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Abstract:

The paper is concerned with the state and proof of the existence theorem of a unique solution (state
vector) of couple nonlinear hyperbolic equations (CNLHEQS) via the Galerkin method (GM) with the Aubin
theorem. When the continuous classical boundary control vector (CCBCV) is known, the theorem of
existence a CCBOCV with equality and inequality state vector constraints (EIESVC) is stated and proved,
the existence theorem of a unique solution of the adjoint couple equations (ADCEQS) associated with the
state equations is studied. The Frcéhet derivative derivation of the Hamiltonian is obtained. Finally the
necessary theorem (necessary conditions "NCs") and the sufficient theorem (sufficient conditions" SCs") for
optimality of the state constrained problem are stated and proved.
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Introduction:

The problems of optimal control (OCPs)
have an important and vital role in many fields,
such as in an electric power (1), economic (2),
biology (3), robotics as in (4), and many other
fields. This importance encouraged many
researchers to be interested in the study of the OCPs
for systems governed by nonlinear PDEs either of
an elliptic type as in (5), or of a hyperbolic type as
in (6) or by a parabolic type as in (7).

In the recent years, many studies about the
classical optimal control problems (COCPs)
governed by a couple of PDEs have been done, such
as COCPs governed either by a couple of nonlinear
elliptic PDEs as in (8), or by a couple of nonlinear
parabolic PDEs as in (9), or by a couple of
nonlinear hyperbolic PDEs as in (10). These studies
and the studies of (11-13) in the boundary optimal
control problems push us to study the continuous
classical boundary optimal control problem
(CCBOCP) governing by a couple of nonlinear
PDEs of hyperbolic type.

This, work is concerned, at first, with the
state and proof of the existence theorem of unique
solution (state vector) of CNLHEQS using the GM
when the CCBCV is given. Second the theorem of
existence a CCBOCV governed by the considered
CNLHEQS with EIESVC is stated and proved.
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The problem of the existence and

uniqueness solution of the ADCEQS associated
CNLHEQS is stated and studied. The "Fréchet
derivative" of the Hamiltonian of this problem is
derived. Finally the theorems of both the NCs and
SCs of optimality of the state constrained problem
are sated and proved.
Description of the problem: Let Q = Q X I, where
Q be a bounded and open region in R?
with Lipschitz  boundary I'=0Q and I =
[0,T],(with T <o) X =TxI. Then the state
equations are given by the following CNLHEQS:

Yiet — 2{3:16%1, (a;j %) +B1yi— By, =

hi(y1),in Q @
Yatt — Z?jn%i(ﬂij g_zj,) +B,y,+ By =

212()’2) in Q 2
a—f; =w; (x,t),0n 2 (3)
%’}1}2(95, 0) = y? (x), and y;¢(x,0) = y{ (x), on Q (4)
avs =w,(x,t),on X 5)

y2(x,0) = y7(x), and y;.(x,0) = y3(x), on Q (6)
where for all x = (x1,%;), (V1,¥5) € (Hl(Q))2 is
the state vector,(w;,w,) € (L2 (Z))2 is the
continuous classical boundary control vector,
(hy, hy) € (LZ(Q))2 is a vector of a given function
with h;(y;) = hi(x,t,y;), a;j = a;j(x,t) Bij =
Bij(x,t) B =B(xt) and B; = f;(x,t) € C(Q),
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Vi =1,2, and each of Vg, Vg iS a unit vector

normal outer to the boundary X.
The set of admissible controls is

Wy={weW,=L1*E) x L>(E)|w e Wa.einZ,
J1(W) =0,],(W) < 0}, W c R?
The cost function is
Jo(W) = fQ[Pm(Yi) + Po2 (¥) ldxdt +
Jslao1 (W) + qo2 (W)]do (7
The state (vector) constraints are
JiW) = [o[p11 () + P12 (i) Jdxde +

Jslariwy) + g1 (wy) Jdo =0 8
J(W) = [ [p21(vi) + P2z ()ldxdt +
Jsla21(wp) + qa2 (W)ldo <0 ©)

where (v1,¥2) = Vw1, Ywz) 1S the solution of (1-6)
corresponding to the boundary control (wy,w,) ,
and  py(y) =pulx,ty), and  qu(w) =
qi(x, t,w;), (for 1 = 0,1,2 and i = 1,2) are defined
later.

The continuous optimal control problem is to find

W € W, suchthat Jo(W) = WTZ%AJO W) .

let U=UxU-= {ﬁ: i € (H'(Q))", withu; =
u, = 0on OQ}, U = (uy,u;). We denote by
(u,u)gand |lully (by (u,w)r and |lullp) the inner
product and the norm in L2 (Q) (in L?(T)), by (u, u),
and ||u||, the inner product and the norm in H*((Q),
by (d,wq and |[zlly (by (@, w)r and [lillr) the
inner product and the norm in(L2(Q))?)( in
(L*(0)* by (W, 1)1 = (ug,ug)1 + (up,up); and
IEN2 = |lugll? + lluy]l? the inner product and the
norm in U and finally U* is the dual of U.

The weak form (FW) of the problem (1-6) when
y € (H}(Q))? is given almost everywhere (a.e.) on
I (Vuy,u; €U, y1(,1),y,(,0) €U ) by
(Vieow) + a1 (6, y1,ur) + By, U)o —

(Byz,u1)q = (hy,u)q + Wy, ug)r, (10a)
(1, u)a = (1(0),uy)q, and i u)a =
r1:(0),uq) g (10b)
(Vaeer uz) + a2 (6, y2,uz) + (B2y2,uz2)a +

By, uz)q = (hy,uz)q + (Wo, up)r, (11a)
9, uz)a = (¥2(0),uz)q , and (3, uz)q =
(r2:(0),uz) o (11b)

0y, 0uy
where aq(t,y{,uq) = n_ ;i ——dx ,and
1t y1,uq) fQZl,]—l U x; ox;

_ n dy, 0u,
ay(t,yz,up) = fﬂzi,j=1 i ox; ox; X
The following assumptions are necessary to study
the continuous classical boundary optimal control
problem(CCBOCV):
Assumptions (A):
(i)h; on Q x R is of "Carathéodory type"
for each i = 1,2 satisfies

| (e, t, y)| < i, ©) + ¢ilyil,

, and

wherey; € R, ¢; > 0 and n;(x, t) € L?(Q, R).
(ii) h; has "Lipschitz property" with respect to y;,
foreachi =1,2,i.e.
|hi(x, 6, y:) — hi(x, 6, 7)1 < Lily; — yil,
where(x,t) €Q,y;,y; €ER andL; > 0.
(ii)s(t, ¥, 1) = ay(t,y1,u) + (Bry1,ug)a +
L az(f' )_’)2:712) + (B2y2,u2)a
t(t!ylu) = S(t’y'u) - (ﬁyZ!ul)Q + (33’1;112)9
and
|S(t,)7,ﬁ)| < a||37||1||7_1)||11 5(@;’5’) = a”ﬁ”%i
Is:(t, ¥, D < allyllllzlly, st ¥, 9) = allylli,
where a,a ,a, a are real positive constants.

