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Abstract:

In this work, the notion of principally quasi- injective semimodule is introduced, discussing the
conditions needed to get properties and characterizations similar or related to the case in modules.

Let B be an R-semimodule with endomorphism semiring S. The semimodule B is called principally
guasi-injective, if every R -homomorphism from any cyclic subsemimodule of B to B can be extended to an
endomorphism of B.
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Introduction:

The study of semimodules over semirings Some remarks that needed in this work.
has a long history where the construction of  were added. Nicholson, Park and Yousif (1) were
semirings is useful generalizations of rings. studied principally quasi-injective modules, where
Semirings are moved from rings but simultaneously B is called principally quasi-injective module if
there are important differences of them. A semiring  each  R-homomorphism from a principal
is a nonempty set R together with two operations, submodule of B to B can be extended to an
addition and multiplication such that endomorphism of B, an analogous, that concept
(i) addition and multiplication are associative,(ii) for semimodules was introduced, studied the
addition is commutative,(iii) the distribution law relationship between it and endomorphisms
holds, that is, if r, s, teR thenr(s+t) =rs+rt  semiring. Further we examined their relations with
and (r + s)t = r t+ s t, (iv) there is an additive  other concepts like, principally- injective, self-
identity element(denoted 0) and a multiplicative  generators, regular, Z-regular semimodules. Before
identity element(denoted 1), (v)these two operations  that we added some remarks which we need in our
are associative, R is commutative if the second  work. Also we gave some characterizations of
operation is commutative. For instance the set of  principally quasi-injective semimodules.
natural number N is a commutative semiring under  This paper is organized as follows

usual addition and multiplication, but it is not ring. - In section 2: we discuss some definitions,
A semimodule B over semiring R is defined properties and remarks that lead to the main results.
similarly in module over ring. A subsemimodule U - In section 3: we study principally quasi-injective

of an R-semimodule B is a nonempty subset of B, if ~ semimodules and other related concepts with some
b, b'eVU and te R, then b+b'ey/ and t b €, This  properties about those concepts.

means U itself is anXR-semimodule. An R- Preliminaries

semimodule N is called (B-injective), if for any In this section some definitions were
subsemimodule U of B, any homomorphism from {/  demonstrated, properties and remarks that derive
into N can be extended to an R-homomorphism  the main results.

from B to N. And N is injective if it is injective  Definition 1 (2). A nonempty subset / of a semiring

relative to every R-semimodule. It is quasi- R isaright (resp. left) ideal of R if for s, s’ € Jand t
injective semimodule if it is N-injective. € R then s+s' €/ and s t (resp. ts)€/ . / is (two-
In the present work, we discuss new object ” sided) ideal of R if it is both a left and a right ideal
principally quasi-injectivity  for a unitary left R- of R. o _ _ _
semimodule B over a commutative semiring with The concept principal ideal in commutative
identity. semiring with an identity element can be defined on
College of Education for Pure Sciences, University of the similar as in commutative ring with an identity
Babylon, Babylon, Iraq. element. (3)
" Corresponding author: khitam sahib25@gmail.com. Definition 2. Let R be a semiring, then for any
ae R,
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Ra = {x: x =ta, for some t € R} is left ideal of R
called the principal left ideal generated by a.
Definition 3 (2). Let R be a semiring. A left R-
semimodule is a commutative monoid (B, +) which
has a zero element, together with a mapping R x B
— B (sending (s, b) to sb ) such that the following
conditions hold V' s, t of R and Vb, b" of B:

(i) (st)b=s(th)

(ii)s(b+b)=sb+sb’

(iiiy(s+t)b=sb+tb

(|V) S OB :03 = O_be

If the condition 1 b = b, for all b in B holds then
the semimodule B is called unitary.

Definition 4 (2). A nonempty subset U of a left R-
semimodule B is called subsemimodule of B if U
is closed under addition and scalar multiplication,
and denoted by U< B.

Examples 5.

(i) Every semiring over itself is a semimodule.

(i) let R=(Z", +, .) where Z" is a positive integers
and a'+a"= max{a', a"}, a'.a" = min{a’, a"}, va',
a"€e 7'

let B be a left R- semimodule over itself, the
proper subsemimodules of B are of the form

(Ko, +,.)={1,2, ...,n}c Z*, for each n.

