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Abstract:

In this paper new methods were presented based on technique of differences which is the difference-
based modified jackknifed generalized ridge regression estimator(DMJGR) and difference-based generalized
jackknifed ridge regression estimator(DGJR), in estimating the parameters of linear part of the partially
linear model. As for the nonlinear part represented by the nonparametric function, it was estimated using
Nadaraya Watson smoother. The partially linear model was compared using these proposed methods with
other estimators based on differencing technique through the MSE comparison criterion in simulation study.
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Introduction:

For the following partially linear model: In the partially linear model and Higher-order
! - differences were applied using a special class of
Yi=x% B+ 1) +e i=12,...n ..() differences sequences(2) to estimate the linear part.

Yiis  an nxl  vector  of  responses Once a S has become known, f(-) can be
X! =(Xi17Xi2""Xip)’ is an known p-dimensional e_stlmated by any method of po_nparametnc. In the

N linear part of the model (1) it is usually assumed
vectors,  B=(pB,f,,--B,)'is an unknown  that the regressors are independent however, in

parameter vector, f(.) is an unknown smooth  Practice this cannot be achieved since there is a

function, t; are the values of the variable which the ~ linear or close relationship between explanatory

dependent variable y; are observed ,&'s are variables, i.e. , the problem of multicollinearty, and
I 1 ¢4

. . L with this problem the (OLS) method does not
independent and identically distributed random produce accurate and moral results, and the

variables with E(&; )=0 and cov(¢, )= : variances are large and far from the truth. To solve
the problem of multicollinearty in the linear part of
model (1), there are several methods referred to in
literatures that began through the famous ridge
regression estimator (3, 4). Hence, researchers
assumed many estimators that address the problem
of multicollinearty, which are either addition or
expansion on the ridge regression estimator or they
proposed other new estimators.

Among the most important studies
interested in using the technique of differences to
estimate the parameters of the linear part, which
suffers from the problem of multicollinearty in
partially linear model, which enables the researcher
to see them, are:

A new estimator called difference-based

The partially linear model has parametric and
nonparametric components; this model is more
flexible than the linear model. There are a lot of
studies that are interested in estimating the linear
part represented by, £ and the non-linear part

represented by nonparametric function f (-). In this
paper we focused on the technique of differences to
estimate the parameters of the linear part of the
partially linear model. This technique depends on
the removal of the effect of the nonparametric
function by differencing the data, and then estimates
the linear part of the model (1) which can remove
the effect of bias resulting from the existence of the
nonparametric function. This technique has been

used in many researche_:s menti(_)ning them, a vector ridge estimator(5) was proposed to estimate the
of £ was estimated using the difference method(1) linear part in a partial linear model and new

Department of Statistics, College of Administration and estimator called difference- based Liu estimator(6)
Economics, University of Baghdad, Iraq was proposed to estimate the parameters of linear
E-mail: saja@coadec.uobaghdad.edu.iq part of the semiparametric regression model and
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compared with difference-based estimator ﬁdm by

using MSE criterion. The properties of each of
difference-based ridge estimator and Liu type
estimator for the partially linear semiparametric
model were studied when the errors are
independent with equal variance and compared the
two estimators through MSE and were extended the
results to errors which have the problems of
heterogeneity and autocorrelation(7). Also new
estimates of shrinkage parameter in generalized
difference-based ridge estimator(8) were proposed
for semiparametric regression model, then the risk
function of the estimator was calculated and the
generalized difference -based estimator was
introduced to the vector of parameters S of

semiparametric regression model when errors are
correlated(9) and suggested the generalized
restricted difference- based Liu estimator when
there is a non stochastic constraint. A difference -
based almost unbiased Liu estimator
(DBAULE)(10), was proposed to estimate the linear
part in a partial linear model, and studied its
characteristics and the generalized difference-based
ridge estimator was proposed to the vector of
parameters £ in a partial linear model when the

errors are dependent(11) and was compared the
performance of proposed estimator with the
generalized restricted difference-based ridge
estimator by using MSE criterion. Also a Jackknifed
difference- based ridge estimator (12) was proposed
in partial model; the proposed estimate was
compared with difference- based ridge estimator
and difference- based estimator through MSE and a
MSE matrix. A restricted difference- based ridge
estimator(13) was suggested to the semiparametric
partial linear regression model, the necessary and
sufficient conditions were also derived for a new
estimator to exceed the restricted least square for
selecting the ridge parameter .The generalized
difference -based almost unbiased ridge estimator
under the constraint r = RB + e was defined and
was suggested generalized difference- based on
weighted mixed almost unbiased ridge estimator,
and compared the performance of this estimate with
the generalized difference- based weighted mixed
estimator, the generalized difference -based
estimator, and the generalized difference-based
almost unbiased ridge estimator through MSE
criterion(14). A set of differences-based estimators
were presented and was suggested difference-based
modified jackknifed ordinary ridge estimator(15)
for estimating the parametric component of
semiparametric regression model . The achievement
of this estimate was compared with difference-
based estimator and difference- based ridge
estimator by the criterions MSE and a BIAS. The
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generalized difference-based mixed Liu
estimator(16) when the parameter of regression is
constrained to a stochastic linear restricted was
presented in the partially linear model.

