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Abstract: 
      In this work, the notion of principally quasi- injective semimodule is introduced, discussing the 

conditions needed to get properties and characterizations similar or related to the case in modules. 

      Let ℬ be an ℛ-semimodule with endomorphism semiring Ș. The semimodule ℬ is called principally 

quasi-injective, if every ℛ -homomorphism from any cyclic subsemimodule of ℬ to ℬ can be extended to an 

endomorphism of ℬ.  
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Introduction: 
The study of semimodules over semirings 

has a long history where the construction of 

semirings is useful generalizations of rings. 

Semirings are moved from rings but simultaneously 

there are important differences of them. A semiring 

is a nonempty set ℛ together with two operations, 

addition and multiplication such that  

(i) addition and multiplication are associative,(ii) 

addition is commutative,(iii) the distribution law 

holds, that is, if r, s, t ∈ ℛ then r(s + t) = r s + r t 

and (r + s)t = r t+ s t, (iv) there is an additive 

identity element(denoted 0) and a multiplicative 

identity element(denoted l), (v)these two operations 

are associative, ℛ is commutative if the second 

operation is commutative. For instance the set of 

natural number ℕ is a commutative semiring under 

usual addition and multiplication, but it is not ring. 

A semimodule ℬ over semiring ℛ is defined 

similarly in module over ring. A subsemimodule Ų 

of an ℛ-semimodule ℬ is a nonempty subset of ℬ, if 

b, b'∈Ų and t ∈ ℛ, then b+b'∈Ų and t b ∈Ų, This 

means Ų itself is an ℛ-semimodule. An ℛ-

semimodule 𝑁 is called (ℬ-injective), if for any 

subsemimodule Ų of ℬ, any homomorphism from Ų 

into N can be extended to an  ℛ-homomorphism 

from ℬ  to N. And N is injective if it is injective 

relative to every ℛ-semimodule.  It is quasi-

injective semimodule if it is N-injective. 

       In the present work, we discuss new object ״ 

principally quasi-injectivity -for a unitary left ℛ ״ 

semimodule ℬ over a commutative semiring with 

identity.  
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Some remarks that needed in this work. 

were added. Nicholson, Park and Yousif (1) were 

studied principally quasi-injective modules, where 

ℬ is called principally quasi-injective module if 

each ℛ-homomorphism from a principal 

submodule of ℬ to ℬ can be extended to an 

endomorphism of ℬ,  an analogous, that concept 

for semimodules was introduced, studied the 

relationship between it and endomorphisms 

semiring. Further we examined their relations with 

other concepts like, principally- injective, self- 

generators, regular, Z-regular semimodules. Before 

that we added some remarks which we need in our 

work. Also we gave some characterizations of 

principally quasi-injective semimodules.    

This paper is organized as follows  

- In section 2: we discuss some definitions, 

properties and remarks that lead to the main results. 

- In section 3: we study principally quasi-injective 

semimodules and other related concepts with some 

properties about those concepts. 

Preliminaries 

     In this section some definitions were 

demonstrated, properties and remarks that derive   

the main results. 

Definition 1 (2). A nonempty subset Į of a semiring 

ℛ is a right (resp. left) ideal of ℛ if for s, s' ∈ Įand t 

∈ ℛ then s+s' ∈ Į and s t (resp. ts)∈ Į . Į is (two- 

sided) ideal of ℛ if it is both a left and a right ideal 

of ℛ. 

    The concept principal ideal in commutative 

semiring with an identity element can be defined on 

the similar as in commutative ring with an identity 

element. (3) 

Definition 2.  Let ℛ be a semiring, then for any 

a ∈  ℛ, 
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ℛa = {x: x =ta, for some t ∈ ℛ} is left ideal of ℛ 

called the principal left ideal generated by a.              

Definition 3 (2). Let ℛ be a semiring. A left ℛ-

semimodule is a commutative monoid (ℬ, +) which 

has a zero element, together with a mapping ℛ × ℬ 

→ ℬ (sending  (s, b) to sb ) such that the following  

conditions hold ∀ s, t of ℛ and  ∀b, b' of ℬ: 

 (i) (s t) b = s (t
 
b) 

(ii) s (b + b
′
 ) = s b + s b

′ 

(iii) (s + t ) b =s b + t b 

(iv) s 0ℬ =0ℬ = 0ℛb 

     If the condition 1 b = b, for all b in ℬ holds then 

the semimodule ℬ is called unitary.         

Definition 4 (2). A nonempty subset Ų of a left ℛ-

semimodule ℬ is called subsemimodule of ℬ if Ų 

is closed under addition and scalar multiplication, 

and denoted by Ų≤   ℬ. 

Examples 5. 
(i) Every semiring over itself is a semimodule. 

(ii) let ℛ=(ℤ+
, +, .) where ℤ+

 is a positive integers 

and a'+a''= max{a', a''}, a'.a'' = min{a', a''}, ∀a', 

a'' ∈  ℤ+
 

 let ℬ be a left ℛ- semimodule over itself, the 

proper subsemimodules of ℬ are of the form  

(Kn, +, .) = {1, 2, …,n}⊆ ℤ+
, for each n. 

(iii) Let ℬ =ℤ8 be an ℛ- semimodule, where ℛ is the 

semiring ℤ8, the proper subsemimodules of ℬ are 

{ 0̅}, {0̅ , 4̅}, {0̅, 2̅, 4̅, 6̅} also ℤ6 as ℤ+-semimodule 

have proper subsemimodules {0̅}, {0̅ , 3̅}, {0̅ , 2̅, 4̅}. 

Definition 6 (2). A subsemimodule Ų of ℬ is called 

a subtractive  subsemimodule, if for each b, b'∈ ℬ, 

that b + b', b ∈ Ų leads to b'∈Ų.  It is clear that {0} 

and ℬ are subtractive subsemimodules of ℬ. A 

semimodule ℬ is called subtractive semimodule if it 

has only subtractive subsemimodules. 

      In Example (5(ii)) Kn is subtractive 

subsemimodule of ℬ. since for any element x ∈Kn 

and z ∈  ℤ+
 such that x+z = max{x, z}∈Kn implies 

that z ∈Kn. 

Definition 7 (4). A semimodule ℬ is called a 

semisubtractive, if for any b, b'∈ ℬ there is always 

some h∈ ℬ satisfying b+h =b' or some k ∈ ℬ 

satisfying b'+k = b. 

Definition 8 (2). An element a' of a left ℛ-

semimodule ℬ is cancellable if a'+ n=a'+ k implies 

that n=k. The ℛ-semimodule ℬ is cancellative if 

and only if every element of ℬ is cancellable.  