(iii) Let B =Zg be an R- semimodule, where R is the
semiring Zg, the proper subsemimodules of B are
{0},{0,4}, {0, 2, 4, 6} also Zs as Z*-semimodule
have proper subsemimodules {0}, {0,3}, {0, 2, 4}.
Definition 6 (2). A subsemimodule U of B is called
a subtractive subsemimodule, if for each b, b'e B,
that b + b', b € U leads to b'eU. It is clear that {0}
and B are subtractive subsemimodules of B. A
semimodule B is called subtractive semimodule if it
has only subtractive subsemimodules.

In  Example (5(ii))) K, is subtractive
subsemimodule of B. since for any element x €K,
and z€ Z" such that x+z = max{x, z}eK, implies
that z €K,

Definition 7 (4). A semimodule B is called a
semisubtractive, if for any b, b'e B there is always
some he B satisfying b+h =b' or some ke B
satisfying b'+k = b.

Definition 8 (2). An element a' of a left R-
semimodule B is cancellable if a'+ n=a'+ k implies
that n=k. The R-semimodule B is cancellative if
and only if every element of B is cancellable.
Definition 9 (5). An R-semimodule B is said to be
a direct sum of subsemimodules Ui, U,..., Uy of
B, if each be B can be uniquely written as
b=ui+u,+...+u; where u €l 1<i<k. It is
denoted by

B =Ui® U,®...®U. And Uj; is called a direct
summand of B.
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It is known that if a module B is a direct sum of
submodules U and Uy, then B= U @ U, if and only
if
B =U+ U;and Un U;={0} This is not true, in
general for semimodule. We will prove this
property under certain conditions on a semimodule.

The following remark proves the same property.
Remark 10. let B be a cancellative semisubtractive
R- semimodule and each subsemimodule of it is
subtractive, then B = U @ U, ifand only if B = U
+iand UN Y= {0}

Proof: (=) Assume that B = [ @ U; we must to
provethat B = U+ U;and Un U = {0}.
If B = U @ U, this means, for each be B = b=
utu,u€e U, uelU,;= B =U+l;
IfbeUnly; = (b=b+0)eUand(b=0+b) €
U= b=0and 0 = b (by uniqueness).
(&) Asssume B = U 4+ Uy and U n U; = {0}. We
will prove B = U @ U;.
Suppose that b = u+ u'=v+Vv' whereu,ve U, U,
V'€ U; Since B is semisubtractive, then there is h in
B and there is two cases:
Casel u=h+ v (since U is subtractive, then h € U)
= h+v+u' = v+ v'(bycancellative) =
h+u' =v'. But U; is subtractive subsemimodule
of B, then he ;. We have U n U;={0} which
implies h=0 and hence u' = v'.
case2 u+ h=v (U is subtractive, then he U) = u +
u' =u+ h+v'(by cancillative) > u' = h+v' €
Ui(by subtractive), then he U;. We have U N U,
= {0} implies h=0 and hence u'=v".
Similarly, we show that u=v.
representation is unique.  ////
Definition 11 (4). Let B be a left R-semimodule
and be B, the left annihilator of b in R is defined
by anng (b)= {t € R |tb = 0}, it is clear that anng
(b) is a left ideal of R. Also if U subsemimodule of
B, then anngx (V) ={t € R| tu = 0, VUeU}.
Definition 12 (5). If R is a semiring and B, N are
left R-semimodules, then a map ¥: B — N is
called a homomorphism of R-semimodules, if :
() (b +b)=y(b) +y(b*)
(i) Y(tb) =ty(b), forallb,b' e Band t e R.

The set of R-homomorphisms of B into N is
denoted by Hom (B, N). A homomorphism is
called an epimorphism if its onto, it is called a
monomorphism ify is one-one and it is
isomorphism if ¥ is one-one and onto.

Remarks 13 (4).

For a homomorphism of R-semimodules i): B — N
we define

() ker ) ={be B[y (b)=0}

(i) ¥ (B) ={ ¢ (b)| be B}

@) Im(yY)={neN|n+y (b) =y (b’ for some b,
b'e€ B}

Therefor the
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It is obvious that ker(y ) is a subtractive
subsemimodule of B, Im(y) is a subtractive
subsemimodule of N and y (B) is a subsemimodule
of N. In module theory ¥ (B) = Im (¥), in
semimodule theory is not true always. It is clear that
Y(B)S Im(y), the equality is satisfied if (B)is
subtractive subsemimodule of N.