The remainder of the paper is organized as
follows: In the second and third sections the
difference-based generalized ridge and difference -
based almost unbiased generalized ridge estimator
are presented, in sections 4,5 the proposed methods
that based to the differences technique are
presented. In section 6, biased ridge parameters
used with the estimation methods are presented. As
for the seventh and eighth sections the method of
non-parametric estimation and cross validation are
presented. In the ninth section the simulation study
is presented. The final section presents the main
results and conclusions of the research.

Difference-based Generalized Ridge Regression
Estimator (DGRR)

In this study, the explanatory variables in
Model (1) suffer from the problem of
multicollinearty, and to address this problem, it was
suggested adding ridge parameter (k)(3,4), a small
positive amount to the elements of the diameter of
the information matrix (X'X). If the ridge

parameter (K) is constant for all elements of
diameter , the estimator is called ordinary ridge
regression (ORR), if the ridge parameter (k) is
variable for all elements of diameter of information
matrix (X'X) ie.

K =diag(ky,k,,..k,),k =0, k, =k, ...k,

the estimator is called generalized ridge
regression(GRR). A difference-based generalized
ridge regression estimator (DGRR)(8) was
introduced using the same differences technique
(1,17) in estimating vector parameters £, where it

begins by removing the nonparametric part of
model (1 )by multiplying it with a matrix of
differences D as follows:
Dy =Dxg + Df (t) + De (2

Where D(n-m)x n: represents the difference matrix
and its components as follows:

d, d, . . d, 0 0 0

0 d, d, 0 0
D=

0 0 0 d . .d, 0

0 0 o 0 d, .. d,

Where m is the order of differen_ceing and
do,dy,...dn is the differencing weights that achieve
the following:

St Yd;=0 &>di=1



Baghdad Science Journal

Vol.16(4) 2019

Since the data have been arranged so that
the data of the nonparametric variable are close, the
application of the D-matrix will lead to the
elimination of the nonparametric effect. Thus, the
model will become as follows:

J=XB+¢& ...(3)

Where; 3 = Dyis an (n-m)x 1 vector of responses,
X=DX is an (n-m)x p matrix of explanatory
variables. F :is an px1 vector of unknown

parameters,§ = De: is an (n-m)x 1 vector of random
errors.
The vector £ of model (3), which suffers from the

problem of multicollinearity in its explanatory
variables, is estimate by difference-based
generalized ridge regression estimator (DGRR) in
the following steps(8):

For the semi-positive definite matrix (X'X) there
exists an orthogonal matrix I'such that

F()Z' )Z)F’ = A, A: the matrix of the eigen values
of (X'X), ie. A=diag(4,...,4,) .The model (3)

becomes as follows:

Yy=zZa+g, where z=XI , a=I"5..(4)
The difference-based generalized ridge regression
estimator (DGRR) in the canonical form is as
follows:

Gipeme = (22+K) 2y

=(1-KAMdpes  WhereA=(A+K) ..(5

Where  #DoLs :the simple differencing based
estimator for parameter &, @y, =(2'2) "2y
Bocrr =T Apers ..(6)

In order to calculate the parameter £ in the

model(1), the modified o estimator is used as
follows:

tr[D'(1 - P)D]
Where, P = Dx[(Dx)'(Dx)]*(Dx)’is an (n-m) x
(n-m) projection matrix
The characteristics of this estimate are:

1-E(dpem) = (I ~KA)ax -(8)
2 - Bias(@pere) = E(Gpem) —@
=—-KA%q ..(9)

3- MSE(dDGRR) = Var(dDGRR ) + (Bias (dDGRR ))(Bias (dDGRR ))’
Var(@oge) = 62(1 — KAHA (1 — KAy ..(10)
MSE (G pem) = 62(1 — KAMA™ (I - KA + KA o AK

A2 4 kie!
LG Gy

..(12)
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Difference-based Almost Unbiased Generalized
Ridge Regression Estimator (DAUGRR)

A difference-based almost unbiased
generalized ridge estimator(DAUGRR)(14) was
defined as follows:

dDAUGRR =(1+(A+ K)_l K)&DGRR --(12)
=[1 - ((A+K)'K)lbpos  -(13)
,éDAUGRR =T Gpyer ..(14)
The characteristics of this estimate are:
1-E(Gpayems) =[1 = (A + K)'K)* ] .(15)
2 —Bias(dppyerr) = E(@ppucrr) —
=—(A+K)?K?a ..(16)

3 - MSE(&DAUGRR ) = Var(&DAUGRR ) + (Blas (dDAUGRR ))
(Bias(dpayera))’

var(@ppems) =6 (1 —CHA(1-C?)"  ...(17)
C=(A+K)*K

MSE (Gpauerr) = *(1-C*)A'(1-C?)'+
C’aa'C? ...(18)

Difference-based Modified Jackknifed

Generalized Ridge Regression Estimator
(DMJGR)

The modified ordinary Jackknifed ridge
regression estimator (MOJR) was proposed when
the ridge parameter (k) is constant for the diameter

elements of the information matrix (X' X) as in
the following formula(18):

&MOJR =(I- sz_z)&ORR -.(19)

Where ~ %oms ordinary  ridge  regression
estimator(3,4)

Ao = (1 —KZA?)(1 —kKA Ay s ...(20)

Where ¢, : ordinary least square estimator (19)

It was suggested that when applied differencing
method to model (1), the estimator (Ayor)

becomes as follows(15,20):
&DMOJR = (I _sziz)(I _kAil)dDOLS ---(21)

The resulting estimator is called difference-
based modified ordinary jackknifed ridge regression
estimator.