Definition 9 (5). An ℛ-semimodule ℬ is said to be 

a direct sum of subsemimodules Ų1, Ų2,…, Ųk of  

ℬ, if each b∈ ℬ can be uniquely written as 

b=u1+u2+…+ui where ui ∈Ųi, 1≤ 𝑖 ≤ 𝑘. It is 

denoted by 

 ℬ =Ų1⨁ Ų2⨁…⨁Ųk. And Ųi is called a direct 

summand of ℬ. 

     It is known that if a module ℬ is a direct sum of 

submodules Ų and Ų1, then ℬ= Ų ⨁ Ų1 if and only 

if  

ℬ = Ų + Ų1 and Ų∩ Ų1={0}  This is not true, in 

general for semimodule. We will prove this 

property under certain conditions on a semimodule.  

     The following remark proves the same property.  

Remark 10. let ℬ be a cancellative semisubtractive 

ℛ- semimodule and each subsemimodule of it is 

subtractive, then ℬ = Ų ⨁ Ų1 if and only if ℬ = Ų 

+ Ų1 and  Ų ∩ Ų1 = {0}. 

Proof: (⟹) Assume that ℬ = Ų ⨁ Ų1 we must to 

prove that ℬ = Ų + Ų1 and  Ų ∩ Ų1 = {0}. 

If ℬ = Ų ⨁ Ų1 this means, for each b∈ ℬ ⟹ b= 

u+u', u ∈ Ų, u'∈Ų1⟹ ℬ =Ų+Ų1 

If b∈Ų∩Ų1   ⟹ (𝑏 = 𝑏 + 0) ∈Ų and( b = 0+b )  ∈
  Ų1⟹ b=0 and 0 = b (by uniqueness). 

(⟸) Asssume ℬ = Ų + Ų1 and Ų ∩ Ų1 = {0}. We 

will prove ℬ = Ų ⨁ Ų1. 

Suppose that b = u+ u'= v+ v'    where u, v ∈ Ų, u', 

v'∈ Ų1 Since ℬ is semisubtractive, then there is h in 

ℬ and there is two cases: 

Case1 u=h+ v (since Ų is subtractive, then h ∈ Ų) 

⟹ ℎ + 𝑣 + 𝑢′ = 𝑣 + 𝑣′(by cancellative) ⟹ 

ℎ + 𝑢′ = 𝑣′. But Ų1 is subtractive subsemimodule 

of ℬ, then h∈ Ų1. We have Ų ∩ Ų1={0} which 

implies h=0 and hence u' = v'. 

case2 u+ h=v (Ų is subtractive, then h∈ Ų) ⟹ 𝑢 +
𝑢′ = 𝑢 + ℎ + 𝑣′(by cancillative) ⟹ 𝑢′ = ℎ + 𝑣′ ∈ 

Ų1(by subtractive), then h∈ Ų1. We have Ų ∩ Ų1 

= {0} implies h=0 and hence u'=v'. 

Similarly, we show that u=v. Therefor the 

representation is unique.     //// 

Definition 11 (4). Let ℬ be a left ℛ-semimodule 

and b∈ ℬ, the left annihilator of b in ℛ is defined 

by 𝑎𝑛𝑛ℛ (b)= {𝑡 ∈ ℛ |𝑡𝑏 = 0}, it is clear that 𝑎𝑛𝑛ℛ 

(b) is a left ideal of ℛ. Also if Ų subsemimodule of 

ℬ, then 𝑎𝑛𝑛ℛ(Ų) ={ 𝑡 ∈ ℛ| 𝑡𝑢 = 0, ∀u∈Ų}. 

Definition 12 (5). If ℛ is a semiring and ℬ, N are 

left ℛ-semimodules, then a map  𝜓: ℬ → N is 

called a homomorphism of ℛ-semimodules, if : 

(i) 𝜓(b + b') = 𝜓(b) + 𝜓(b' ) 

(ii) 𝜓(t b) = t 𝜓(b), for all b ,b' ∈ ℬ and t ∈ ℛ. 

    The set of ℛ-homomorphisms of ℬ into N is 

denoted by Hom (ℬ, N). A homomorphism 𝜓 is 

called an epimorphism if its onto, it is called a 

monomorphism if 𝜓 is one-one and it is 

isomorphism if 𝜓 is one-one and onto. 

Remarks 13 (4(. 

For a homomorphism of ℛ-semimodules 𝜓: ℬ → N 

we define 

(i) ker (𝜓) = { b ∈  ℬ | 𝜓 (b) = 0 } 

(ii) 𝜓 (ℬ) ={ 𝜓 (b)| b∈  ℬ } 

(iii) Im ( 𝜓) = {n ∈N | n + 𝜓 (b) = 𝜓 (b′) for some b, 

b′ ∈ ℬ} 
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    It is obvious that ker(𝜓 ) is a subtractive 

subsemimodule of ℬ, Im(𝜓) is a subtractive 

subsemimodule of N and 𝜓 (ℬ) is a subsemimodule 

of N. In module theory 𝜓 (ℬ) = Im ( 𝜓), in 

semimodule theory is not true always. It is clear that 

𝜓(ℬ)⊆ Im(𝜓), the equality is satisfied if 𝜓(ℬ)is 

subtractive subsemimodule of N. 

   It is known that in module theory, a homomorphism 

𝜓: ℬ N of ℛ-modules is monomorphism (one-one) 

if and only if ker (𝜓) = 0. But in semimodule theory 

that is not true always. For instance, see (6, p. 176).  

   The following remark explains the relationship 

between monomorphism and kernel of ℛ-

semimodules. 

Remark 14. Let 𝜓: ℬ N be a homomorphism of 

ℛ-semimodules, then: 

(i) If 𝜓 is a monomorphism, then ker (𝜓) = 0.     

(ii) If ker(𝜓 ) = 0, ℬ is semisubtractive and N is 

cancellative, then 𝜓 is a monomorphism. 

Proof: (i) Let b be any element of ℬ, then 0 = 0 

𝜓(b)= 𝜓 (0b) = 𝜓 (0). Hence 0 ∈ 𝑘𝑒𝑟 𝜓.    
 If  𝜓(b' ) = 0, then 𝜓(b' ) = 𝜓(0). But 𝜓 is one to 

one implies b' = 0. Therefor ker(𝜓) ={0}.  

(ii) Let 𝜓(b1) = 𝜓(b2) since ℬ is semisubtractive 

semimodule, then there is h in ℬ such that b1+h=b2 

or some k in ℬ satisfying b2+k=b1, we have two 

cases 

Case1 b2= b1+h ⟹  𝜓 (b2) = 𝜓 (b1) + 𝜓 (h) 

⟹ 𝜓(ℎ) = 0  (by cancellative) since ker (𝜓) = 0, 

then h = 0 this implies b1= b2. 