It is known that in module theory, a homomorphism
Y: B —N of R-modules is monomorphism (one-one) A _ _
if and only if ker () = 0. But in semimodule theory injective relative to every left R-semimodule.

that is not true always. For instance, see (6, p. 176).
The following remark explains the relationship
between monomorphism and kernel of R-
semimodules.
Remark 14. Let »: B —»N be a homomorphism of
R-semimodules, then:
(i) If y is a monomorphism, then ker () = 0.
(i) If ker(y ) = 0, B is semisubtractive and N is
cancellative, then 1 is a monomorphism.
Proof: (i) Let b be any element of B, then 0 = 0
Y(b)=1y (0b) =y (0). Hence 0 € ker .
If yY(b') =0, then (b ) = (0). But 3 is one to
one implies b' = 0. Therefor ker(y) ={0}.
(ii) Let (b)) = (b,) since B is semisubtractive
semimodule, then there is h in B such that b;+h=b,
or some k in B satisfying b,+k=b;, we have two
cases
Casel b= bith= 9 (b)) = 9 (by) + ¥ (h)
= Y(h) = 0 (by cancellative) since ker (y) = 0,
then h = 0 this implies b;= by.
Case 2 by = by+tk = (by) = Y(by) + (k)
= (k) = 0 (by cancellative), since Kker(y)=0,
then k 0, hence b,= b;. Therefor ¢ is a
monomorphism.  ////
Definition 15(7). Let {B;};c; be a family of left R-
semimodules then their Cartesian product [[;¢; B;
also has the structure of a left R-semimodule under
componentwise addition and scalar multiplication.
It is called the direct product of { B;}. By the direct
sum of {B;:i € I} denoted by ®;¢;B; we mean the
subset of [[;; B, consisting of all (m;) € [];¢; B; for
which only finite number of m; # 0. Then @;¢; B; is
a left R-subsemimodule of [[;¢; B;.
Definition 16 (8). A left R-semimodule B is called
cyclic if B can be generated by a single element,
that is B = (b) = Rb = {t b |t € R}for some be B
Definition 17 (7). An R-semimodule E is B-
injective (E is injective relative to B ) if, for each
subsemimodule N of B, any R-homomorphism
from N to E can be extended to an R-
homomorphism from B to E. (where i is the
inclusion map)
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A left R-semimodule E is injective if it is

Proposition 18 (7). Let (E;)qeq be an indexed set
of a left R-semimodules then []q E, is injective if
and only if each E_is injective for each a.
Definition 19 (9). A nonzero R-semimodule B is
called simple if B has no nonzero proper R-
subsemimodule.

Remark 20 (9). If B is simple, then every
semimodule E is injective relative to B.

Remark 21 (7). A semimodule B is quasi -
injective if it is B-injective. As the following
diagram. i.e., there exist h such that h ¢ =g (with ¥
iS @ monomorphism).

K—ILE.‘B

To the best of our knowledge, the following
proposition is not found in the literatures, we will
give its proof for semimodules similar to in
modules.

Proposition 22. A direct summand of quasi-
injective semimodule is quasi-injective.

Proof: Let C = C'" @C"” be quasi-injective
semimodule and let i, and i, be the inclusion maps
of Alinto C"and C' into C respectively. Let r./:C—
C’ be the projection map. Consider the following
diagram.

i Les
A > »C
’
/
1” ,',
s 4
(R4 4
% /

ﬁ i s

/ /

% /

%l Vd
I y
c’ g
/
/
A B
,
/
; /
lC’ T[C, S
/,
I 3

since C is quasi-injective semimodule, then there
exists a homomorphism p:C—C such that

Piorig=if
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take f'=m. S,
then Blig=m Birig=moripgf=1.f=1
this mean, B'extends to an endomorphism of C'. ////

Remark 23. It is clear that every injective
semimodule is quasi-injective.

Principally Quasi-Injective Semimodules

In this section we extend this work by studying
principally quasi-injective semimodules, their
endomorphism semirings, also we discuss some
concepts which have relation to this notion, Most of
the results of this section are shown (for modules)
in (1) and (10). However, we discuss it for
semimodule.