A modified jackknifed ridge regression
estimator (MJR)(18,21,22,23) was proposed when
the ridge parameter (K) is variable for the diameter

elements of the information matrix (X*X) and its

formulais:

= (1 - KzAﬁz)&GRR -(22)
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Where  /ggq :generalized ridge regression
estimator (21)
ayr=(1— KZA_Z)(I - KA_l)&OLS -(23)

Now, in this paper when ridge parameter
(k) is variable for the diameter elements of the
information matrix (X'X), by applying
differences technique In the same way that
others(14,20,15,24,10) have applied the technique
of differences to the model (1) to estimate the linear
regression coefficients vector S ,we propose a

new estimator by replace the &g, in (24) by the
biased apgrr -We get the difference-based modified

jackknifed generalized ridge regression
estimator(DMJGR):
&DMJGR =(I- KzAiz)dDGRR ..(24)

=(1 - K?A?)(1 = KA apo.s ...(25)

The characteristics of this estimate are:
1- E(dpyyer) = (1 - K*A?)(I =K*A ) ...(26)

2-Bias(dpye) =—KWA'x  ...(27)
W =(1+ KA' - KA?K)

3-M SE(dDMJGR) =Var (dDMJGR) +

(Bias (drpyyer)) (Bias (dpyyce))'

Var (Gpyer) =6° MA* M’ ..(28)

M=(1-K*A?)(I -KA™)
M SE (&pyyer) = 6° MA* M’ +
KWA'aaA"WK ...(29)

Difference-based Generalized Jackknifed
Ridge Regression Estimator (DGJR)

The generalized jackknifed ridge regression
estimator (GJR) (21,22,23) is a biased estimator
and its formula :

Aor=1-K*A?)(1-K AN)°a, ,S>0 ..(30)

In this paper by applying differences
technique to model (1)we proposed new estimator
called difference-based generalized  Jackknifed
ridge regression estimator, we get this estimator by

replace the ¢, 5 in (31) by apo s and its form as
follows:
e =(1 - KZA_Z)(I -K A_l)SdDOLS ,$20 ..(31)

Its characteristics are:
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1- E(pen) = (1 - KA1 —K AY)a
2 - Bias(Aper) =—KA a
S=(KAYHI -(1 —KA™)*]+

(KA1 -KA™)®  ..(33)

3—MSE (@) = Var(dpey) +
(Bias(&pgyr))(Bias(pesr))’
Var(Qper) = 6°ANA’
A=(1-KZAH)(I -KA™)®
MSE (Ggey) = 62AA A’ + KA Taa’ALSK ...(35)

(32)

.(34)

Ridge parameter
some ridge parameters was proposed by
modification some shrinkage ridge parameters by
using differences technique, and get some new ridge
parameters as follows(8):
~2
Kongy = =2, i =12,...
D(HB)i &iz p
In this paper we followed the same way which
others(8) by applying differences technique on
some shrinkage estimators proposed by some
researchers(25), and got the following parameter:

A _ ﬂ’l&Dz
F)i — A A
O (n= )6y’ + A,

Also proposed some new shrinkage estimators as
follows:

..(36)

.(37)

. A6
=—1"b __  (38), and
p(SD)i ﬂr,di—OA'Dz ( )
- P&y
D(s2) =ﬁ .-(39)
(htd| D

Estimation of the nonparametric regression
function

The estimation of the non parametric part of
the model (1) is done by using the Nadaraya -
Watson (NW) kernel estimator (26) with the
following formula:

K, (X, ~ )Y,
mh(x): i:ln '
ZKh(xi —X)

where k, (-) =k(-/h)/h ...(40)

K is a Kernel function, a real-valued function
assigning weights and it is usually symmetric,
limited and continuous and integrative equal to one.
There are many functions of Kernel and the most
common is Gaussian function. h is a bandwidth or
shrinking parameter, and it works on rounding the
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estimated curve to the real curve by balancing both
the variance and the bias so that the error is as low
as possible. There are several ways to estimate
bandwidth, cross validation criterion was used in
this paper.

Cross Validation
The basic idea of this method is that each
time you exclude one of the observations and

compute M, ;(x;) from the formula (41), then

compute  bandwidth  through the following
formula(26) :
1 .
CV(h) = HZ[yi —i, 001 ..(4D)
i=1

The same process is repeated for all observations
then we select the corresponding smoothing
parameter for the smallest CV.