 Case 2 b1 = b2+k ⟹ 𝜓(𝑏1) = 𝜓(𝑏2) + 𝜓(𝑘) 

⟹ 𝜓(𝑘) = 0 (by cancellative), since ker(𝜓)=0, 

then k = 0, hence b2= b1. Therefor 𝜓 is a 

monomorphism.     //// 

Definition 15(7). Let {ℬ𝑖}𝑖∈𝐼 be a family of left ℛ-

semimodules then their Cartesian product ∏ ℬ𝑖𝑖∈𝐼  

also has the structure of a left ℛ-semimodule under 

componentwise addition and scalar multiplication.  

It is called the direct product of { ℬi}. By the direct 

sum of {ℬ𝑖: 𝑖 ∈ 𝐼} denoted by ⨁𝑖∈𝐼ℬ𝑖  we mean the 

subset of ∏ ℬ𝑖∈𝐼 𝑖
 consisting of all (mi) ∈ ∏ ℬ𝑖𝑖∈𝐼  for 

which only finite number of mi ≠ 0. Then ⨁𝑖∈𝐼 ℬi is 

a left ℛ-subsemimodule of ∏ ℬ𝑖𝑖∈𝐼 .  
Definition 16 (8). A left ℛ-semimodule ℬ is called 

cyclic if ℬ can be generated by a single element, 

that is ℬ = 〈𝑏〉 = ℛb = {t b |t ∈ ℛ}for some b∈  ℬ  

Definition 17 (7). An ℛ-semimodule E is ℬ-

injective (E is injective relative to ℬ ) if, for each 

subsemimodule N of ℬ, any ℛ-homomorphism 

from N to E can be extended to an ℛ-

homomorphism from ℬ to E. (where i is the 

inclusion map) 

 

 

 

 

 

 

 

 

 

 

 

 

     A left ℛ-semimodule E is injective if it is 

injective relative to every left ℛ-semimodule. 

Proposition 18 (7). Let (𝐸𝛼)𝛼∈Ω be an indexed set 

of a left ℛ-semimodules then ∏ 𝐸𝛼Ω  is injective if 

and only if each 𝐸𝛼is injective for each 𝛼.  
Definition 19 (9). A nonzero ℛ-semimodule ℬ is 

called simple if ℬ has no nonzero proper ℛ-

subsemimodule. 

Remark 20 (9). If ℬ is simple, then every 

semimodule E is injective relative to ℬ.                             

Remark 21 (7). A semimodule ℬ is quasi -

injective if it is ℬ-injective. As the following 

diagram. i.e., there exist h such that h 𝜓 =g (with 𝜓 

is a monomorphism). 

 

 

 

 

 

 

 

 

 

     To the best of our knowledge, the following 

proposition is not found in the literatures, we will 

give its proof for semimodules similar to in 

modules.  

Proposition 22. A direct summand of quasi-

injective semimodule is quasi-injective. 

Proof: Let C = C′ ⨁C′′ be quasi-injective 

semimodule and let iA and ic′ be the inclusion maps 

of A into C′ and C' into C respectively. Let 𝜋𝑐′:C 

C′ be the projection map. Consider the following 

diagram. 

 

 

 

 

 

 

 

 

 

 

 

since C is quasi-injective semimodule, then there 

exists a homomorphism 𝛽:CC such that 

𝛽𝑖𝑐′𝑖𝐴=𝑖𝑐′f 

N ℬ i 

E 

 

h 

𝜓 ℬ K 

ℬ 
 

g 

C 

C 
𝑖𝑐′ 𝑖𝐴 

f 

𝑖𝐶′ 

C′ 

 C′  A 

′𝛽  

 

𝛽 

𝜋𝐶′ 

h 

𝜓 ℬ K 

ℬ 
 

g 
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take ′𝛽 = 𝜋𝑐′𝛽𝑖𝑐′ 

then  ′𝛽 𝑖𝐴= 𝜋𝑐′𝛽𝑖𝑐′𝑖𝐴= 𝜋𝐶′𝑖𝐶′f = 1𝑐′f = f 

this mean, ′𝛽 extends to an endomorphism of C'.   //// 

Remark 23. It is clear that every injective 

semimodule is quasi-injective.     

                            

Principally Quasi-Injective Semimodules 
    In this section we extend this work by studying 

principally quasi-injective semimodules, their 

endomorphism semirings, also we discuss some 

concepts which have relation to this notion, Most of 

the results of this section are shown   (for modules) 

in (1) and (10). However, we discuss it for 

semimodule.  

    In (1) some results for injective modules were 

given. In the following, we state analogous to those 

results for semimodule.   

Definition 1. An ℛ-semimodule is called 

principally quasi-injective if each ℛ-

homomorphism from cyclic subsemimodule of ℬ to 

ℬ can be extended to an endomorphism of ℬ. In 

other words, the following diagram is commutative. 

i.e., hi= 𝜓. 

 

 

 

 

 

 

 

 

 

Note. We will use the notation P.Q.-injective for 

principally quasi-injective.  

Examples 2. 

(i)Every injective semimodule is P.Q.-injective . 

(ii)Every semi-simple semimodule is P.Q.-injective 

and hence every simple semimodule is P.Q.-

injective. 

(iii) ℤ2 as  ℕ-semimodule is P.Q.-injective but not 

not injective. 

Proposition 3. Every direct summand of P.Q.-

injective semimodule is again P.Q.-injective.                                                                                                                      

proof: Similar to Proposition (22).      //// 

    In (10) principally injective module was 

introduced as follows: an ℛ-module ℬ is called 

principally injective (p-injective) if each ℛ-

homomorphism  𝛼 : ℛa ℬ such that a ∈ ℛ, 

extends to ℛ, i.e., the following diagram is 

commutative, 𝛼′i = 𝛼. Where i is inclusion map. 

 

 

 

 

 

 

 
 
 

 

 

  

 

 

      For instance ℤ as ℤ-semimodule is not p-

injective, let 𝑓:ℤ2ℤ  be ℤ-homomorphism such 

that 2x ⟼ 3𝑥 can not be extended to g:ℤℤ . (g 

from ℛ = ℤ to ℬ = ℤ)since, if g(1) = 3n then g(2) = 

6n but f(2) =3 ⟹ 𝑓(2) ≠ g(2) this contradiction, 

then g is not an extension of f, so ℤ as a ℤ -
semimodule is not p-injective.        

        In (7) Ahsan, Shabir and Liu introduced P-

injective semimodule as follows. 

Definition  4 (7). An ℛ-semimodule ℬ is called P-

injective if for any principal ideal Ų of ℛ and each 

ℛ-homomorphism f: Ų ℬ, there exists an ℛ-

homomorphism g: ℛ ℬ, which extends f.   