In (1) some results for injective modules were

given. In the following, we state analogous to those
results for sesmimodule.
Definition 1. An R-semimodule is called
principally  quasi-injective if each R-
homomorphism from cyclic subsemimodule of B to
B can be extended to an endomorphism of B. In
other words, the following diagram is commutative.
i.e., hi=y.

Rm_' | B

Note. We will use the notation P.Q.-injective for
principally quasi-injective.

Examples 2.

(i)Every injective semimodule is P.Q.-injective .
(ii)Every semi-simple semimodule is P.Q.-injective
and hence every simple semimodule is P.Q.-
injective.

(iii) Z, as N-semimodule is P.Q.-injective but not
not injective.

Proposition 3. Every direct summand of P.Q.-
injective semimodule is again P.Q.-injective.
proof: Similar to Proposition (22).  ////

In (10) principally injective module was
introduced as follows: an R-module B is called
principally injective (p-injective) if each R-
homomorphism «a :Ra— B such that a€ R,
extends to R, i.e., the following diagram is
commutative, a'i = a. Where i is inclusion map.
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Ra — L L R

For instanceZ as Z-semimodule is not p-
injective, let f:Z2—7 be Z-homomorphism such
that 2x — 3x can not be extended to g:Z—Z. (g
from R =Z to B = Z)since, if g(1) = 3n then g(2) =
6n but f(2) =3 = f(2) # g(2) this contradiction,
then g is not an extension of f, so Z as a Z-
semimodule is not p-injective.

In (7) Ahsan, Shabir and Liu introduced P-
injective semimodule as follows.
Definition 4 (7). An R-semimodule B is called P-
injective if for any principal ideal U of R and each
R-homomorphism f: U— B, there exists an R-
homomorphism g: R— B, which extends f.
Example 5. Q as a Z semimodule is P-injective.
Proof: Let | = Zn where ne Z (principal ideal of Z)
and f:1-Q be Z- homomorphism such that f(n) = q
where, nel, g€ Q, define a Z-homomorphism

0:Z—>Q

by g(1) =2

o consider the following diagram:

1 —>h Z

Then g(kn) = kn g(1) =(kn) & = kq = kf(n) =
f (kn).

The concept "regular module" is defined by
several forms see (11), (12) and (13). In this work
we will choose the certain condition to define a
regular semimodule. Also we investigate relation
this concept with P.Q-injective semimodule where
every regular semimodule is P.Q-injective.
Examples 6.

(It is clear that every injective semimodule is
principally injective.

(ii) Every regular semimodule is P.Q.-injective
semimodule. In fact, if Rx < B, then Rx is a direct
summand of B, there exists B < B such that B =
Rx @ B. Now let a: Rx— B be a homomorphism.
Define a’: Rx ® B—> Rx @ B by ' (tx, y) = a (tx);
it is clear that a’ is an extension of a.

In(13 ), regular module was defined, where B is
called regular if every cyclic submodule of B is a
direct summand of B.
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Definition 7 (8). A semimodule B is called regular
if every cyclic subsemimodule of B is a direct
summand.

Example 8. Z¢ as N-semimodule is regular.

In (13) Z-regular module appeared, where
an R-module B is called Z-regular if every cyclic
submodule of B is projective and direct summand
of B. Also in (1) principally self-generator module
was studied, analogous concepts for semimodule
are introduced. Before we define these concepts we
need to define a projective semimodule and give its
characteristic.

Definition 9 (6). A left R-semimodule P is said to
be B-projective if for every an epimorphism
¢: B — N and for every homomorphism y:P— N

there is a homomorphism y’": P— B such that the
diagram commutes.

P
’ ,"’
Y,
/” ’Y
},—> N
B 9

A semimodule P is projective if it is projective
relative to every left R-semimodule.
Example 10. Every semiring over
projective.
proposition 11 (6). Let Pr be an indexed set of
left R-semimodules , then @P, is projective if and
only if each P, is projective for each .

Definition 12. A semimodule B is called Z-regular
if every cyclic subsemimodule of B is projective
and direct summand.

Remark 13. Note that any Z -regular semimodule is
regular, hence it is P.Q.-injective by Examples
(6(ii)).