Simulation study

In this study, the proposed estimators
namely (DMJGR) and (DGJR) were tested with
estimators (DGRR) and (DAUGRR) through a
simulation study where the variable Y was
generated in the partial linear model (1) which
consists of the parametric regression function and
nonparametric  regression function, as well as a
random error term. We begin with the parametric
component, where the variable X is generated
according to the formula (27,28,29):

2\1/2
Xij:(l_p) Uij+10Ui(p+1)
1=12,..n, j=12,..p ,p=4 ..(43
The correlation values between the

following explanatory variables have been used
L =0.80, 0.95,0.99. uj are independent standard

normal random numbers. For [ values we will
compensate for the following default values:

£=1.5=1 =2 .0, =~

As for the nonparametric variable t, it has been

generated in accordance with the formula:
t_( )._12 n, and the nonparametric
functlon

m(t) =/t (L—t,)SIN( 2%’; 5 (6,11,15,24)

which is called Doppler function and ¢ :the
& ~ N(O,O‘Z),O'Z =0.1,0.5,0.9

In order to estimate the linear part of the model (1)
represented by parameter #, the difference

technique was used, Where the nonparametric
function is disposed of, three differencing

random error,
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coefficients orders were used, (m = 3,4,5) where the
difference coefficients were as follows(17):

d, =0.8582,d, =—0.3832,d,

=-0.2809, d, =—0.1942

d, =0.8873,d, =—0.3099,d, = —0.2464, d,
=-0.1901,d, = —0.1409

d, =0.9064, d, =—0.2600,d, = 0.2167,

d, =-0.1774,d, =—0.1420,d, =-0.1103

The experiment was repeated 1000 times and partial
linear models were compared using the above-
mentioned methods using comparison criterion

MSE:
1000

1000 Z(y. ¥i)

When analyzing the simulation’s results of
Tables(1-9) using the comparison criterion MSE to
get the best partially linear model by using the
differences technique to estimate the parametric part
and using Nadaria Watson's estimator to estimate
the nonparametric part we found the following:
1-When the sample size n = 50, we found from
Table (1) that the best partially linear models are
when using the proposed estimators difference-
based modified jackknifed generalized ridge
regression (DMJGR) and the difference-based
generalized jackknifed ridge regression (DGJR) by
using a third-order differences coefficients where
these two models came in the first and second
positions for most ridge parameters and for all

values of correlation ando? =0.1,0.5. When the

..(44)

variances increased to & *=09 , we found that
the best partially linear model with  proposed
estimator (DGJR) which is came in first place and
the partially linear model when using proposed
estimator (DMJGR) came in third place in all ridge
parameters except the parameter( Kys )where
partially linear model with proposed estimator
(DMJGR) was in the first position and the partially
linear model with proposed estimator (DGJR)
alternated between third or fourth positions. when
the order of differencing increased we find from
Tables (2,3) that the partially linear models with
proposed estimators (DMJGR)and (DGJR) came in
last positions, where (DGRR) and (DAUGRR) in
first and second positions respectively when used
fourth-order and fifth —order differencing
coefficients except that the partially linear model
when used (DAUGRR) estimator came first and
then followed by estimator(DGRR) at a fifth -order

differencing coefficients and o?=09 :
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Table 1. MSE values of partially linear model using (DGRR), (DAUGRR), (DMJGRR)and(DGJR)
estimators and Nadaraya Watson smoother, n=50,m=3

n=50 P=.80 P=.95 P=.99
M K ¢* DGRR DAUGR DMJG DGR DGRR DAUG DMIG DGR DGRR DAUG DMIG DGJR
R R R R R
H .1 0.0717 0.0915 0.0581 0.0734 0.0646 0.0829 0.0538 0.0593 0.0578 0.0748 0.0500  0.0447
3 K 5 00722 0.0946  0.0639 0.0539 0.0651 0.0861 0.0590 0.0446 0.0583 0.0781  0.0542  0.0377
9 0.0732 0.0977  0.0583 0.1086 0.0659 0.0894 0.0379 0.2458 0.0590 0.0814  0.1306  2.3275
S1 .1 0.0698 0.0917  0.0583 0.0719 0.0625 0.0831 0.0543 0.0567 0.0555 0.0751  0.0509  0.0404
.5 0.0661 0.0951  0.0658 0.0450 0.0587 0.0867 0.0620 0.0296 0.0516 0.0787  0.0586  0.0150
.9 0.0624 0.0987  0.0751 0.0120 0.0564 0.0904 0.0713 0.0020 0.0522 0.0825 0.0686 0.0191
S2 .1 0.0716 0.0918 0.0600 0.0630 0.0647 0.0834 0.0566 0.0451 0.0582 0.0755 0.0534  0.0277
5 0.0712 0.0952  0.0667 0.0410 0.0647 0.0869 0.0628 0.0237 0.0586 0.0790  0.0581  0.0080
9 0.0714 0.0986  0.0720 0.0239  0.0653  0.0904 0.0670 0.0060 0.0599  0.0825 0.0624 0.0120
F .1 0.0693 0.0914  0.0572 0.0786  0.0619  0.0828  0.0523 0.0671 0.0548 0.0746  0.0479  0.0554
.5 0.0628 0.0943  0.0614 0.0673 0.0544 0.0858 0.0568 0.0552 0.0459  0.0777 0.0531  0.0409
.9 0.0367 0.0972  0.0667 0.0529 0.0133 0.0887 0.0644 0.0325 0.0453 0.0807 0.0672  0.0037