Example 5. ℚ as a ℤ semimodule is P-injective. 

Proof: Let I = ℤ𝑛 where n∈ ℤ (principal ideal of ℤ) 

and f:Iℚ be ℤ- homomorphism  such that f(n) = q 

where, n∈ 𝐼, q∈ ℚ, define a ℤ-homomorphism 

g:ℤℚ  

by g(1) = 
𝑞

𝑛
 , consider the following diagram: 

  

 

 

 

 

 

 

 

 

Then g(kn) = kn g(1) =(𝑘𝑛) 
𝑞

𝑛
 = 𝑘𝑞 = 𝑘𝑓(𝑛) =

𝑓(𝑘𝑛). 

      The concept "regular module" is defined by 

several forms see (11), (12) and (13). In this work 

we will choose the certain condition to define a 

regular semimodule. Also we investigate relation 

this concept with P.Q-injective semimodule where 

every regular semimodule is P.Q-injective. 

Examples 6. 

(i)It is clear that every injective semimodule is 

principally injective. 

(ii)  Every regular semimodule is P.Q.-injective 

semimodule. In fact, if ℛx ≤ ℬ, then ℛx is a direct 

summand of ℬ, there exists B ≤  ℬ such that ℬ = 

ℛx ⨁ B. Now let 𝛼: ℛ𝑥 ℬ be a homomorphism. 

Define 𝛼′: ℛx ⨁ 𝐵 ℛ𝑥 ⨁ 𝐵 by 𝛼′ (tx, y) = 𝛼 (𝑡𝑥); 
it is clear that 𝛼′ is an extension of  𝛼.  
     In(13 ), regular module was defined, where  ℬ is 

called regular if every cyclic submodule of ℬ is a 

direct summand of ℬ. 

ℛm 
i 

𝜓 
h 

ℬ 

ℬ 

ℛ𝑎 i 

𝛼 
α ′ 

ℛ 

ℬ 

I 
h 

𝑓 
g 

ℤ 

ℚ 
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Definition  7 (8). A semimodule ℬ is called regular 

if every cyclic subsemimodule of ℬ is a direct 

summand. 

Example  8. ℤ𝟔 as ℕ-semimodule is regular. 

       In (13) Z-regular module appeared, where 

an ℛ-module ℬ is called Z-regular if every cyclic 

submodule of ℬ is projective and direct summand 

of ℬ. Also in (1) principally self-generator module 

was studied, analogous concepts for semimodule 

are introduced. Before we define these concepts we 

need to define  a projective semimodule and give its 

characteristic.  

Definition  9 (6). A left ℛ-semimodule P is said to 

be ℬ-projective if for every an epimorphism  

 𝜙: ℬ → N and for every homomorphism 𝛾:P→ N 

there is a homomorphism  ′𝛾 : P→ ℬ such that the 

diagram  commutes.  

 

 

 

 

 

 

 

 

   A semimodule P is projective if it is projective 

relative to every left ℛ-semimodule. 

Example 10. Every semiring over itself is 

projective. 

proposition 11 (6). Let 𝑃𝜄∈Γ be an indexed set of 

left ℛ-semimodules , then ⨁𝑃𝜄 is projective if and 

only if each 𝑃𝜄 is projective for each 𝜄. 
Definition  12. A semimodule ℬ is called Z-regular 

if every cyclic subsemimodule of ℬ is projective 

and direct summand. 

Remark 13. Note that any Z -regular semimodule is 

regular, hence it is P.Q.-injective by Examples 

(6(ii)).  

Remark 14(8). For any ℛ-semimodule ℬ, 𝐸𝑛𝑑ℛ(ℬ) 

is the set Ș of endomorphisms of ℬ, it is a semiring 

with respect to addition and multiplication defined 

as follows: ∀𝑓, g, h ∈End( ℬ),  f+ g =h where h(b) 

= f(b) +g(b) for all b∈ ℬ,  f∘g = h where h(b) = 

f(g(b)) for all b∈ ℬ. It easy to check that Ș is a 

semiring called the endomorphism semiring of ℬ .  

Remark  15. If ℬ is left ℛ-semimodule then ℬ can 

be made into a right Ș-semimodule as follows: 

define, Φ: ℬ × Ș ℬ by Φ(𝑏, 𝑓) = 𝑏𝑓, then  

(i) b( f1+f2) = bf1 +bf2 

(ii) (b +b' ) f = bf + b'f  where f,  f1,  f2 ∈Ș and b, 

b'∈  ℬ. 

 

Remarks  16. 

(i) 𝑎𝑛𝑛ℬ (t) = {b∈ ℬ|𝑡𝑏 = 0}. We will use the 

notation r(t)=𝑎𝑛𝑛ℬ (t), where t ∈ ℛ. 

(ii) bȘ ={bf | f ∈Ș} = {bf = f(b)| f ∈Ș} 

(iii)𝑎𝑛𝑛ℬ(𝑎𝑛𝑛ℛ(b))={x∈ ℬ |𝑡𝑥 = 0, ∀𝑡 ∈
𝑎𝑛𝑛ℛ(b)}={x∈ ℬ|𝑡𝑥 = 0 whenever 𝑡𝑏 = 0}.We 

will use the notation r (l (b))=𝑎𝑛𝑛ℬ (𝑎𝑛𝑛ℛ(b)) 

       In (1) some characterizations of  P.Q.-injective 

module were given. In the following, we state and 

prove analogous to these characterizations for 

semimodule. 

Proposition  17. Given a left  ℛ-semimodule with Ș 

= 𝐸𝑛𝑑ℛ(ℬ),   where ℬ  is cancellative, the 

following are equivalent: 

(i) ∀𝑚 ∈ ℬ, every ℛ-homomorphism ℛm ℬ can 

be extended to  an endomorphism in Ș, i.e., ℬ is 

P.Q.-injective semimodule. 

(ii) r(l (m)) = mȘ, ∀𝑚 ∈ ℬ. 
(iii) If l (m)⊆l(n) where m, n ∈ ℬ, then nȘ ⊆ 𝑚Ș. 

(iv) ∀𝑚 ∈ ℬ, if the ℛ-homomorphisms 

𝜆, 𝜃: ℛ𝑚 ℬ are given with 𝜃 is a monomorphism, 

then there exists 𝛾: ℬℬ such that 𝛾𝜃 = 𝜆,  i.e., the 

following diagram commutes: 

 

 

 

 

 

 

 

 

Proof:  (i)⟹ (ii) 

Let 𝜗(m) ∈ 𝑚Ș where 𝜗 ∈ Ș. If t m=0 then 0 = 𝜗(t 

m) = t 𝜗(m).This implies 𝜗(m)∈ r(l(m)) hence, mȘ⊆ 

r(l (m). To show the opposite inclusion, let n∈ 𝑟(l 

(m). Define 𝛾: ℛ𝑚ℬ by 𝛾(𝑡𝑚) = 𝑡𝑛 ∀𝑡 ∈ ℛ.  𝛾 is 

well-defined. 