Definition(1) (14): A function k(x,y):Q X R" —»
R™ is said to be of a ""Carathéodory type" if it is
continuous with respect to y for fixed x € Q and it
is measurable with respect to x € Q for fixed
y € R™.
Definition(2) (14): A mapping f:QcX->Y
from an open set Q of a normed vector space X into
a normed vector space Y is said to be has a
"Fréchet differentiable” at a point x € Q , if there
exists an element ¢(x) € Lin(X,Y) (linear and
continuous), such that for x + h € Q. :
fG+h) =f)+eG)h + (M)Al with
limpselle(h) Il = 0, or equivalent (with h # 0)
llf e+h)=f ()= ()R]l
(1Rl

such an element ¢ (x), then it is unique
Proposition (1) (15): Suppose Q be a measurable
subset of R? (d = 2,3), let k: QO x R™ - R™ is of a
"Carathéodory type", satisfies
Ik Ce, I < @) + P llyll,
for each (x,y) € Q x R™ , where y € LP(Q X R™),
p(x) € MO X R)p €LFa@x R) and a€
[0,p], a €N ,ifpe[l,0),and n =0, ifp = 0.
Then the functional K(y) = [ k(x,y(x))dx is
continuous.
Proposition (2) (15): Suppose Q be a measurable
subset of R? (d = 2,3), let k, ky,: Q@ X R™ —» R™ be
of a "Carathéodory type ", such that

B
l|Fey G M| < @) +pElIylle,
for each (x,y) € Q x R™ , where ¢ € L1(Q X R) ,
Lilo1 yperr@x R), Fe(0p]ifp+o,
and n=0 , if p=o. Then the Fréchet
derivative of K(y) = [ k, (x,y(x))dx exists for
each y € LP(Q x R™) and is given by
Kk = [ ky (2, y(0))k(x)dx .

= 0. If there exists

limyjp 500

The Solution of the State Equations: In this
section the theorem of existence a unique solution
of the CNLHEQS under a suitable assumption is
proved when the boundary control vector is given.
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Theorem (1) :( Existence of a Uniqueness Vector

Solution for the State Equations)

With assumptions (A), if the boundary control

w € (L,(Z))%is given, the WF (10-11) has a unique

solution ¥ = (y4,y,), such that y € (L(1, U))Z,

el 2 -

Ve = V16, Y2e) € (LZ (Q)) ) and Ve =
£\ 2

V1ter Yare) € (LZ(I:U )) .

Proof: Let vn, U, =U, x U, c U be the set of
continuous and piecewise affine function in Q.

{ﬁn}:;l be a sequence of subspaces of U, s.t.

VU = (uy,u,) € U, there exists a sequence {zi,}
with %, = (uy, Upy) € U, ,¥n, and %, strongly
in U(which implies 1, —u@  strongly in

(12()*). {y; = (u1juz): = 12,.., M(m)} be a
finite basis of U, (where u; is continuous and
piecewise affine function in Q, with %;(x) = 0 on
the boundary T) and let ¥y, = (y1,,V2n) be the
Galerkin approximate solution to the exact solution
y=0y2) st

Yin = Xj=1%1; (O)uq;(x),where x;;(t) is unknown
functionof t, Vj = 1,2, ..., n. (12a)

&

Yan = Xj=1%2j(O)uz;(x),wherex,;(t) is unknown
functionof t,vVj = 1,2,...,n. (12b)

The weak forms(10-11) are approximated with
respect to x using the GM, then substituting
Yint = Zin ({ = 1,2)

in the obtained equations, we get the following
system of 1* order differential with their boundary
conditions (V uy,u, € Uy,)

(Zine W) + @1 (6, Y10, U1) + (BrYin U)o —

(Byznu1)a = (M (Y1n) u)a + Wy, u)r  (12¢)
i) = O u)e . and Win U)o =
CZATN (12d)
(Vint> Utn) = (Z1n, Usn) (12¢)
(Zone U) + @ (8, Yon, Uz) + (B2Yon U2)a +
(By1nuz)a = (hy(V2n) u2)a + (Wo, up)r - (12f)
Vo uz)a = (3, uz)q , and VanUz)a =
(v2,u2)q (129)
(Vant» Uzn) = (Zan, Uzn) (12h)
where Yion = Yin(x,0) € U, (resp. Zion = Yiln =

Yint (x,0) € L2(Q) ) be the projection of y? onto
U(be the projection of y!=1y; onto L%(Q)
), Vi=12,ie.

yh, — y? strongly in U , with ||y%|l; < b, and
I¥2llo < bo (13)
yi, — ylstrongly in L2(Q) and||yt]lo < by  (14)
Substituting (12a) in (12c-d) and (12b) in (12f-g),
settingu, = uy;, U, = uy;, the obtained equations
are equivalent to the following nonlinear system of

1% ODES with their initial conditions which has
unique solution 3, = (1, yza) € C(L, U), i.e.
Eﬂfl(t) + F1 X, () — GX,(t) = by (U] ()X, (D)),
E1),(1(t) = E1Y;(t), E1X;(0) = b, §1Y1(0) = b{
E;Yp(t) + F,X, (8) + HX1(t) = b, (U7 ()X,(1)),
E, X, (t) = E;Y5(8),E2X,(0) = b9 & E,Y,(0) = b}
where El = (elij)nxn el = (ulj,u”)n, Fl =
(fiij), e fuj = laa(twjw) + (Bu®©wrjwdal,
G = (gij)an v Gij = (ﬁ(t)uzpuli)ﬂ, H=
(hij)nxn, hij = (B(®Ouqpuzdqa X (t) =
(xy®) %@ =(u®) b= G

b = (R (U] 25(8), wp), i) o, + (Wi, wi)r

b = (bfj), by = (vf,wy),  k=01andl =12

Then corresponding to the sequence{ U, }, there

exists a sequence of the following "approximation

problems”, i.e. for each ,, = (U1, Uspy) € Uy, and

n=12..