Table 2. MSE values of partially linear model using (DGRR), (DAUGRR), (DMJGRR)and(DGJR)

estimators and Nadaraya Watson smoother, n=50,m=4

n=50 P=.80 P=.95 P=.99
M K o DGRR DAUGR DMIGR DGJR DGRR DAUGR DMIGR DGR DGRR DAUGR DMIGR DGR
4 HK .1 01124 01387 01779 03333 01019 01249 01596 02960 00920  0.1118  0.1418 0.2590
5 01213 01391 04763 03185 01110 01252 01579 02795 0.1013 01118 01398 0.2382
9 01311 01391 01749 012 01208 01250 01692 02427 01109 01113 01371 0.1745
S .1 04121 01386 01776 03317 01016 01248 0590 02931 00916 01116 01408 0.2538
5 01196 01387 01749 03111 01091 01245 01560 0.2677 00992 01110 01379 0.2225
9 01289 01380 01808 03232 01195 01237 01578 02455 0113 01103 01411 0.1927
S2 .1 04122 01388 01772 03280 0.1016 01248 0581 02875 00915  0.1113 01389 0.2445
5 01184 01386 01750 03097 01072 01241 01555 02632 00963 01103 01375 0.2166
9 01221 01377 01734 02861 01102 01229 01553 0.2360 00988 01091  0.1397 0.1894
F .1 01122 0138 01783 03360 01017 01249 01601 0.2997 00917 01117 01425 0.2638
5 01194 01390 01762 03235 01087 01252 01578 0.2858 00984  0.1119  0.1400 0.2475
9 01240 01394 01743 03114 01120 01255 01562 0.2734 0.0992  0.1121  0.1398 0.2367

Table 3. MSE values of partially linear model using (DGRR), (DAUGRR), (DMJGRR)and(DGJR)

estimators and Nadaraya Watson smoother, n=50,m=5

n=50 P=80 P=95 =99
M K o2 DGRR DAUG DMIG DGR DGRR DAUG DMIG DGR DGRR DAUG DMIG DGR
R R R R R R

5 H 1 01387 01535 01762 02657 01260 01383 01583 02362 01139 01236 0406  0.2055
K 5 01513 01543 01754 02557 01388 01365 01568 02228 01270 01237 01384  0.1867

9 01650 01546 01742 02418 01530 01387 01547 02005 01417 01234 01374 01498

SI 1 01404 01534 01750 02643 01277 01381 01577 02333 01157 01232 01393  0.1998

5 01538 01536 01739 02482 01411 01377 01543 02094 01291 01224 01357 0.1674

9 01676 01527 01708 02173 01550 01364 0549 01843 01429 01212 01393  0.1300

$2 1 01380 01534 01753 02605 01246 01378 01560 02258 01116 01225 01359  0.1852

5 01464 01535 01735 02461 01318 01370 01533 02036 01175 01212 01350 01583

9 01511 01525 01720 02261 01354 01355 01541 01786 01205 01197 01408 01350

F 1 01414 0153 04765 02677 01289 01384 01589 02394 01171 01239 01417 02110

5 01576 01546 01763 02618 01455 01393 01582 02315 01341 01245 01402  0.1986

9 01794 01555 01758 02549 01694 01400 01573 02217 01616 01251 01390 01841

2-When the sample size is n = 100 we  jncreased to o =0.5,0.9, and for all values of

found from Table (4) that the partially linear models
when using the two proposed estimators
(DMJGR)and (DGJR) when the third-order

2
differences coefficients are used and © :0-1,

p=0.8,0.95 , were in the last two positions,
while the partially linear models with the estimators
(DAUGRR) and (DGRR) alternated over the first
two positions. When the correlation increased to

P =099 \e found that the partially linear model
when used proposed estimator (DMJGR) comes
first for all ridge parameters, but when the variance

correlation we find that partially linear models that
used the two estimators (DMJGR)and (DGJR)
most often on the last positions. We observed from
Table (5) that the partially linear model with
proposed estimator (DMJGR ) that used fourth -
order differences coefficients, was at most in the
first position for all values of variances and
correlations, followed by partially linear model
with estimator(DAUGRR) followed by two
partially linear models with estimators (DGRR) and
(DGJR) respectively in the last positions. We
observed from Table (6) that the partially linear

923
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model with proposed estimator (DMJGR) for the
fifth -order differences coefficients, was at most in
the second place where the partially linear model
with estimator (DAUGRR) in the first position,
followed by partially linear models with estimators
(DGRR) and (DGJR) in the last two positions for all
values of variances and correlations. Except that

when the correlation increase to” =0.99 and the

variance to O *=09 at the parameters Ksl and
Ks2, the partially linear model with proposed
estimator (DMJGR) was in the first place.