By (i) 𝛾 extends to 𝛾′ ∈ Ș. Now n = 𝛾(𝑚) =

𝛾′𝑖(𝑚) = 𝛾′(𝑖(𝑚)) = 𝛾′(𝑚) ∈ 𝑚Ș. Hence r(l(m) 

⊆ 𝑚Ș. 

(ii)⟹ (iii) From (ii) nȘ = r(l(n), Since l(m)⊆l(n), 

then r (l (n)) ⊆ r (l(m)).Therefore nȘ=r(l(n)) ⊆  r 

(l(m))=mS, means nȘ⊆ 𝑚Ș. 

(iii)⟹ (iv)Since 𝜃 is monomorphism, we have 

l(𝜃(𝑚)) ⊆ l(𝜆(𝑚)), in fact, let t∈ l(𝜃(𝑚)) , then 

t𝜃(𝑚) = 𝜃(𝑡𝑚) = 0. Thus tm∈ ker 𝜃 hence tm = 0, 

so 𝜆(𝑡𝑚) = 𝑡𝜆(𝑚) = 0 which implies t∈ l(𝜆(𝑚)), 
so l(𝜃(𝑚)) ⊆ l(𝜆(𝑚)). By (iii) 𝜆(𝑚)Ș = 𝜃(𝑚)Ș. 

Then there exists 𝛾 ∈ Ș such that 𝜆(𝑚) = 𝛾𝜃(𝑚)) 

as required. 

(iv) ⟹(i) Take 𝜃: ℛ𝑚ℬ be the inclusion 

homomorphism in (iv), then there exists 𝛾: ℬℬ 

such that the following diagram is commutative. 

Hence 𝜆: ℛ𝑚ℬ extends to an endomorphism in Ș. 

This means proving(i).   //// 
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       In (1) principally self-generator module was 

given. In the following we give an analogous of that 

notion for semimodule. 

 Definition 18. An ℛ-semimodule ℬ is said to be 

principally self-generator if for every element 

b∈ ℬ, there exists an epimorphism 𝛼: ℬℛ𝑏, and 

then there exists b'∈ ℬ such that 𝛼(𝑏′) = 𝑏. 
Examples 19. 

(i) Every cyclic semimodule is principally self-

generator. 

(ii) The semiring ℛ is principally self-generator ℛ-

semimodule. 

(iii) Every regular semimodule is principally self-

generator. 

(iv) Every Z-regular semimodule is principally self-

generator.  

Proof: Clear.    ////                                                                                                                               

Remarks  20. Let ℛ be a semiring, A is a subset of 

ℛ, X is a subset of the left semimodule Rℛ (ℛ over 

itself), a∈ ℛ and x∈X, then: 

(i) l (A)={x∈ Rℛ |xa=0, ∀a∈ A}. 

(ii) l(a)= l ({a})={x∈ Rℛ |xa=0}.  

(iii) 𝑟(X)={t∈ ℛ| xt=0, ∀x∈X }. 

(iv) 𝑟(x)= 𝑟({x})={t ∈ ℛ| xt=0}.  

      In the following some properties for P-injective 

semimodule which introduced in(9) for modules. 

We dealt those properties by adding specific 

conditions for semimodule.  

Proposition.  21. Let ℛ be a semiring such that Rℛ 

is subtractive, semisubtractive and cancellative. 

Then, the following conditions are equivalent:  

(i) Rℛ is P-injective as ℛ-semimodule. 

(ii) r(l(a)) = aℛ for all a in ℛ. 
(iii) l(b)⊆ 𝑙(𝑎)where a, b in ℛ, implies aℛ ⊆ 𝑏ℛ. 

(iv) r[ℛb⋂𝑙(𝑎)] = 𝑟(𝑏) + 𝑎ℛ  for all a, b in ℛ. (we 

will add the conditions r(b)+aℛ is subtractive 

subsemimodule of Rℛ and Rℛ is semisubtractive 

semimodule). 

Proof: (i)⟹(ii) aℛ ⊆ 𝑟(𝑙(𝑎)), for x∈ 𝑎ℛ ⟹ 𝑥 =

𝑎𝑡 for some t∈ ℛ and so sa = 0⟹ 𝑠𝑥 = 𝑠(𝑎𝑡) =
(𝑠𝑎)𝑡 = 0𝑡 = 0 that is x∈ 𝑟(𝑙(𝑎)). Now assume Rℛ 

is p-injective. To prove r(l(a))⊆ 𝑎ℛ. Let x∈
𝑟(𝑙(𝑎)), this means sa=0⟹ 𝑠𝑥 = 0 for each s ∈ ℛ. 

So, the map ℛa→ Rℛ by sa ⟼ 𝑠𝑥, s∈ ℛ is well 

defined homomorphism which can be extended to a 

homomorphism, say f: ℛ ⟶ Rℛ But x=1x=f(1a)= 

f(a1)=af(1)∈ 𝑎ℛ. Therefor r(l(a))⊆ 𝑎ℛ. 

(ii)⟹(iii) l(b)⊆ 𝑙(𝑎) means [sb=0 implies sa=0], so 

a∈ 𝑟(𝑙(𝑏)) and r(l(b))=bℛ (by(ii)), hence aℛ ⊆
𝑏ℛ. 

(iii)⟹(i) Let 𝛼: ℛ𝑎 →Rℛ be an ℛ-homomorphism 

and let 𝛼(𝑎) = 𝑏 then it is clear that l(a)⊆ 𝑙(𝑏), so 

by (iii) we have bℛ ⊆ 𝑎ℛ, let b = at. Define 

𝛼′: ℛ → Rℛ, by x ⟼ 𝑥𝑡 for each x∈ ℛ then 𝛼′(𝑎) =
𝑎𝑡 = 𝑏 = 𝛼(𝑎), that is 𝛼′ is an extension of 𝛼 to Rℛ. 

Therefore Rℛ is p-injective. 

(iv)⇒(ii) 𝑟[ℛ𝑏 ∩ 𝑙(𝑎)] = 𝑟(𝑏) + 𝑎ℛ for all a, b in 

ℛ. If b=1 then ℛb= ℛ, ℛb∩ 𝑙(𝑎) = 𝑙(𝑎) and r(b)=0 

so we get, r(l(a))=aℛ. 