(Vinte> Uin) + @1 (6, Y1n, Uin) + (B1Y1n Uinda
—(BY2n uin)a = (i (V1n), 1) + W1, uspn)r,

VYin,Yan € L2 (1, Un), a.einl (]_5a)
(y?n' uln)ﬂ = (}’{), uln)g,and (yllnruln)ﬂ =
Vhtn)a, Y tin € Up, V1 (15b)

(Vonter Uzn) + @2 (E, Von, Uzpn) + (B2Yan Uzn)a +
(Byin uzn)a = (ha(¥2n), Uzn)a + (Wo, Uzp)r,

YY1n Yan € L2(1,Uy) ae. in 1 (16a)
(ygn' uZn)Q = (yg'uZn)Qv(yzlnl uZn)Q =

V2, Uzn) . Vilzy € Up, V0 (16b)
which has a sequence of unique solutions {y,}.

Substituting wy,, = y1ne IN(15a) and uyy, = Yope IN
(16a), adding the two obtained equations, using
Lemma 1.2 in ref. (16) for the 1% term of the left
hand side, to get

d - - - - -
ZllFre ONF + +56.5,,5,) | = 5:(t.5,,5,) = 2(

(BYzn Yine )a — BY1n Yone)a + (1 (1n)s Yine) +

(ha(V20), Y2ne)) + (W1, Yine)r + (Wa, Yane)r) (17a)
Using assumption (A-iii) for the second term in the

left hand side of (17a) and taking absolute value for
both sides, then using assumption (A-i) for the right
hand side of the obtained equation to get

- —_ - — 2
L1Fne N + allFallF] < a5, ]I, +2¢

|(BY2ns Yintdal + |(BY1n Yane)al + |(W1;y1nt)r|

(M (1n) Yine) + 1 (ha(Van), Yone) | + | (W2, Yon)rl)
(17b)

Integrating both sides of (17b), on [0, t], using the
trace theorem and that [y, llo < 1¥nllo . Vinello <
IVnello,  WYinello < Wyimells,  WYnllo < ¥l
w1l < [IWllr, to get

t - —2
Jo l¥neONF + a@llynli]de
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< I3 2b(IFnelld + 1512 dt + [ Ul 113 +

1 112) dt + [ (4l1Fncll3 + (cF + 3 +

DNFall2) dt + [ 2csllFneli3 + 21WIE)dt

< all3 + 2113 + 2l@NE+cs [ UFl13 +
allFnel13) dt,

< cg + cs [ (17113 + @llgncll?) dt (18)

with @ = E—S where ¢, = 2b + 4 4 2¢c3, cs =2b +

(2 +cH)+a,, cg=cs+c;, cg = by + by, with

Y:ll3 < by, i = 1,2. And [[WI2 < ¢,

Since ||¥2]l4 < by, and ||¥t]lo < bo, With  cg =

by + by + co, inequality (18) becomes

15t NI + @llFn (O < co + c5 [ el +

allynlif) dt
Using the Belman-Gronwall (B-G) inequality, to get
for each t € [0, T]that

1Fne NG + @llF (ONIF < coe®s = b?(c) =
1ne (OIIF < b2(c), and [|3, (D17 < b2(c)
Easily once can obtained that |[y,.(t)llq < by(c)

and ”)_;n(t)”LZ([,m < b(c).

Then applying the "Alaoglu’s theorem", there exists
a subsequence of {Ji,}nen, for simplicity say again
(V. nen such that y,, — ¥ weakly in (LZ(Q))2
and y, — ¥ weakly in (L2(J, U))z, and since
(L2R,U))* < (I2(R,0))* = ((12(R, ) )2 c
(L2(R,U)’ (19)
Then the "Aubin theorem™ in ref. (16) can be
applied here to get that y, — y strongly in
(L2(Q))*. Now, multiplying both sides of (15a) &
(16a) by ¢;(t) € C?[0,T], Vi = 1,2 respectively ,
such that ;(T) = {(T) =0, ¢;(0) # 0, {;(0) #
0, Vi = 1,2, integrating on [0, T], finally integrate
by parts twice the first term of each one of the
obtained two equations, yield to

= Jy 5= O )31 (Ot + f @y (6 yin urn) +
(Biy1in Uinda — (BYzn Uin)ald1(t)dt =
Jy Chy (an), i) (E)dt +

Jy 1, w1)r 61 (0t + 3, 1n)ada (0),
fOT(Y1n' u1n)51 (Odt + fOT[‘H (&, y1n U1n) +
(Bryin Uin)a — (BYan Uin)aléy (D)dt =
Jy (hy (an), i) (E)dt +

fOT(Wl'um)r G dt + (Vin, u1n)f1(0) +
(}Ifw uln)ﬂ(l (0)1 (20b)
- f(;r% (yZn' uZn)(Z’ (t)dt + fOT[az (t: Yan, uZn) +
(B2Y2n Uzn)a + (BY1n Uan)al 2 (D)dt =

Jy (ho(rzn), wzn)aGa (D)t +

fOT(Wz'UZn)F{z ()dt + (V2n, U2n)l2(0),

(20a)

(21a)

fOT(yZn' Uzn) o (D) dt + foT[az (t, Yan, Uan) +
(/;23’271: U)o + (BY1in Uzn)all2(t)dt =
fo (hz (YZn):uZn)Q(Z (t)dt +