Table 4. MSE values of partially linear model using (DGRR), (DAUGRR), (DMJGRR)and(DGJR)
estimators and Nadaraya Watson smoother, n=100,m=3

n=100 P=.80 P=.95 P=.99

M K o¢* DGRR DAUGR DMIGR DGJR DGRR DAUGR DMIGR DGJR DGRR DAUGR DMIJGR DGIR
1 01322 0.2333 0.6597  2.3144 O%]g 0.2079 0.5703 1.9601 0.1566  0.4911 0.1843  1.6490

HK .5 0.1903  0.1968 0.5698 1.7942 0.1690 0.1718 0.4911 1.4721 0.1566  0.1843 0.4911  1.6490

9 01930 0.1601 0.4556  1.1885 0.1758  0.1354 0.3951 0.8676 0.1604  0.1121 0.3213  0.5142

1 02101 0.2333 0.6565  2.2987 0.1885  0.2079 0.5668 1.9446 0.1679  0.4874 0.1843  1.6340

S1 .5 02238 0.2001 0.3208 0.8380 0.1989  0.1723  781.1266 7.4948e+04 0.1679  0.1843 0.4874  1.6340

3 9 04315 0.2280 0.1740  0.2651 0.2873  0.1387 4.7605 47.4913 0.2409  0.1110 0.1411  1.8991
.1 0.2005 0.2318 0.6385 22077 0.1760  0.2067 0.5518 1.8637 0.1519  0.4762 0.1835  1.5695

S2 5 01953 0.1966 0.0309 2.3837 0.1669  0.1709 0.5587 1.1387 0.1519  0.1835 0.4762  1.5695

9 01758  0.1760 0.0044 05386 0.1442  0.1359 1.2344 0.9526 0.1136  0.1098 0.4736  0.8171

1 02146  0.2367 0.6938 24861 0.1941  0.2108 0.6013 2.1246 0.1749  0.5141 0.1865  1.7833

F .5 0.2848  0.2029 0.5347 1.8016 0.2931  0.1767 0.4317 1.3354 0.1749  0.1865 0.5141  1.7833

9 01325 01711 0.2896  0.2815 0.1537  0.1457 0.2217 0.9784 0.1569  0.1235 0.4103  2.6821

Table 5. MSE values of partially linear model using (DGRR), (DAUGRR), (DMJGRR)and(DGJR)

estimators and Nadaraya Watson smoother, n=100,m=4

n=100 P=.80 P=.95 P=.99
M K o2 DGRR DAUGR DMJGR DGR DGRR DAUGR DMIGR DGJR DGRR DAUGR DMIGR DGJR
4 HK 1 01061 00656 00191 03562 00945 00569 00327 03929 00833 00493  0.0414 04120
5 01329 00589 00101 00469 01204 00497 0.0284 16665 0.1084 00416 00308 2.1702
9 01482 00512 00033 04355 01368 00415 00124 04581 0.1261 00335 00255 0.4544
SI .1 01152 00653 00209 03634 01041 00566 00342 03993 0.0935 00491  0.0422 0.4149
5 01525 00551 00189 04528 01404 00468 00398 00317 0.1284 00399 00186 0.4780
9 01727 00453 00284 01863 01534 00395 00376 05527 01289 00320 00090 0.5030
S2 .1 01060 00630 00363 04365 00922 00546 00487 04746 00783 00519  0.0477 0.4679
5 01217 00529 00225 05219 01028 00451 00195 05176 00840 00389  0.0080 0.4579
9 01265 00433 00316 06255 01062 00362 00105 05799 00865 00312 00336 0.5002
F .1 01196 00697 00033 02602 01095 00610 00071 02759 01001 00528 00186 0.3002
5 01839 00669 7.3438- 02898 01788 00571  0.0104 03323 01770 00478 00216 0.4024

04

9 03518 00645 00140 04165 04315 00538 00291 05773 07516  0.0438  0.0306 0.8412

Table 6. MSE values of partially linear model using (DGRR), (DAUGRR), (DMJGRR)and(DGJR)
estimators and Nadaraya Watson smoother, n=100,m=5