(iii) ⟹ (iv)Let 𝑥 ∈ 𝑟[ℛ𝑏 ∩ 𝑙(𝑎)], then l(ba)⊆
𝑙(𝑏𝑥) [𝑡 ∈ 𝑙(𝑏𝑎) ⟹ 𝑡(𝑏𝑎) = 0 ⟹ (𝑡𝑏)𝑎 = 0 ⟹
𝑡𝑏 ∈ ℛ𝑏 ∩ 𝑙(𝑎) ⟹ (𝑡𝑏)𝑥 = 0 ⟹ 𝑡(𝑏𝑥) = 0 that is 

t∈ 𝑙(𝑏𝑥)] then, by (iii), it follows bxℛ ⊆ 𝑏𝑎ℛ and 

there is s in ℛ such that bx=bas. Now, since Rℛ is 

semisubtractive there is two cases: 

Case1 there exists h in Rℛ such that x=h+ as,  then 

bx= bh+ bas⟹ 𝑏ℎ = 0 (by cancellative) ⟹ ℎ ∈
𝑟(𝑏), that is x∈ 𝑟(𝑏) + 𝑎ℛ.  

Case2 there exists h in RR such that x +h=as, then 

bx+ bh=bas ⟹ 𝑏ℎ = 0 (by cancellative)⟹ ℎ ∈
𝑟(𝑏), that is x+h ∈ 𝑎ℛ ⊆ 𝑟(𝑏) + 𝑎ℛ and ℎ ∈
𝑟(𝑏) ⊆ 𝑟(𝑏) + 𝑎ℛ,
but 𝑟(𝑏) + 𝑎ℛ is subtractive implies 𝑥 ∈ 𝑟(𝑏) +
𝑎ℛ. Therefore 𝑟[ℛ𝑏⋂𝑙(𝑎)] ⊆ 𝑟(𝑏) + 𝑎ℛ.  To 

prove the opposite inclusion, since r(ℛb)⊆
𝑟[ℛ𝑏⋂𝑙(𝑎)] and r(l(a)⊆ 𝑟[ℛ𝑏⋂𝑙(𝑎)], then 

r(ℛb)+r(l(a))⊆ 𝑟[ℛ𝑏⋂𝑙(𝑎)]. But b∈ ℛ𝑏 ⟹ 𝑟(𝑏) ⊆
𝑟(ℛ𝑏), aℛ ⊆ 𝑟(𝑙(𝑎)), then r(b)+aℛ ⊆ 𝑟(ℛ𝑏) +

𝑟(𝑙(𝑎)) ⊆ 𝑟[ℛ𝑏⋂𝑙(𝑎)].      //// 

Proposition 22. Let ℬ be P.Q.-injective 

semimodule with Ș = 𝐸𝑛𝑑ℛ(ℬ) and let m, n ∈ ℬ. 

(i) If  there is an epimorphism from ℛm onto ℛn, 

then  there is a monomorphism  from nȘ into mȘ. 

(ii) If there is a monomorphism from ℛm into ℛn, 

then  there is an epimorphism from nȘ onto mȘ. 

(iii) If ℛm≅ ℛn, then nȘ≅mȘ. 

Proof: Assume that 𝛽: ℛ𝑚ℛ𝑛 is any ℛ-

epiomorphism, write 𝛽(𝑚) = 𝑎𝑛 where a ∈
ℛ and define 𝛿: 𝑛Șℬ by 𝛿[𝑛𝜎] = 𝑎(𝑛𝜎) =
(𝑎𝑛)𝜎 = 𝜎[𝛽(𝑚)] for all 𝜎 ∈ Ș. If 𝛽′ ∈ Ș extends 

𝛽, then 𝛿(𝑛𝜎) = [𝜎[𝛽(𝑚)] = 𝜎[(𝛽′𝑖(𝑚))] =
𝜎[𝛽′(𝑚)] ∈ 𝑚Ș, so 𝛿: 𝑛Ș𝑚Ș is Ș-

homomorphism. 

 Now to prove (i), if 𝛽 is an epimorphism, then n = 

𝛽(𝑏𝑚) such that b ∈ ℛ. Given 𝜎(𝑛) ∈ 𝑘𝑒𝑟𝛿, thus 

𝜎(𝑛) = 𝜎[𝛽(𝑏𝑚)] = 𝑏[𝜎𝛽(𝑚)] = 𝑏𝛿(𝑛𝜎) = 𝑏0 =
0. Hence 𝛿 is a monomorphism and nȘ embeds in 

mȘ.  

 (ii) If 𝛽 is monomorphism, then 𝑎𝑛𝑛ℛ(𝛽𝑚) ⊆
 𝑎𝑛𝑛ℛ(m), in fact, let t ∈ 𝑎𝑛𝑛ℛ(𝛽𝑚), then 

 𝑡𝛽(𝑚) = 𝛽(𝑡𝑚) = 0,  so tm ∈ 𝑘𝑒𝑟(𝛽),  but 𝛽 is 

monomorphism then tm = 0, hence t ∈ 𝑎𝑛𝑛ℛ(𝑚).  
So by theorem (3.16(iii)) mȘ ⊆ 𝛽(𝑚)Ș,  but 

ℛ𝑚 θ 
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𝛽(𝑚)Ș ⊆ mȘ⊆ 𝛽(𝑚)Ș.  So 

mȘ=𝛽(𝑚)Ș and 𝛿(𝑛Ș) = 𝑚Ș. That is  𝛿: 𝑛Ș → 𝑚Ș 

is an epimorphism. 

(iii) Follows immediately from (i) and (ii).   //// 

Corollary  23. Let ℛ be a P-injective semiring and 

a, b ∈ ℛ, then 

(i) If  there is an epimorphism ℛb⟶ ℛ𝑎, then there 

is a monomorphism  ℛa ⟶ ℛb. 

(ii) If there is a monomorphism  ℛb ⟶ ℛa, then 

ℛb is a homomorphic image of ℛa. 

Proof: Since End(Rℛ)  ≅ ℛ and by proposition 

(22).      ////      

Definition  24 (14). A nonzero ℛ-subsemimodule Ų 

of ℬ is called essential (large) and write Ų ≤𝑒 ℬ,  if  

Ų ∩ 𝐿 ≠ 0 for every nonzero subsemimodule L of 

ℬ.            

Example  25. ℤ6 as ℕ-semimodule. If K = {0̅, 2̅, 

4̅}, then K≰𝑒 ℤ6. But if L = {0̅, 2̅}≤ ℤ4, then 

L ≤𝑒 ℤ4. 

Definition  26 (2). Let ℬ be an ℛ-semimodule, the 

sum of all simple subsemimodules of ℬ is called the 

socle of ℬ, equal to the intersection of all essential 

subsemimodules of ℬ, it is denoted by Soc(ℬ). If ℬ 

has no simple subsemimodule then we put Soc(ℬ) = 

0. If Soc(ℬ) = ℬ, then ℬ is called semi-simple 

semimodule. 