fOT(Wz'uZn)Ffz(t)dt + (V2n Uzn)62(0) +
(ygnr uZn)Q(Z (0): (Zlb)
Since Vi = 1,2the following convergences are
satisfied: First
Ui, — U; strongly in W =
Ui (i () — u;;(t) strongly in L2(I, W)
{ UG () — u;¢;(t)  stronglyin L2(I, W)
UinG;(0) — u;G;(0)  strongly in L? ()
U; — u; strongly in L(Q) =
vindi () — §i(t) strongly inL?(Q)
VinGi(£) — v;¢;(t) strongly in L?(Q)
vindi(0) — §;(0) strongly inL?(Q)
Second, yin: — vir Weakly in L2(Q) and y;, — y;
weakly in L2(1,U) and strongly in L2(Q) .
Third and on the other hand, let n;, = u;,{; and
n; = w;{; then n;,, — n; strongly in L2(Q) and then
w;, IS measurable with respect to (x,t), so using
assumption (A-i), applying Propositionl.3, the
integral fQ h;(x, t, Vin)nindxdt is continuous with
respect to (Vin, 1in), then
fOT(hi(}’in)'uin)fi(t)dt - foT(hi(}’i)»ui)fi(t)dt -
vVi=1,2 .
From these convergences, and (13) , (14d), we can
passaged the limits in (20a,b), (21a,b) to get
- fOT(Ywul)Q(t)dt + fOT[al (t, y1,u1) +
(Bryru)a — (By2, u)ala(D)dt =
fOT(h1(3’1);u1)Q(1 (t)dt + fOT(Wl:uDF ¢1(t)dt +
(}’11'711)9(1’(0): (22a)
Jy @ruDG(Ode + f [ay (6 yn,u) +
(Bryru)a — (By2, u)aldi (H)dt =
Jy (a1, un)ady ()t + f (i, up)r a ()t +
1, u1)ad1(0) + 7, u1)ad1(0), (22D)
— Jy D26, u2)8(O)dt + J Tz (6, y2,u2) +
(B2y2,u2)q + (By1, uz)aldz(t)dt =
fOT(hz (¥2), uz2)aa(t)dt + fOT(Wz:uz)r {o(t)dt +
W} 2)002(0), (22¢)
Jy G248 (Ot + [ Tz (6,72, uz) +
(B2y2,u2)q + (By1,uz)alda(t)dt =
fOT(hz (¥2), u2)aa(t)dt + fOT(Wz;uz)r {(t)dt +

(3, u2)082(0) + (¥, u3) 0> (0), (22d)
Casel: Vi = 1,2, choose ¢; € C2[0,T], such that
2;(0) = ,(0) = ¢;(T) = {,(T) = 0. Substituting in
(22b), (22d), integration by parts twice the first
terms in the LHS of each one of the obtained
equation, yield to
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fOT < Yieeug > G1(t)de + fOT[a1 (6, y1,u1) +
By u)a — (Bya,uraléi(Ddt =

Jy (G, un)aa (Ot + f (wy,u)r G (E)dt
(23a)

fOT < Yare U > G (0)dt + foT[az(t' Y2, Uz) +
(B2y2,uz)a + (By1, uz2)allz(t)dt =

foT(hz (¥2), u2)af2(t)dt + fOT(Wz;uz)r {(t)dt
(23b)

Which give that y, & y,are solutions of (10a) and
(11a) respectively (a.e. on I).

Case2: For each i = 1,2, choose {; € C?[0,T] ,
such that ¢;(T) =0 & ¢;(0) = 0. Multiplying
both sides of (10a), (11a) by d{;(t), {,(t)
respectively, integrating on [0, T], then integrating
by parts the first term in the LHS of each resulting
equation, then subtracting each one of these
obtained equations from those in (22a) & (22c)
respectively, once get

(yilrui)(i(o) = (it (0),u;);(0).

Case3: Choose {; € C?[0,T], such that¢;(0) =
Gi(T) = 4(T) =0,4,(0) #0,vi=12
Multiplying both sides of (10a) and (11a) by {;(t)
and {,(t) respectivly, integrating on [0,T], then
integrating by parts twice the first term in the LHS
of the resulting equation, then subtracting each one
of these obtains equations from those in (22b) &
(22d) respectively, one gets

(7, 4:)4.(0) = (¥:(0),u;),(0).

From the last two cases easily one gets the initial
conditions (10b) & (11b).

To prove that 3, — ¥ strongly in(L?(, U))z, we
start with substituting uy, = y;, in(15a)and
and u,, = y,, (16a), then adding the two obtained
equations, applying Lemma 1.2 in (16) for the first
term of the left hand side, and finally by integrating
the resulting equation on [0, T, to get

156 (T = 170 O13 + St T ) (T) —

St Fs ) (0) = [ 5¢(t, F, F)dt =

2 fOT(hl (V1) Y1ne) + (ha(Van), Y2ne)) dt +

(Wli yln)F + (WZ' yZn)F]dt (170)
The same way which is used to get (17a,c), can be
also used here when we have y and y,, i.e.

156G = 17O + (6,3, 7)(T) -
s(t,¥,9)(0) — [, se(t,9,9) =
2 [ (ha (1), 91)) + (hy (72),¥2))

+(wy, y1)r + (W, y2)rldt
Since

1Yne (T) — ?E(T)IIS = [¥n (0) — ?t(O)JI% +
S(Tt. Yn =Y Yn = V(T) = s(t,¥n — ¥, ¥n —¥)(0) —
fo 5t(t,Vn — Y, Y — Y)dt =
eq(17el)-eq(17e2)-eq(17e3)

(17d)

(17e)

(17eD)= ¥ (DIF = 1Fne O +

S(t, Y, Y ) (T) — 5(t, Y, ¥,) (0) —

Jy 56t T, Fn)alt

(17€2)=(Jne (1), 7¢(T)) = (¥ (0), ¥:(0)) +

St 3, )(T) = 5(6, 50, 3)(0) — f, 5t T, F)dlt
(17e3)= (37t (T), Yne(T) — ¥ (T)) -

(yt(o)rj}nt(o) - )_;t(o)) +5(t,Y, Y0 — () —
S(6, T = D(O) = J 56(6,7, 5 — Pt

Since y, — ¥ strongly in (LZ(Q))Z, Vo — ¥
weakly in  (L2(I, U))Zand Ve — Ve Weakly in
(L2 (Q))Z, then from (17c) and the assumptions on
h, and h,, we obtain

(17€1)= 2 [ (hy (10), Y1n) + (hy (V2), Y2n)) +
Gy + (W, yan)r)de —
2 [ (i), y1) + (R (372), ¥2)) +

(W1, y1)r + (W2, ¥2)r) dt
by the same way that we used to get (14), once can

get also that
Yne(T) = ¥ (T) strongly in (L(Q))? (171)
On the other hand, since y, — y weakly in
(L2, U))z, then using (14,17f), to get
T

(17e2) » R.H.S.of (17d) = 2 [ (hy(y1), y1) +
(h2(y2),¥2)) + (W1, y1)r + (Wa,¥2)r) dt
and all the terms in (17e3) imply to zero, so as the
first two terms in the LHS of (17e), hence (17¢)
gives

T - > >
Jo @& In =¥, Yn —¥)dt = 0
From assumption (A-iii), once get
c‘lfotllﬁn —yI?2dt > 0 as n — o, so we get that

Yo — ¥ strongly in (L2(I, U))Z.