Remark 14(8). For any R-semimodule B, Endx(B)
is the set § of endomorphisms of B, it is a semiring
with respect to addition and multiplication defined
as follows: Vf, g, h €End(B), f+ g =h where h(b)
= f(b) +g(b) for all be B, fog = h where h(b) =
f(g(b)) for all be B. It easy to check that S is a
semiring called the endomorphism semiring of B .
Remark 15. If B is left R-semimodule then B can
be made into a right S-semimodule as follows:
define, ®: B x S—>B by ®(b, f) = bf, then

(i) b( fy+f,) = bfy +bf,

(ii) (b +b") f = bf + b'f where f, f;, f,€S and b,
b'e B.

itself is

Remarks 16.
(i) anng (t) = {be B|tb = 0}. We will use the
notation r(t)=anng (t), where t € R.

(i) bS ={bf | f €S} = {bf = f(b)| f €S}
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(iii)anng(anngx(b))={xe B |tx = 0,Vt €
anng(b)}={x€ B|tx = 0 whenever tb = 0}.We
will use the notation r (I (b))=anng (anng(b))

In (1) some characterizations of P.Q.-injective
module were given. In the following, we state and
prove analogous to these characterizations for
semimodule.

Proposition 17. Given a left R-semimodule with §
= Endx(B), where B is cancellative, the
following are equivalent:

(i) vm € B, every R-homomorphism Rm —B can
be extended to an endomorphism in S, i.e., B is
P.Q.-injective semimodule.

(ii) r(1 (m)) = mS, vm € B.

(i) If I (m)<I(n) where m, n € B, then nS € msS.
(iv) vm € B, if the R-homomorphisms
A,0: Rm —B are given with 6 is a monomorphism,
then there exists y: B—B such that y6 = 4, i.e., the
following diagram commutes:

0

Rm—>B

Proof: ()= (ii)

Let 9(m) € mS where 9 € S. If t m=0 then 0 = I(t
m) =t 9(m).This implies 9(m)€e r(I(m)) hence, mS<
r(l (m). To show the opposite inclusion, let ne r(l
(m). Define y: Rm—>B by y(tm) =tnVt € R. y is
well-defined.

By (i) y extends to y' € S. Now n = y(m) =
Y'i(m) =y'(i(m)) = y'(m) € mS. Hence r(I(m)
c msS.

(i)= (iii) From (ii) nS = r(l(n), Since I(m)<I(n),
then r (I (n)) € r (I(m)).Therefore nS=r(l(n)) S r
(I(m))=mS, means nS< ms.

(iii)= (iv)Since 6 is monomorphism, we have
I(6(m)) € I(A(m)), in fact, let te 1(6(m)), then
to(m) = 6(tm) = 0. Thus tme ker 6 hence tm = 0,
S0 A(tm) = tA(m) = 0 which implies te 1(A(m)),
so 1(8(m)) < I(A(m)). By (iii) A(m)S = 6(m)S.
Then there exists y € § such that A(m) = y8(m))
as required.

(iv) =(i) Takef:Rm—>B be the inclusion
homomorphism in (iv), then there exists y: B—>B
such that the following diagram is commutative.
Hence A: Rm—B extends to an endomorphism in §.
This means proving(i). //l/
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In (1) principally self-generator module was
given. In the following we give an analogous of that
notion for semimodule.

Definition 18. An R-semimodule B is said to be
principally self-generator if for every element
be B, there exists an epimorphism a:B—>Rb, and
then there exists b'e B such that a(b") = b.
Examples 19.

(i) Every cyclic semimodule is principally self-
generator.

(ii) The semiring R is principally self-generator R-
semimodule.

(iii) Every regular semimodule is principally self-
generator.

(iv) Every Z-regular semimodule is principally self-
generator.

Proof: Clear. //l/

Remarks 20. Let R be a semiring, A is a subset of
R, X is a subset of the left semimodule R (R over
itself), ae R and xeX, then:

(i) I (A)={xe rR |xa=0, Vae A}.

(i) I(@)=1 ({a})={xerR |xa=0}.

(iii) r(X)={te R| xt=0, vxeX }.

(iv) r(x)=r({x})={t € R| xt=0}.

In the following some properties for P-injective
semimodule which introduced in(9) for modules.
We dealt those properties by adding specific
conditions for semimodule.