Remark  27 (15). An ℛ-semimodule is said to be 

semi-simple if it is a direct sum of its simple 

subsemimodule in ℬ. 
Example  28. ℤ6 as ℕ-semimodule is semi-simple. 

Soc(ℤ6)= {0̅, 2̅, 4̅}+ {0̅, 3̅}. Since {0̅, 2̅, 4̅}, {0̅, 3̅} 

have no proper subsemimodules except {0̅}, {0̅, 2̅, 

4̅}, and {0̅}, {0̅, 3̅}, respectively, then Soc(ℤ6) =
ℤ6. But Soc(ℤ4) ={0̅, 2̅}. Therefore ℤ4 as ℕ-

semimodule is not semi-simple. 

    In (1) the relationship between the socle of ℬ and 

P.Q.-injective modules was given. In the following, 

we give analogous to these properties for 

semimodule. 

Proposition 29. Let ℬ be a P.Q.-injective 

semimodule with Ș = 𝐸𝑛𝑑ℛ(ℬ). 

(i) If Ų is a simple subsemimodule of ℬ, and Ų1 

subsemimodule of  ℬ which is isomorphic to  Ų, 

then Ų1⊆ Ų Ș. 

(ii) If ℛb is a simple ℛ-semimodule, b∈ ℬ, then Șb 

is a simple Ș-semimodule. 

(iii) Soc (Rℬ)⊆Soc (ℬȘ).  

 

Proof: (i) Let 𝜓: Ų⟶ Ų1 be an ℛ-isomorphism 

where Ų1≤ ℬ. If Ų = ℛu, then 𝑙(u) = 𝑙𝜓(u), so 

 u Ș = 𝜓(u)Ș, by Proposition(17) (iii) we have  

𝜓(u)∈ u Ș ⊆ Ų Ș.  If 𝜓′ is an extension of 𝜓 to Ș, 

then  

Ų1 = ℛ 𝜓(u) = ℛ 𝜓′(u) ⊆ Ų Ș.  

 (ii) To prove Ș b is simple, it is enough to prove 

that any nonzero element of Ș has an inverse 

(multiplication). Consider the following diagram: 
 

 

 

 

 

 

 

 

 

 

                  

 

  

 

 We may assume 𝜆 ≠ 0. Since ℛb is simple, 

then 𝜆: ℛ𝑏𝜆(ℛ𝑏) is an isomorphism, let 

𝜃: 𝜆(ℛ𝑏)ℛ𝑏 be the inverse of 𝜆, i', i are inclusion 

maps from ℛb, 𝜆(ℛ𝑏) to ℬ respectively. Since ℬ is 

P.Q.-injective semimodule, then there exists 𝜃′ ∈ Ș 

that extends 𝜃. Now 𝜃′[𝜆(𝑏)] = 𝜃′[𝑖(𝜆(𝑏))] =

𝑖′[𝜃(𝜆(𝑏))] = 𝜃[𝜆(𝑏)] = (𝜃𝜆)(𝑏) = 𝑏. Hence 

b ∈ Ș𝜆(𝑏) ⟹ Ș𝑏 ⊆ Ș𝜆(𝑏). That is Ș𝜆(𝑏)= Șb. 

Hence Șb is simple. ( Ș𝜆(𝑏) ⊆ Ș𝑏 always holds). 

(iii)This follows from (ii).   //// 

     In (1) the notion of kasch module was 

introduced, where an ℛ-module ℬ  is called kasch if 

every simple sub-quotient of ℬ can be embedded 

in ℬ, similarly,  we introduce  this concept for 

semimodule as follows,  The semimodule  ℬ is 

called a kasch semimodule  if every simple sub-

quotient of ℬ embeds in ℬ.i.e., there is a 

monomorphism from Ų/Y into ℬ,where Ų and Y are 

subsemimodules of ℬ with Y is maximal 

subsemimodule of  Ų. 
Lemma 30. Let ℬ be a P.Q.-injective semimodule 

which is kasch semimodule. if Ų is maximal 

subsemimodule of Rℛ, then 𝑟(Ų)≠0 if and only if 

𝑙(m)⊆ Ų for some 0≠ 𝑚 ∈  ℬ. In particular, 𝑟(Ų) is 

a simple as right Ș-simimodule.  Where 𝑟(Ų)= { b 

∈ ℬ | ub=0, ∀u∈ Ų }and 𝑙(m)={t∈ ℛ| tm= 0}. 

Proof: If 0 ≠m∈ 𝑟(Ų), then Ų ⊆ 𝑙(m) ≠ ℛ, so Ų = 

𝑙(m) by maximality of Ų. Conversely, if 𝑙(m) ⊆ Ų 

where m≠0, note that ℛm ≠ Ų m (by maximality of 

Ų). Choose 
𝑋

Ų𝑚
 maximal subsemimodule of 

ℛ𝑚

Ų𝑚
. As 

ℬ is kasch semimodule, let 𝛼: 
ℛ𝑚

𝑋
 ⟶ ℬ be a 

monomorphism  and write 𝛼(m+ X) = m' , then  Ų 

m' = Ų 𝛼(m +X) = 𝛼(Ųm +X) = 𝛼(X) = 0, that is  

m'∈ 𝑟(Ų) and 𝑟(Ų)≠0, finally, let 0 ≠  m'' ∈ 𝑟(Ų), 

then Ų ⊆ 𝑙(m''), whence Ų = 𝑙(m''), since ℬ is a 

P.Q.-injective by Proposition (3. 16(ii)) then m''Ș 

= 𝑟( 𝑙( m'') = 𝑟(Ų). This shows that 𝑟(Ų) is simple as 

a right Ș-semimodule.   ////      

𝜆(ℛ𝑏) ℬ 

ℛ𝑏 
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Proposition 31. Let ℬ be a P.Q.-injective, kasch 

semimodule with Ș = EndR (ℬ), then  

(i) Soc(Rℬ) = Soc(ℬȘ ) 

(ii) Soc(ℬȘ) ≤𝑒 ℬȘ 

Proof: (i) We have Soc(Rℬ) ⊆ Soc(ℬȘ) by 

Proposition(29(iii) ) 

To show that Soc(ℬS) ⊆Soc(Rℬ), let mȘ be simple,  

m∈  ℬ, and let 𝑙(m) ⊆ Ų is maximal subsemimodule 

of Rℛ. by Lemma (30), 0 ≠ 𝑟(Ų) ⊆ 𝑟(𝑙(m) = mȘ, so 

mȘ = 𝑟(Ų) by the simplicity of mȘ. Thus Ų⊆ 𝑙(𝑟(Ų) 

= 𝑙(mȘ) = 𝑙 (m) ≠ ℛ. Since Ų is maximal, 𝑙(m) = Ų, 

whence ℛm ≅ ℛ/ Ų is simple. Then Soc(ℬȘ) 

⊆Soc(Rℬ).     