Uniqueness of the solution: Let y = (v4,¥,)
and ¥ = (¥,,7,) be two solutions of the WF (10-
11), in particular, i.e. y; and y, are satisfied the WF
(10a,b), subtracting each obtained equation from the
other and then setting v; = y; — ¥;, yields to

(O =YD v1 — V) + a1,y — YLy — Y1) +
Br11 =¥ y1 —¥)a— BG2 —¥2),¥1 —
y)a =M 1) —hi(1),y1 —V1a

((Y1 —y1)(0), (y; — 71(0))0 =0 ,

And forv; = (y; —y1)¢, the following
condition it holds

(01 = 7):(0), 1 = 71):(0)) , = 0

The same thing will be happened, for the solutions
vy, &y, and (11a,b) , with v; = y, — ¥,, to get that
(V2 = VDo Y2 = Vo) T ax(t,y2 — Vo, ¥2 — Vo) +
Boy2 = Y2),¥2 —¥2)a+ (B —¥1),y1 — Y1)a
= (h,(712) = h2(32),y2 = ¥2)a

((J/Z = ¥2)(0),(y2 — }72)(0))9 =0 ,and

(()’2 —¥2):(0), (y2 — yZ)t(O))Q =0

initial
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Adding the above two equations, using Lemma 1.2
in ref. (16) for the 15¢in LHS of the obtained
equation which will be positive, integrating both
sides with respect to t from 0 to t, using the initial
conditions, assumption (A- iii) on the LHS and
assumption (A-ii) on the right hand side of the
obtained equation, and finally applying the B -G
inequality, to get

- 2 2 _ - = 2
KNG =] +2a]|G - [ 1de < 2L

KNG =l; +2a|G - 91 de,

where L=1L,+L, L;=a+2L a:é—i =

lG-HO| =0, veer=
|- f/)(t)”(Lz(w))2 = 0 =the solution is unique.
Lemma (1): In addition to assumptions (A), if the
boundary control vector is bounded, then the
operator w — y from (L2(2))? into
(L®(1,L2(Q))) %0or in to (L2(I,U))? or in to
(L2(Q))? is continuous.
Proof:Let W = (wy,w,), W = (W, W,) € (L3(%))?,
setdw =w — w, thenfor e >0, W, = W + 6w €
(L2(2))?, then by Theorem 1, y =y = (¥1,¥2)
and y; = ¥z, = (V1 Y2¢) are their corresponding
states solutions which are satisfied the WF (10-11),
setting @e = (8Y16,0Y2¢) = e — ¥, then (10-11),
give
(Y160 V1) + a1 (8, 8y16,uq) + (B16Y1e, U1 ) —
(B8y2e,u1)q = (hy(¥1 + 8y1e) — hi (V1) ,u1)q
+(ebdwy, vt (24a)
6y1:(x,0) =0and 8y, (x,0) =0 (24b)
(82t V2) + a2(L, 826, Uz) + (B26Y2¢, Uz)q +
(B8y1e,uz)a = (ha (2 + 6Y2¢) — ha (Y2, uz), uz)q
+(edwq, uy)r (25a)
6y.:(x,0) =0 and y,.(x,0) =0, (25b)

Substituting u; = 8y, in (24a) and u, = 8y, in
(25a), adding the two obtained equations, using
Lemma 1.2 in (16) for the 1* term of the left hand
side (LHS), to give

— 2 —_ — — —
L18Yec @I, + 5Ct 85, 8ye) | = 5t 87, 8Yer) =

2((3&)’28: 5y1£t )Q - (ﬁ5yle' 5y2£t)9. +
L1(8Y1e)0Y16t) + L2(8Y26) 6Y26r) + (W1, 8Y1ee)r +
(W2, 8Y2¢6)r)

Integration both sides of the above equality on
[0, t], using assumptions (A-ii and iii), give
Jo wllloyee |l + allsye| 1 dt < ellsye]|, +

t
2 Jy Jo[b18Y1el18y2ec] + Lil6y1el I8yl +
b|62’2£||6y1£t| + L|0y2¢ |16y |]dxdt +
2 Jy Jolelow [|8y1ee| + eldw||8y el 1dydt .
Using assumption (A-i), the definitions of the norms
and the relations between them, and then using the

trace theorem, to get
— 2 = 2 £ o= 112
8=l + allsve@Il, < bs Jy llsvell, +
— 2 — 2 - 2
187ecll,) de + 2¢ [y [[owll . de + 2¢ [ [[87ecl . de <
- — 2 — 2 t—> 12
Ly (8wl + 18vecll, ) + bs 187l e +
— 2
b [{ 187 e

- — 2 tn— 12 _p— 12

< Lillsw®ll; + bs [y (I6vel, + allyeell,) dt

where b; = 2b+ Ly + Ly, Ly = 2¢,L3; = by + Ly,a =

L3

b_3 .

Applying the B -G inequality, with L? = L;e?s, to get
. 2 — 2 — 2 _
[6yee |, + @l[sy O], < L?[|su®)|,, veeTl =
— 2 = 2 2 12 —

||5_y:g(t)||1 <L ||6u(tﬂ§ L =3 vtels B
163ell oy 2 = LllOWlly  N18%ell 2 < Lllowl

and [[3y.|l, < Ll[swl,

Form the above three inequalities the Lipschitz

continuity of the operator w +— y is obtained.

The Existence of a Classical Optimal Control:

This section is concerned with the theorem of

existence CCBOCV where satisfying EIESVC is

proved. The following assumption and lemma will

be needed.

Assumptions (B): Consider p;; and q;; ( for each

l=0,12and i=1,2) is of "Carathéodory type "

on (Q x R)and on(Z x R) respectively and satisfies

the following sub quadratic condition with respect

to y; and u;, i.e.

Ip(x, t, v, w)l < Py(x, ) + ciyf,

lqui (x, t, wi)| < Qui(x, ) + dyy(wy)?,

wherey;, w; € R with P;; € L1(Q) ,Q;; € L1(2).