Proposition. 21. Let R be a semiring such that RR
is subtractive, semisubtractive and cancellative.
Then, the following conditions are equivalent:

(i) rR is P-injective as R-semimodule.

(i) r(I(@)) =aRr forall ain R.

(iii) I(b)<S l(a)where a, b in R, implies aR < bR.
(iv) r[RbNIl(a)] = r(b) + aR forall a, bin R. (we
will add the conditions r(b)+aR is subtractive
subsemimodule of gR and gR is semisubtractive
semimodule).

Proof: (i)=(ii) aR < r(l(a)), for x€ aR = x =
at for some te R and so sa = 0= sx = s(at) =
(sa)t = 0t = 0 that is x€ r(l(a)). Now assume rR
is p-injective. To prove r(l(a))S aR. Let xe
r(l(a)), this means sa=0= sx = 0 for each s € R.
So, the map Ra— rR by sar sx, s€e R is well
defined homomorphism which can be extended to a
homomorphism, say f: R — grR But x=1x=f(1la)=
f(al)=af(1)e aR. Therefor r(I(a))< aR.
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(i)=(iii) I(b)< I(a) means [sh=0 implies sa=0], so
ae r(l(b)) and r(l(b))=bR (by(ii)), hence aR <
bR.

(iii)=(i) Let a:Ra —=rR be an R-homomorphism
and let a(a) = b then it is clear that I(a)< L(b), soO
by (iii) we have bR S aR, let b = at. Define
a':R —rR, by x+— xt for each xe R then a'(a) =
at = b = a(a), that is ' is an extension of a togR.
Therefore rR is p-injective.

(iv)=(ii) r[Rbnl(a)] = r(b) + aR for all a, b in
R. If b=1 then Rb= R, Rbn I(a) = l(a) and r(b)=0
so we get, r(l(a))=aR.

(ili) = (iv)Let x e r[Rb N l(a)], then I(ba)c
l(bx) [t € l(ba) = t(ba) = 0= (th)a=0=
the Rbnl(a) = (th)x = 0 = t(bx) = 0 that is
te I(bx)] then, by (iii), it follows bxR < baR and
there is s in R such that bx=bas. Now, since rR is
semisubtractive there is two cases:

Casel there exists h in gR such that x=h+ as, then
bx= bh+ bas= bh = 0 (by cancellative) = h €
r(b), that is x€ r(b) + aR.

Case? there exists h in gR such that x +h=as, then
bx+ bh=bas= bh =0 (by cancellative)= h €
r(b), that is xtheaRcr(b)+aRandhe
r(b) € r(b) + aR,

butr(b) + aR is subtractive implies x € r(b) +
aR. Therefore r[RbNl(a)] € r(b) + aR. To
prove the opposite inclusion, since r(Rb)c
r[RbNl(a)] and r(l(a)< r[RbNI(a)], then
r(Rb)+r(l(a))< r[RbNi(a)]. But be Rb = r(b) <
r(Rb), aR < r(l(a)), then r(b)+aR < r(Rb) +
r(l(a)) € r[RbNL(@)]. /I

Proposition 22. Let B be P.Q.-injective
semimodule with S = Endx(B) and let m, n € B.

(i) If there is an epimorphism from Rm onto Rn,
then there is a monomorphism from nS into msS.
(ii) If there is a monomorphism from Rm into Rn,
then there is an epimorphism from »S onto mS.

(iii) If Rm= Rn, then nS=msS.

Proof: Assume that g:Rm—>Rn is any R-
epiomorphism, write B(m) =an where ae€
R and define 6:nS—>B by 6&[no] = a(no) =
(an)o = o[B(m)] for all o €S. If B’ € S extends
B, then §(no) = [a[B(m)] = o[(B'i(m))] =
a[B'(m)] € mS, SO 6 :nS—»ms§ is  §-
homomorphism.

Now to prove (i), if £ is an epimorphism, then n =
B(bm) such that b € R. Given a(n) € kerd, thus
o(n) = o[B(bm)] = b[eB(m)] = b6(no) = b0 =
0. Hence § is a monomorphism and »S embeds in
mS.