n=100 P=.80 P=.95 P=.99
M k ¢* DGRR DAUGR DMIGR DGJR DGRR DAUGR DMIGR DGJR DGRR DAUGR DMIGR DGJR
5 HK 1 01248 0.0609 0.0835 0.6577 0.1121 0.0522 0.0893 0.6552  0.1000 0.0444 0.0927  0.6495
5 01743 0.0555 0.1561 1.1096  0.1609 0.0457 0.2045 1.4943 0.1476 0.0367 0.3222  2.5868
.9 0.2053 0.0483 0.1458 1.3726 0.1916 0.0366 0.0777  0.9937  0.1790 0.0266 0.0076  0.8006
S1 .1 01332 0.0603 0.0861 0.6676 0.1211 0.0515 0.0920 0.6667 0.1095 0.0440 0.0946  0.6577
.5 0.1892 0.0495 0.0908 0.7902 0.1763 0.0404 0.0827 0.7910 0.1636 0.0329 0.0739 0.8128
9 0.2320 0.0363 0.2450 1.5269 0.2209 0.0272 0.0021 0.8122 0.2013 0.0207 0.0011 0.7147
S2 .1 0.1240 0.0575 0.1008 0.7345 0.1091 0.0488 0.1083  0.7502  0.0940 0.0419 0.1061  0.7240
.5 0.1589 0.0460 0.0872 0.8192 0.1384 0.0373 0.0734 0.7967 0.1172 0.0307 0.0559 0.7349
9 01719 0.0331 0.0379  0.8353 0.1458 0.0248 0.0175 0.8086 0.1209 0.0193 0.0087  0.7237
F .1 01376 0.0649 0.0673 0.5928 0.1264 0.0568 0.0669 0.5579  0.1159 0.0489 0.0692  0.5373
5 0.2146 0.0631 0.0654 0.5953 0.2068 0.0537 0.0649 0.5728 0.2009 0.0443 0.0656  0.5753
9 0.3448 0.0614 0.0681  0.6329  0.3607 0.0506 0.0703  0.6644 0.3974 0.0399 0.0680  0.7657

3-From Table 7 when increasing the size of

the sample to n= 400 and when o” =0.1 we find
the partially linear model with proposed estimator
(DGJR) that used third-order differences
coefficients at most in the first place because it has
less MSE. And partially linear model with
proposed estimator(DMJGR ) alternated between

the second and third position with partially linear
model with estimator(DAUGRR), while the
partially linear model with Estimator (DGRR) came
in the last position. at o® =0.5,0.9 the partially
linear model with estimator(DAUGRR) was at
most in the first place and the partially linear model
with the proposed estimator(DMJGR ) alternates
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between second and third positions with the
partially linear model with the estimator(DGRR).

From Table 8 and o =0.1 we find that the partially
linear model with proposed estimator(DMJGR)
when using the fourth- order differences
coefficients topped the first place followed by the
partially linear model with the estimator
(DAUGRR) then the estimator (DGJR)and then
came the partially linear model with the estimator
(DGRR) in the last position. When the variance
increased to o2 =0.5,0.9 we find that the partial
linear model with the (DAUGRR) estimator in the
first place and the partial linear model with
(DMJGR) estimator alternates with the partially
linear model with estimator (DGRR) on the second
and third positions and the partially linear model

with proposed estimator(DGJR) was the last. The
partially linear models with proposed estimators
(DMJGR) and (DGJR) are in the first places when
used the fifth-order differences coefficients and
=01 as we observe from Table 9. When
0% =05,09 then the partially linear model with

estimator (DAUGRR) at most in the first place, and
the partially linear models with the proposed
estimators were at the last positions. By increasing

the degree of correlation to £~ =095099 jg¢
Increasing the degree of the multicollinearity we
find that the partially linear model with proposed
estimator (DMJGR) in second place at most,
especially at the shrinkage parameters Ksl and
KHB and &2 =0.5

Table 7. MSE values of partially linear model using (DGRR), (DAUGRR), (DMJGRR)and(DGJR)
estimators and Nadaraya Watson smoother, n=400,m=3

n=400 P=.80 P=.95 P=.99
K ¢! DGRR DAUGR DMIGR DGJR DGRR DAUGR DMIJGR DGJR DGRR DAUGR DMIJGR DGJR
HK .1 00870 00411  0.0381 00111 00792 00364  0.0323 0.0290 00718 00534  0.0319 0.0251
5 00880 00341 05268 38382 00782 00292 174648  136.1754 0.0689 00245  0.5560 5.6718
9 00794 00290 05431 114032 00696 00239  1.0720 31.6807 0.0603 00193 25461  118.4718
S1 .1 00871 00407  0.0424 0.0086 0.0792  0.0360  0.0410 0.0085 00717 00313  0.0383 0.0028
5 00980 00320  0.0762 00561 0.0952  0.0268  0.0510 0.0559 0.0927  0.0223  0.0318 0.1366
9 01661 00253  0.0301 0.2469 01922 00159  0.0745 04327 02729 00183 15578 3.4699
S2 .1 00884 00401  0.0432 0.0012 00803 00353  0.0405 0.0022 00723  0.0308  0.0357 0.0121
5 00803 00328  0.0458 0.0881 00680  0.0275  0.0398 0.1042 00558  0.0227  0.0399 0.1002
9 00615 00264  0.0652 0.1002 0.0485  0.0220  0.0633 0.0928 00364 00183  0.0603 0.0879
F .1 00870 00399 00513 00223 00791  0.0360  0.0408 00219 00717 00321  0.0472 0.0174
5 00810 00378  0.8732 27709 00783 00306  3.8519 8.9843 00736 00662  29.4580 1.8049
9 00980  0.0963 694.8653 3.3471e+03 0.0916  0.0260 322.0688 2.4667e+03 0.0854  0.0277 282.3270 1.7594e+03
Table 8. MSE values of partially linear model using (DGRR), (DAUGRR), (DMJGRR)and(DGJR)
estimators and Nadaraya Watson smoother, n=400,m=4
n=400 P=.80 P=.95 P=.99