Lemma (2): With assumptions (B), and VI =
0,1,2 the functional w — J;(w), is continuous on
(L* (@)

Proof: From assumptions(B), with using
proposition 1, the integrals fQ pii(x, t,y;) dxdt and
J5 ui(x,t,w;) do are continuous on L*(Q) and
L?(X) respectively Vi = 1,2, and VI = 0,1,2, which
gives J;(w) is continuous on (L2(%))?, vl = 0,1,2.

Theorem(2): In addition to the assumptions
(A&B), if the set W is convex and compact,
Wy+0, g1 1s independent of w; for each i = 1,2,
Poi and p,; are convex w.r.t w; for fixed (x,t,y;) .
Then there exists a CCBOCV.

Proof: From the assumptions on W and the
"Egorov's theorem™, once get that WC is weakly

compact. Since WA + @, then there is w € WA and
there is a minimum sequence {w,} with w, €

W, ,Vk, such that Mm j,(w,) = 2L j (W). But

WEﬁA
W, is weakly compact, then the sequence {w} has a
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subsequence for simplicity say again {w,} such that
W, — w weakly in W. and ||Wy|lx < ¢, vk . From
theorem 1, for each control w), the weak form of the
state equations has a unique solution Yy, = yy, ,
and the norms ||37k||Lz(,‘V), ||37kt||Lz(Q) are bounded,
then by "Alaoglu’s theorem" there exist a
subsequence of {y,} and {y,.} for simplicity say
again {y, } and {y,.} such that

yr — ¥ weakly in (L2, U))Z, and

Fie — Je weakly in (12(Q))".
Then by applying the "Aubin theorem" in (16), once
get that there exists a subsequence of {y,} for
simplicity say again {y,} such that y, —y
strongly in (L2 (Q))z.
Now, Since for each k, y, is a solutions of the WF
(12c) - (12f), substituting this solution in the above
indicate WF, then multiplying both sides of each
one by ¢;(t) and {,(t) respectively (with ¢; €
C2[0,T], such that {;(T)={(T) =0, ¢(0) =+
0,4;(0) # 0, Vi = 1,2). Rewriting the first terms
in the left hand side of each one of their, integrating
both sides from 0 to , finally integrating by parts
for these first terms, one has

foT% (V1o ug)1 (B)dt + fg[ ai(t, y1euq) +
(B1y1r, u)a — (Byzi, u1)alé (O)]dt =

foT(hl (V1x), u1)ads (O)dt +

Jy Wi u)rs (©) dt + (31 (0), u1)ad1 (0)  (26)
fOT% (Vake u2)$2(t)dt + fOT[ az (&, Yar, uz) +
B2y u2)a + (Byik, u1)all2(0)]dt =

fOT(hz (Vai), uz)al2(t)dt +

Iy W 2)rGo () dt + (12(0),u2)03,(0)  (27)

The limits in the LHS of (26) and (27) can be
passaged using the same steps that are used in the
proof of Theorem 1, so it remain the passage to the
limits in the right hand side of (26) and (27) and this
will be down as follows:

Let Vi=1,2 , u; € C[.(_l], w; = ul-(l-(t), then
n; € CIQI € L®(L,U) € L*(Q), set  hy(yyy) =
hil (Yik)ni! then hil: Q XR->R is of
"Carathéodory type ", using Proposition 1, to get the
integral fQ hi1 (Vi )n; dxdt is continuous with

respect to y;;., but y;, — y; strongly in L2(Q) then
fQ hiy i dxdt - fQ hiy (yi)n; dxdt (28a)
vn; € C[Q], for i =1,2

then it also are hold for every u; € U,Vi = 1,2,
since C(Q) is dense in U.

On the other hand since, 1;, — 1; ,weakly in L(Z)
then vu; € C(Q)], for i = 1,2

Js niacwi§i(®)dxdt — [ ngw; §idtxdt, (28b)

Hence from the above convergences the following
two weak forms are obtained Vu,,u, € U, a.e.on [

V1eew) + ag (6 y1,ug) + (B1z1,u1)q +

(Byz2, u1)q = (hy(y1),u)a + Wy, upr, (29a)
(Vaeer uz) + az (6 Y2, uz) + (B2y2,uz)q +
By uz)a = (ha(y1), u)a + Wz, uz)r, (30a)

To pass the limits in the initial conditions which are
associated with these weak forms, the same steps
used in the proof of Theorem 1 can be also used
here to get the requirement results for the initial
conditions. Hence y; and y, are the solutions of the
WF of the state equations.

On the other hand, since
JiWy) = fQ P11 (V1x) dxdt + fQ q12(V2x) dxdt,

with py; (for i = 1,2) is independent of u; and it is
continuous  wrt  y;, then by Lemma2
) 0 p1; (Vi) dxdt is continuous with respect to vy,

but y, —y strongly in (L2 (Q))Z, then from
proposition 1

]1("_1;) = lli_{glofl(wk) =0.

Again since Vi=1,2 and VI =0,2, p;(yix) is
continuous with respect to y;;, then from the proof
of Lemma 2, one has

fQ Pui (Vi) dxdt — fQ pu(yi) dxdt (31)
Now, from assumptions (B), q;;(w;) is weakly
lower semi continuous with respect to w;, Vi = 1,2
and [ = 0,2, then from (31), one has

Jouy) dxdt + [; qu(wy) do <

limy e, inf [ q;;(Wy)do + fQ pu(y;) dxdt =
limy o, inf [5(q;i(Wix)do +

limy o fQ(Pli(}’i) — pu(Yix))dxdt +

limg e fQ pu (Vi) dxdt

= limy_,o, inf [ g (i) do +

limy_, o inf fQ pui(Vix) dxdt

ie. ;(w) < %Lr& inf J;(wy,), (for each [ = 0,2)

Then J,(w) <0 (since J,(Wy) <0,Vk), which
means w € W, and

JoW) < ;11—{20 infJo (W) = lli_{{}o]o(wk) =
infﬁeﬁAJO(ﬁk)

Hence w is a CCBOCV.

Assumptions (C): If hyy,, py,y,and qp, , ( V1=
0,1,2and Vi = 1,2) are of "Carathéodory type" on
Q x(R), Q@ x(R)and on X x (R) respectively,
such that

|hiy, (x, 6, 90| < L

|1y, (%, 6 y1, wi)| < Ky (e, 8) + my; Ly,

| @, (et v, w)| < Ly (2, 8) + 4
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where (x,t) €Q , y;,w; ER , K;;(x,t) € L2(Q)
L“-(x, t) € LZ(Z), Li,mli,nli > 0.