(if) If B is monomorphism, then anng(fm) S
anng(m), in fact, let te anng(Bm),then
tf(m) = B(tm) =0, so tme ker(B), but B is
monomorphism then tm = 0, hence t € anng(m).
So by theorem (3.16(iii)) mS < B(m)S, but
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B(m)$ < m3S B(m)s. So
mS=L(m)S and 6(nS) = mS. That is &:nS - mS
IS an epimorphism.

(iii) Follows immediately from (i) and (ii). ////
Corollary 23. Let R be a P-injective semiring and
a, b € R, then

(i) If there is an epimorphism Rb— Ra, then there
is @ monomorphism Ra — Rb.

(ii) If there is a monomorphism Rb — Ra, then
Rb is a homomorphic image of Ra.

Proof: Since End(rR) = Rand by proposition
(22). 1

Definition 24 (14). A nonzero R-subsemimodule U
of B is called essential (large) and write U <, B, if
Un L # 0 for every nonzero subsemimodule L of
B.

Example 25. Zq as N-semimodule. If K = {0, 2,
4}, then K<, Zg. But if L = {0, 2}< Z,, then
L<.Z,.

Definition 26 (2). Let B be an R-semimodule, the
sum of all simple subsemimodules of B is called the
socle of B, equal to the intersection of all essential
subsemimodules of B, it is denoted by Soc(B). If B
has no simple subsemimodule then we put Soc(B) =
0. If Soc(B) = B, then B is called semi-simple
semimodule.

Remark 27 (15). An R-semimodule is said to be
semi-simple if it is a direct sum of its simple
subsemimodule in B.

Example 28. Z4 as N-semimodule is semi-simple.
Soc(Ze)= {0, 2, 4}+ {0, 3}. Since {0, 2, 4}, {0, 3}
have no proper subsemimodules except {0}, {0, 2,
4}, and {0}, {0, 3}, respectively, then Soc(Z) =
Z¢. But Soc(Z,) ={0, 2}. Therefore Z, as N-
semimodule is not semi-simple.

In (1) the relationship between the socle of B and
P.Q.-injective modules was given. In the following,
we give analogous to these properties for
semimodule.

Proposition 29. Let Bbe
semimodule with S = Endz(B).
(i) If U is a simple subsemimodule of B, and U;
subsemimodule of B which is isomorphic to U,
then U,€ U S.

(ii) If Rb is a simple R-semimodule, be B, then Sb
is a simple S-semimodule.

(iii) Soc (RB)<Soc (Bs).

a P.Q.-injective

Proof: (i) Lety: U— U; be an R-isomorphism
where U;< B. If U = Ru, then [(u) = lyp(u), so

u § = P(u)sS, by Proposition(17) (iii) we have
YueuSc US. If Y isan extension of Y to S,
then

Ui=R ) =R P (W) S US.
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(if) To prove S b is simple, it is enough to prove
that any nonzero element of § has an inverse
(multiplication). Consider the following diagram:

A(Rb) ——> B

We may assume A # 0. Since Rb is simple,
then A:Rb—>A(Rb) is an isomorphism, let
0: A(Rb) —»>Rb be the inverse of 4, i', i are inclusion
maps from Rb, A(Rb) to B respectively. Since B is
P.Q.-injective semimodule, then there exists 8’ € S
that extends 6. Now @'[A(b)] = 6'[i(A(D))] =
i'[6(A(B))] = 6[A(b)] = (6A)(b) = b. Hence
b e SA(b) = Sb € SA(b). That is SA(b)= Sb.
Hence Sb is simple. ( SA(b) S Sb always holds).
(iii)This follows from (ii). ////

In (1) the notion of kasch module was
introduced, where an R-module B is called kasch if
every simple sub-quotient of B can be embedded
in B, similarly, we introduce this concept for
semimodule as follows, The semimodule B is
called a kasch semimodule if every simple sub-
guotient of B embeds in B.i.e., there is a
monomorphism from /Y into B,where {/ and Y are
subsemimodules of B with Y is maximal
subsemimodule of U.

Lemma 30. Let B be a P.Q.-injective semimodule
which is kasch semimodule. if U is maximal
subsemimodule of R, then r(U)+0 if and only if
[(m)< U for some 0+ m € B. In particular, r(0) is
a simple as right S-simimodule. Where ()= { b
€ B | ub=0, Yue U }and [(m)={te R| tm= 0}.

