0.0482 0.1832 0.7540 0.0214 0.0306 0.2263 

S2 

.1 0.1108 0.0455 0.0319 0.0689 0.1007 0.0400 0.0303 0.0650 0.0907 0.0349 0.0272 0.0660 

.5 0.1054 0.0389 0.0399 0.1298 0.0908 0.0330 0.0336 0.1464 0.0763 0.0271 0.0328 0.1503 

.9 0.0886 0.0327 0.0580 0.1507 0.0726 0.0269 0.0581 0.1463 0.0574 0.0220 0.0585 0.1387 

F 

.1 0.1094 0.0447 0.0030 0.1649 0.0995 0.0405 0.0049 0.1399 0.0901 0.0363 0.0044 0.1256 

.5 0.0622 0.0439 0.3685 1.4290 0.0875 0.0384 1.2382 3.9944 0.0873 0.0312 4.7159 12.0718 

.9 0.1196 0.0283 10.5957 26.7381 0.1121 0.1288 64.7459 51.6287 0.1047 0.1533 2.4767e+04 1.8683e+05 
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Table 9. MSE values of partially linear model  using (DGRR), (DAUGRR), (DMJGRR)and(DGJR) 

estimators and  Nadaraya Watson smoother, n=400,m=5 
n=400  Ρ=.85 Ρ=.90 Ρ=.99 

M K 𝝈𝟐 DGRR DAUGR DMJGR DGJR DGRR DAUGR DMJGR DGJR DGRR DAUGR DMJGR DGJR 

5 
 

HK .1 0.1342 0.0590 0.0418 0.0569 0.1210 0.0594 0.0381 0.0524 0.1085 0.0728 0.0321 0.0460 
.5 0.1343 0.0519 0.2464 1.7356 0.1217 0.0462 0.8923 5.9618 0.1091 0.0419 4.4816 37.3697 

.9 0.1293 0.0417 502.8842 7.7395e+03 0.1131 0.0336 6.7534 89.5742 0.0967 0.0298 0.5696 8.1270 

S1 .1 0.1360 0.0584 0.0435 0.0481 0.1229 0.0520 0.0438 0.0351 0.1105 0.0456 0.0417 0.0328 
.5 0.1513 0.0494 0.1686 1.1583 0.1435 0.0419 0.0535 0.1082 0.1395 0.0349 0.0580 0.51642 

.9 0.3096 0.0419 2.9885 17.9147 0.5080 0.035 0.0729 0.7244 2.9014 0.0299 0.0229 0.2817 

S2 .1 0.1367 0.0579 0.0466 0.0464 0.1230 0.0510 0.0447 0.0421 0.1095 0.0447 0.0417 0.0405 

.5 0.1142 0.0499 0.0646 0.0888 0.0950 0.0427 0.0574 0.1007 0.0762 0.0356 0.0504 0.1158 

.9 0.0832 0.0424 0.0815 0.1227 0.0622 0.0356 0.0727 0.1371 0.0452 0.0301 0.0646 0.1470 

F .1 0.1366 0.0568 0.0141 0.0171 0.1237 0.0514 0.0122 0.0157 0.1115 0.0460 0.0065 0.0141 

.5 0.1226 0.0557 1.4165 5.0732 0.1158 0.0480 9.1252 25.7799 0.1072 0.0743 204.0168 159.9412 

.9 0.1386 0.0565 42.5391 224.0120 0.1280 0.0522 29.8226 146.5994 0.1179 0.0477 31.8061 153.7311 

 

Table 10. Shows the frequency of each method 

according to sample size 
                     Sample size 

Methods 

n=50 n=100 n=400 

DGRR 57 20 - 

DAUGRR 19 46 70 

DMJGR 11 42 20 

DGJR 21 - 18 

 

Conclusion: 
This study, proposes two estimators 

(DMJGR) and (DGJR) for partially linear models in 

which explanatory variables of parametric 

components suffer from the problem of 

multicollinearity.  The performance of the partially 

linear models using proposed estimators (DMJGR) 

and (DGJR) are compared with that using the 

estimators (DGRR) and (DAUGRR) by means of 

the comparison criterion MSE. It is found that when 

the sample size is small, the partially linear models 

with proposed estimators (DMJGR) and (DGJR) are 

the best when using third –order differences 

coefficients. When the sample size is increased we 

find that the partially linear models with proposed 

estimator (DMJGR) are the best when using the 

fourth -order differences coefficients and when the 

variance is small. In some shrinkage parameters we 

see that the estimator (DMJGR) is the best when 

using a fifth –order differencing coefficients and 

when the degree of multicolinearity is very large 

and when the variance increased. When the size of 

the sample increased dramatically we find that the 

partially linear model with proposed estimate 

(DGJR) is the best at a third-order differences 

coefficients and when the variance is small.  When 

order of differences coefficients increased we find 

that the partially linear models with proposed 

estimators at the first mattress especially at the 

differences coefficients of the fifth - order and when 

the variance is small. In general, we can observe the 

order of the methods according to sample sizes as 

shown in Table (10). 
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المحاكاة باستخدام الجزئي الخطي النموذج في فروقال تقنية أساس على المقترحة اتمقدرال بعض مقارنة  

 

 سجى محمد حسين

 
 ، بغداد، العراق.جامعة بغداد، كلية الادارة والاقتصاد، قسم الاحصاء

 

 الخلاصة:
على اساس في هذا البحث تم تقديم طرائق مبنية على اساس تقنية الفروق وهي مقدر انحدار الحرف الجاكنايف المعدل المعمم 

 النموذج من الخطي الجزء معلمات تقدير في  (DJGR)على اساس الفروق انحدار الحرف الجاكنايف المعمم ومقدر  (DMJGR)الفروق 

 مقارنة . تمت Nadaraya Watson باستخدام مقدر تقديره تم فقد اللامعلمية، بالدالة الممثل الخطي غير للجزء بالنسبة أما. الجزئي الخطي

 دراسة في MSE مقارنة معيار خلال من الفروق تقنية على تعتمد أخرى مقدرات مع المقترحة الطرائق هذه باستخدام الجزئي الخطي النموذج

 محاكاة.

 
  NW مقدر، DGRR  ،DAUGRR،DMJGR ، DGJRتقنية الفروق،  الكلمات المفتاحية:
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