M Kk o* DGRR DAUGR DMIGR DGJR DGRR DAUGR DMIGR DGJR DGRR DAUGR DMIGR DGJR

1 01092 00466 00281 00782 00994 00414 00255 0.0782 0.0900  0.0362 0.0210 0.0868

HK 5 01132 00401 00791 07270 01012 00343 01999 13951 0.0896  0.0290 1.0190 6.3904

9 01060 00341 03256  3.0530 0.0938 00288 01708  2.2274 00822  0.0239 0.2276 3.5786

1 01094 00462 00296 00704 00995 00409 00309  0.0555 0.0900  0.0357 0.0300 0.0499

S1 5 01480 00384 01837 05191 01208 00322 00638 00160 01209 0.0267 0.0446 0.0968

4 9 02468 00311 00612 01375 03274 00259 00482  0.1832 0.7540  0.0214 0.0306 0.2263

1 01108 00455 00319 00689 0.1007 0.0400 00303  0.0650 0.0907  0.0349 0.0272 0.0660

S2 5 01054 00389 00399 01298 00908 00330 00336 01464 00763 0.0271 0.0328 0.1503

9 0088 00327 00580 01507 00726 00269 00581  0.1463 0.0574  0.0220 0.0585 0.1387

1 01094 00447 00030 01649 00995 00405 00049 01399 0.0901  0.0363 0.0044 0.1256

F 5 00622 00439 03685 14290 00875 00384 12382 39944 00873  0.0312 4.7159 12.0718

9 01196 00283 105957 26.7381 0.1121 01288  64.7459 51.6287 0.1047 0.1533  2.4767e+04 1.8683e+05
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Table 9. MSE values of partially linear model using (DGRR), (DAUGRR), (DMJGRR)and(DGJR)
estimators and Nadaraya Watson smoother, n=400,m=5

n=400 P=385 P=.90 P=.99
M K o DGRR DAUGR DMIGR DGR  DGRR DAUGR DMIGR DGJR DGRR DAUGR DMIGR DGR
5 HK .1 01342 00590 00418 00569 01210 00594 00381 00524 01085 00728 00321  0.0460
5 01343 00519 02464 17356 0217 00462 08923 59618 01091 00419 44816  37.3697
9 01293 00417 502.8842 7.7395e+03 0.1131 00336  6.7534 895742 00967 00298 05696  8.1270
SI .1 01360 00584  0.0435 00481 01229 00520 00438 00351 01105 00456 00417  0.0328
5 01513 00494  0.1686 11583 0435 00419 00535 01082 01395 00349 00580 051642
9 03096 00419 29885 17.9147 05080 0035 00729 07244 29014 00299 00229  0.2817
S2 .1 01367 00579  0.0466 00464 01230 00510 00447 00421 01095 00447 00417  0.0405
5 01142 00499  0.0646 00888 00950 00427 00574 01007 00762 00356 00504  0.1158
9 00832 00424 00815 01227 00622 0035 00727 01371 00452 00301 00646  0.1470
F .1 01366 00568  0.0141 00171 01237 00514 00122 00157 0.1115 00460 00065  0.0141
5 01226 00557 14165 50732 01158 00480  9.1252 257799 0.1072 00743 2040168 159.9412
9 01386 00565 425391 2240120  0.280  0.0522  29.8226 1465994 0.1179 00477  31.8061  153.7311

Table 10. Shows the frequency of each method
according to sample size

Sample size n=50 n=100 n=400
Methods
DGRR 57 20 -
DAUGRR 19 46 70
DMJGR 11 42 20
DGJR 21 - 18
Conclusion:

This study, proposes two estimators
(DMJGR) and (DGJR) for partially linear models in
which  explanatory variables of parametric
components suffer from the problem of

multicollinearity. The performance of the partially
linear models using proposed estimators (DMJGR)
and (DGJR) are compared with that using the
estimators (DGRR) and (DAUGRR) by means of
the comparison criterion MSE. It is found that when
the sample size is small, the partially linear models
with proposed estimators (DMJGR) and (DGJR) are
the best when using third —order differences
coefficients. When the sample size is increased we
find that the partially linear models with proposed
estimator (DMJGR) are the best when using the
fourth -order differences coefficients and when the
variance is small. In some shrinkage parameters we
see that the estimator (DMJGR) is the best when
using a fifth —order differencing coefficients and
when the degree of multicolinearity is very large
and when the variance increased. When the size of
the sample increased dramatically we find that the
partially linear model with proposed estimate
(DGJR) is the best at a third-order differences
coefficients and when the variance is small. When
order of differences coefficients increased we find
that the partially linear models with proposed
estimators at the first mattress especially at the
differences coefficients of the fifth - order and when
the variance is small. In general, we can observe the
order of the methods according to sample sizes as
shown in Table (10).

Conflicts of Interest: None.
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