Proof: If 0 #me r(V), then Y € I(m) # R, so U =
[(m) by maximality of U. Conversely, if [(m) € U
where m=0, note that Rm = U m (by maximality of
U). Choose Uim maximal subsemimodule of ﬁ_::' As

B is kasch semimodule, let a: RTm — B be a

monomorphism and write a(m+ X) = m', then U
m' = U a(m +X) = a(Um +X) = a(X) = 0, that is
m'e r(V) and r({)=0, finally, let 0 = m" € r({),
then U< [(m"), whence U = [(m"), sinceBis a
P.Q.-injective by Proposition (3. 16(ii)) then m"S
=r(l(m") = r(U). This shows that () is simple as
a right S-semimodule. ////
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Proposition 31. Let B be a P.Q.-injective, kasch
semimodule with S = Endg (B), then
(1) Soc(rB) = Soc(Bs )
(i) Soc(Bs) <. Bg
Proof: (i) We have Soc(zrB)
Proposition(29(iii) )
To show that Soc(Bs) SSoc(zB), let mS be simple,
me B, and let [(m) € U is maximal subsemimodule
of RR. by Lemma (30), 0 # (V) € r(I(m) = mS, so
mS = r(U) by the simplicity of mS. Thus U< I(r(V)
= I(mS) =1 (m) # R. Since U is maximal, [(m) = U,
whence Rm = R/ U is simple. Then Soc(Bs)
CSoc(rB).
(i) let 0 #me B. If I(m)<S U is maximal
subsemimodule of R, then () < r(l (m) = mS,
by Proposition(17(ii)). As r(U) is simple
Lemma(30) and r({))#0, then Soc(Bs) <. Bs. /I
Proposition 32. Let Bbe a P.Q.-injective
semimodule with S = End¢(B), and let mg, my, ...
m, be elements of B.
(i) If mSD ...dm,,S is a direct sum, then any R-
homomorphism A:Rm;® .. ®Rm,—»B has an
extension in S.
@i Rm@®..HRm, is a direct sum,
(mgt...+my) S= myS+...+m,S.
Proof: (i) Let A; and S denote the restrictions of A
to Rm;and R(my+...+m,) respectively and let A;'and
B’ extend A;and B to B. Then Y,;B'(m;) =
B'(Eimy) = AZim;) = X Amy) = X A'(my).
Since @&m;S is a direct, we obtain B'(m;) =
A'(m;), so B’ extends A.
(i) Define A R(my + -+ m,)—> B
by A;[r(my + ---+m,,) = rm; for all re R. Then
A; is well defined. Since B is P.Q.-injective
semimodule, then there exists A’; € S that extends
Ay, hence  my = 4,(Xmy) = A4[i(Eimy)] =
A'(Zimi) € (Zlml)S and it follows that ZimiS c
(Xim;)S. The reverse inclusion always holds.  ////
To show the next result we need the following
definition.
Definition 33(8). A subsemimodule K of R-
semimodule B is called fully invariant if for each
endomorphism f: B—B, then f(K)< K.
Example 34. Every subsemimodule of Zas Z-
semimodule is invariant.
Let B=Z and K= nZ,  where
€ Z and let f: B—>B, then f{(nZ) = nf(Z) < nZ.
Proposition 35. Let B be a P.Q.-injective
semimodule with S = Endx(B), and let A, By, B,
..., By be fully invariant subsemimodules of B. If
B:®...®B, is a direct sum of B, then
AN(B;® ....®B,)=(ANB)® ... B(ANB,).
Proof: It is known and easy to check that @;(4 N
B) € An (&;B)).

c

Soc(Bs) by

b

then

n
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"ORb— » B

Ty /
Rby, , "
#'/
B
Let a = Y;beAN[®;B;] and let

Ty @ Rb; — Rb;, be the projection map and i, 'i
are inclusion maps from @ ,Rb; and Rb, to B
respectively. Since @b;Sis a direct sum, because
each B; is invariant, then by Proposition (32(i)) each
M, has an extension 7'y in S, i.e., 7'k li(a)] =
i'[r,(a)]. Since A is fully invariant, then ', (a) =
n'k[i(a)] = i'[nk(a)] = nk(a) = bk € Aan for

each kwherea € @;(ANBy).
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