Theorem(3):
Dropping the index [ in p; , q; & J;. With the
assumptions (A), (B) and (C), the following
ADCEQS Z = (z,,2,) of the state equations (1-6)
are given by:

0z,

a
Zie — Zﬁjﬂa—xi(aij a_xi) +B1z1+ Bz =

z1hiy, (1) + D1y, (1), INQ (32a)

2= 00n 5 2,(xT)=0,2,(xT)=0 onQ
(32b)
n d 622
Zopt — Zi,j=1a_xi(ﬁij 6_xl-) +Br2,— Pz =
Zyhyy, (V2) + P2y, (72), INQ (33a)

% =0,0n%, z,(x,T) =0, z5,(x,T) = 0, on Q
(33b)
where each of v,, vz is a unit vector normal outer
on the boundary X
And the "Hamiltonian" is defined:
Hz(x, t, Vi Zi, Wi) =
Yi=1@hi ) + 0 () + qi(wy)
Where
JW) = fQ[P1 (71) + p2(y2)]dxdt
+ fg[ch (w1) + g2 (wy)]dydt
Then for W € L_f, the directional derivative of G is
given by where
— w 6—) —-J(w
DJ(W,, W — W) = lim,_,, (#rew)-s :") ™)

Z1 + Qaw, 6W1) _ I
fz(zz'i'quz ) (6W2 do = Hy(x,t,9,Z,W)

Proof: At first let, the WF of the adjoint equations
are given Vuq,u, € U, by
(Z1ee ur)aq (&, 21, ug) + (B121,Uq)q +
(Bzz,u1)q = (Z1h1y,, U1)a + (P1y,, U1)q , a.e. onl
(34a)
(z1(T),u1)a = (21:(T), u1)q = 0, (34b)
(226, Uz) + @z (L, 75, uz) + (B2Z2,Uz)q —
(Bzy,up)q = (zzhzyz,uz)Q + (p2y2,u2)n, a.e. onl
(35a)
(22(T), uz)q = (22¢(T), uz)a = 0, (35b)
From the given assumptions and using the same
way which is used in the proof of Theoreml, once
can prove that the weak from (34-35) has a unique
solution Z = (zq,2,) € (L*(Q))?.
Substituting  u; = 6y, (34a) and u, = 8y, in
(35a), integrating both sides on [0, T], to get

f0T<5y1£'tht> dt + fOT[O-’1 (t,21,6y1) +
(ﬂTl 21,6Y1)a + (BZ2,0y1.)aldt =
fo [ (Zlhlyl: 8}’18)9 + (plyli 53’15)9] dt (36)

f0T(5YZs: Zoge) dt + foT[sz (t,2,0y,¢) +
(ﬁTzZz:fs}’ZE)n — (Bz1,6y3¢)qldt =

fo [(Zzh2y2r6y2£)ﬂ + (P2y2;5YZs)Q]dt (37)
Now, let W, w € (L2(Q))?, 6w = w — w, for £ > 0,
W. =W + 6w € (L2(Q))?, then by theorem 1,
y=Yw & ¥, =Yy, are their corresponding
solutions. Setting 8y. = (6Y1 6Y2:) = Ve — ¥
substituting u; =2z; and u, =z, in (24a) and
(25a) respectively, integrating both sides on [0, T,
then Integrating by parts twice the first term in the
left hand side of each one of the obtained equation,
finding the "Fréchet derivatives" of f; and £, in the
right hand side of each one them (which are exist
from the assumptions(C), then from the result of
Lemma 1 and the "Minkowiski inequality", once get

fOT(5Y1s' Zyge) dt + fOT[Oﬁ (t,8Y1e,21) +
(B16Y16,21) — (BEY2¢6, 21)oldt =

fOT( hyy, 6Y1e,21)qdt + fOT( e6wq, z1)rdt +
041(¢) (38)
f(;r(6YZs'ZZtt) dt + foT[az (€, 8Y2¢,22) +
(B26Y2e:22)q + (BY1¢e,Z2)qldt =

fOT( hay,8Y2¢,22) o dt + fOT( e6Wy, zy)rdt +

012(€) (39)
where  0,;(¢) = 0, as &€ — 0, with0y;(¢e) =
|6yiello, foreach i = 1,2

Subtracting (38), (39) from (36), (37) respectively,
adding the two obtain equations, once get

e [ 16wy, z0)r + (6w,, 2,)r]dt + 04 (e) =

T
fo [(plyl' 6}’16) + (p2y2f SYZS)]dt (40)
where 0,(g) = 0,1(e) + 0,,(¢) — 0, as e — 0,
with 04 (¢) = ||6y£||Q

On the other hand, from the assumptions on p; ,p2,
q1, 92 the definition of the "Fréchet derivative”, the
result of Lemma 1, and then using "Minkowiski
inequality", we have

lo(Ws) —JO(W) =

fQ(P1y153’1s + P2y25}’2£)dxdt t+e fz(q1W16W1 +

Q2w, 6w2)dydt + 0,(¢), (41)

where 0,(g) = ”5’;”Q +el[ow|| , 0,(e) — 0, as
z

e—0

Now, by substituting (40) in (41), one have that

JoWe) = Jo(W) = € [[(z1 + quw, )Wy +(2; +

G2w,)OW,] dxdt + 03(¢)

Where 03(5) = 01(8) + 02(8) — O,

with 05 (e) = 2||6y£||Q + ez||6w||Z

Finally, dividing both sides of the above equality by

&, then taking the limit e — 0, once get

as € — 0,
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Dj(w,w —w) = [, (Zl N q1w1> : (5W1) do.