(ii) let 0 ≠m∈  ℬ. If 𝑙(m) ⊆ Ų is maximal 

subsemimodule of Rℛ, then 𝑟(Ų) ⊆ 𝑟(𝑙 (m) = mȘ, 

by Proposition(17(ii)).  As 𝑟(Ų) is simple 

Lemma(30) and 𝑟(Ų)≠0, then Soc(ℬȘ) ≤𝑒 ℬȘ.    //// 

Proposition 32. Let ℬ be a P.Q.-injective 

semimodule with Ș = 𝐸𝑛𝑑ℛ(ℬ), and let m1, m2, …, 

mn be elements of ℬ. 

(i) If m1Ș⨁ … ⨁𝑚𝑛Ș is a direct  sum, then any ℛ-

homomorphism 𝜆: ℛ𝑚1⨁ … ⨁ℛ𝑚𝑛ℬ has an 

extension in Ș. 

(ii)If ℛm1⨁ … ⨁ℛ𝑚𝑛 is a direct sum, then 

(m1+…+mn) Ș= m1Ș+…+mnȘ. 

Proof: (i) Let 𝜆𝑖 and 𝛽 denote the restrictions of 𝜆 

to ℛmi and ℛ(m1+…+mn) respectively and let 𝜆𝑖′and 

𝛽′ extend 𝜆𝑖and 𝛽 to ℬ. Then ∑ 𝛽′(𝑚𝑖𝑖 ) =
𝛽′(∑ 𝑚𝑖𝑖 ) = 𝜆(∑ 𝑚𝑖) = ∑ 𝜆(𝑚𝑖𝑖𝑖 ) = ∑ 𝜆′(𝑚𝑖𝑖 ). 
Since ⨁𝑚𝑖Ș is a direct, we obtain 𝛽′(𝑚𝑖) =
𝜆′(𝑚𝑖), so 𝛽′ extends 𝜆. 

 (ii) Define 𝜆𝑖: ℛ(𝑚1 + ⋯ + 𝑚𝑛) ℬ 

by 𝜆𝑖[𝑟(𝑚1 + ⋯ + 𝑚𝑛) = 𝑟𝑚𝑖 for all r∈ ℛ. Then 

𝜆𝑖 is well defined. Since ℬ is P.Q.-injective 

semimodule, then there exists 𝜆′𝑖 ∈ Ș that extends 

𝜆𝑖, hence 𝑚𝑖 = 𝜆𝑖(∑ 𝑚𝑖𝑖 ) = 𝜆′𝑖[𝑖(∑ 𝑚𝑖𝑖 )] =
𝜆′(∑ 𝑚𝑖)𝑖 ∈ (∑ 𝑚𝑖𝑖 )Ș and it follows that ∑ 𝑚𝑖Ș ⊆𝑖

(∑ 𝑚𝑖𝑖 )Ș. The reverse inclusion always holds.     ////   

       To show the next result we need the following 

definition.  

Definition 33(8). A subsemimodule K of ℛ-

semimodule ℬ is called fully invariant if for each 

endomorphism f: ℬℬ, then f(K)⊆ 𝐾. 
Example 34. Every subsemimodule of ℤ as ℤ-

semimodule is invariant. 

Let ℬ = ℤ and K= nℤ, where 𝑛 

∈ ℤ and let  f: ℬℬ, then f(nℤ) = 𝑛𝑓(ℤ) ⊆ 𝑛ℤ. 

Proposition 35. Let ℬ be a P.Q.-injective 

semimodule with Ș = 𝐸𝑛𝑑ℛ(ℬ), and let A, B1, B2, 

…, Bn be fully invariant subsemimodules of ℬ. If 

B1⨁ … . ⨁𝐵𝑛 is a direct sum of ℬ, then 

A⋂(𝐵1⨁ … . ⨁𝐵𝑛)= (A⋂𝐵1)⨁ … ⨁(𝐴⋂𝐵𝑛). 
Proof: It is known and easy to check that ⨁𝑖(𝐴 ∩
𝐵) ⊆ 𝐴 ∩ (⨁𝑖𝐵𝑖). 
 

 

 

 

 

 

 

 

 

 

 

 

 

  

 Let a = ∑ 𝑏𝑖𝑖 ∈ 𝐴 ∩ [⨁𝑖𝐵𝑖] and let 

𝜋𝑘: ⨁𝑖=1
𝑛 ℛ𝑏𝑖 ℛ𝑏𝑘 be the projection map and i, 'i  

are inclusion maps from ⨁𝑖=1
𝑛 ℛ𝑏𝑖 and ℛ𝑏𝑘 to ℬ 

respectively. Since ⨁𝑏𝑖Ș is a direct sum, because 

each Bi is invariant, then by Proposition (32(i)) each 

𝜋𝑘 has an extension 𝜋′𝑘 in Ș, i.e., 𝜋′𝑘[𝑖(𝑎)] =
𝑖′[𝜋𝑘(𝑎)]. Since A is fully invariant, then 𝜋′

𝑘(𝑎) =
𝜋′𝑘[𝑖(𝑎)] = 𝑖′[𝜋𝑘(𝑎)] = 𝜋𝑘(𝑎) = 𝑏𝑘 ∈ 𝐴⋂𝐵𝑘 for 

each k where a ∈ ⨁𝑖(𝐴⋂𝐵𝑖).      ////                 
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 شبه المقاسات شبه الاغماريه رئيسية

 
 أسعد محمد علي الحسيني           ختام صاحب حمزه الجبوري      

 
 .قسم الرياضيات, كلية التربية للعلوم الصرفة, جامعة بابل, بابل, العراق

 

 :الخلاصة
نقدم في هذا العمل, مفهوم شبه المقاس الرئيس شبه الاغماري, وندرس الشروط التي نحتاجها لنحصل على خصائص وصفات 

 مشابهه كما في الموديولات.

رئيسا شبه اغماريا اذا كان لكل  ℬيسمى شبه المقاس  .ℬشبه حلقة التشاكلات في شبه المقاس  Șوان  ℛ شبه مقاسا على شبه الحلقة  ℬ ليكن

 . ℬ يمكن توسيعه الى تشاكل في شبه حلقة التشاكلات في ℬالى  ℬ تشاكل من اي شبه مقاس جزئي دوري من 

 

 المقاسات شبه الاغماريه, شبه المقاسات شبه الاغماريه الرئيسية.: شبه المقاسات, شبه الكلمات المفتاحية
 