) +QZw2 dw,

Necessary and sufficient conditions for
optimality: In this section the necessary and
sufficient theorems for optimality under prescribed
assumptions are proved as follows:

Theorem(4): (NCs for Optimality, or Multipliers
Theorem):

a) with assumptions (A), (B) , (C) if WC IS convex,
the control w € WA is optimal, then there exist
multipliers ALER , 1=012 with 1, =0,4, >

0, Z |4;| = 1 such that the following Kuhn-Tucker-
Lagrange (K.T.L.) conditions are satisfied:
Z AZD]l(W,,W w) >0, Viw € W (42a)

/12]2 (w) = 0, (Transversality condition) (42b)
(b) The inequality (42a) is equivalent to the (weak)
pointwise minimum principle

Hy(x, t,y,Z,w).w(t) =

e (x,t,5,Z,W).w(t) , a.e.onQ (43)
Where

Hy(x, t,y,Z,w) =

(z1 + q1w, (t w1),Z + Qow, (t w,) )

Z /11le , (forl =1 2)

Proof: a) From Lemma 2, the functional J;(w) (for
1 =0,1,2) is continuous and from Theorem 3, the
functional DJ; (for [ =0,1,2 ) is continuous wrt
w—w and linear in w—w, then DJj, is
M —differential for every M, then using the K.T.L.
theorem in (16), there exist multipliers MER,

[=0,1,2 with 1,>0,4, >0 , lell—l such

that (42a-b) are satisfied, by usmg Theorem 3, then
(42a) becomes

2 2

lgo fz igl Az + q,iwi)dwidydt >0,
be rewritten as

J5@1 + Q1,22 + o) (W — W)dydt 2 0,

viw € W (44)
where q; = X0 A qui  zi = Xi=o Ay 2, Vi = 1,2
To prove the second part, let {Ww,} be a dense
sequence in W , and let q C Q be a measurable set "
with Lebesgue measure u " such that w(x,t) =
{Wﬂnﬂ  if () Eq

w(x, t) , if (o t)€q
Therefore (44) becomes

J, (21 + Quwy, 22 + dau,). (W — W)dyde > 0, (44a)
which implies to
(z1 + qiw,r 22 + Qo) (Wi

with q; = Z Aquand z; =

which can

—w)=>0,ae.onX

(44b)
This means (44b) is satisfied on X/S," the
boundary of the region Q except in a subset S; "
such that u(Sx) =0 , Vk, i.e. (44b) satisfies on
2 /Uk Sk With u(UxS) = 0, but {w,} is a dense
sequence in the control set W , then there exists
W € W such that
(21 + Q1w Z2 + G2w,)-(W—W) =0 , ae. on %,
v € W
i.e. (42a) gives (44). The converse is clear.

Theorem (5): (SCs for Optimality): In Addition to
the assumptions (A), (B) & (C). Suppose VT/C is
convex, with M_)/C convex, h; & py; (hqy;) are affine
wrt y; (wrtw;, V(x,t) €X) V(x,t) €Q, poiDai
(q0ir q21)are convex with respect to
yi(wrtw;V(x, t) € £), V(x,t) € Q, Vi =1,2. Then
the necessary conditions of Theorem 4 with 4, > 0
are also sufficient.
Proof: Assume w € WA is satisfied the K.T.L.
condition (42). Let J(W) = Y2, A,J;(W), then using
Theorem 3, to get

Dj(w,w —w) =

2
120/11 S5 X1z + Quiwi) Swidxdt = 0
Since
hy(x,t,y1) = hy1(x, )y1 + hya(x, t)
=hyiyr +hyy and

hy(x,t,y2,wp) = hay (X, 0)y, + hpp(x, 1)
= hy1Y2 + hy;

Let W = (wy,wy) & W = (W, W,) are two given
controls vectors, then y = (Y1, Ywz2) = (¥, V2) &
¥ = Jww Vw2) = (71, 7,) are their corresponding
stats solutions. Substituting the pair (u,y) in
equations (1-6) and multiplying all the obtained
equations by y € [0,1] once and then substituting
the pair (w,y) in (1-6) and multiplying all the
obtained equations by y; = (1 — y) once again,
finally adding each pair from the corresponding
equations together one gets

_ A(yy1+y1y1)
Yy1 + vV e — Xij= 16x (ai; %) +
b1 (vyr +v1¥1) — B (vy2 + v1¥2)

= h11(yy1 + v1¥1) + hez (452)

a(}/.’Vg':lY1).V1) = (ywy + y,i#), on % (45b)
Yy1(x,0) + y171 (x, 0) = y7 (), Yy1e(x, 0) +
Y1 ¥16(x,0) = ¥ (x) (45¢)

_ o(yy,+ )
Yy2 +v1V2 et (Bij M) +

Br(yy2 +v1¥2) + BYy2 +v1¥2)
= hy1(Yy2 + v1¥2) + hy2

_Zl] 1ax

(46a)
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6(1/3;2:;/137_2) = (ywz +y1Wz), on X (46b)
¥y2(x,0) + y17,(x,0) = y3 (x), ¥y2: (%, 0) +
Y1Y2:(x,0) = YZl ) (46¢)

Equations (45) and (46), show that if the control
vector is W = (W,,W,) With % = yW + y,w then
its corresponding state vector is ¥ = (7, 7,) with
Vi = Yiw; = Yipwiyw) = VYi T V1V, Vi=12.
This means the operator w — y is “convex —
linear" wrt (y, w) V(x, t)) € Q.

On the other hand, the function J; (W) is “"convex —
linear" with respect to (y,w) for each (x,t) € Q,
this back to the fact that the sum of two affine
functions p,; () ( q1;(w;) , Vi = 1,2) with respect
to y; ('w; ) is affine and the operator w — y is
convex-linear.

The functions J,(w) , J,(w) are convex with
respect to (y,w) , for each (x,t) € Q (from the
assumptions on the functions p;; vz, g1 and qp»,
vl =0,2 and from the sum of two integral of
convex function is also convex). Hence J(W) is
convex with respect to (y, w), for each (x,t) € Q in
the convex set W, and has a continuous "Fréchet
derivative" satisfies

DJ(W,,w —w) = 0 = J(W) has a minimum at w
> JW) <J(W),VieW =

AoJoW) + A s (W) + A,),(W) <

AoJo(W) + Ay (W) + Ao)o(W) , Vi €W

Let w € W, , with 1, > 0 and from Transversality
condition , the above inequality becomes

AoJo(W) < Ao]o(V:V)) YWEW = Jo(W) SJO(V_T/)),
viw € W =~ W is a boundary optimal control.

Conclusions:

The Galerkin method with the Aubin
theorem are used successfully to prove the existence
of unique "continuous state vector" solution for
CNLHEQS when the CCBCV is given. The
theorem of existence CCBOCV governing by the
CNLHEQS with equality and inequality constraints
is proved. The existence of unique solution of the
ADCEQS associated with the CNLHEQS is
studied. The  Frcéhet derivation  of the
Hamiltonian is derived. The theorems of the NCs
and the SCs for the (boundary) optimality of the
constrained problem are proved.
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