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Abstract: 
In this paper, simulation studies and applications of the New Weibull-Inverse Lomax (NWIL) 

distribution were presented. In the simulation studies, different sample sizes ranging from 30, 50, 100, 200, 

300, to 500 were considered. Also, 1,000 replications were considered for the experiment. NWIL is a fat tail 

distribution. Higher moments are not easily derived except with some approximations. However, the 

estimates have higher precisions with low variances. Finally, the usefulness of the NWIL distribution was 

illustrated by fitting two data sets. 
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Introduction: 

In 2003, Kleiber and Kotz 1 mentioned that 

Inverse Lomax Distribution (ILD) belongs to the 

Beta-Type size distributions alongside with Dagum, 

Lomax, and Generalized Beta (GB) of the second 

kind as other members of the family. They 

postulated that ILD has applications in economics, 

actuarial sciences, and stochastic modeling. In 

2004, Kleiber2 studied Lorenz ordering 

relationships between order statistics from log-

logistic samples of potentially different sizes. Some 

results extend other families including the Burr XII, 

Lomax, and Burr III distributions. They applied the 

ILD model on geophysical data, specifically on the 

sizes of land fires in California State of United 

States. Moreover, in 2013 Rahman3 studied the ILD 

via the Bayesian approach by drawing inferences 

about the unknown shape parameter of the 

distribution. A comparison between Bayes estimates 

and Maximum Likelihood estimate was made after 

getting the simulated and real-data results. 

Therefore, it is concluded that the Bayesian method 

of estimation leads to better outcomes as compared 

to Maximum Likelihood (ML) estimates. This 

shows the supremacy of a Bayesian approach to 

classical one for parameter estimation. Other 

references that considered the Bayesian approach 

are Rahman and Aslam4 Jan and Ahmed5, Rahman 

and Aslam6 and Yadav7. All the references 

discussed so far, considered only the ILD. 

Recently, some generalization of ILD 

appeared in the literature with the sole aim of 

increasing the flexibility of the distribution. In 

2018, Falgore et. al.8 extended the ILD with the 

Odd Generalized Exponential family by Tahir9 in 

2015. They derived some mathematical properties 

of the proposed distribution such as the quantile 

function, moments, order statistics and asymptotic 

behavior of the distribution.  The estimation of the 

proposed distribution’s parameters was conducted 

using the method of Maximum Likelihood 

Estimation (MLE) procedure, and finally, they 

illustrated the usefulness of the proposed model by 

fitting the proposed distribution using a real-life 

data and compared its performance with comparator 

distributions. In 2019, Maxwell10  extended the ILD 

by utilizing a methodology of adding a new 

parameter(s) by Marshall and Olkin11 . They called 

their proposed distribution the Marshall-Olkin 

Inverse Lomax distribution (MO-ILD). They hope 

that by adding a new parameter(s), it may lead to 

greater flexibility in modeling various data types. 

The Marshall-Olkin Inverse Lomax distribution 

provided a better fit than the Marshall Olkin 

Flexible Weibull Extension Distribution, and the 

Marshall-Olkin exponential Weibull distribution 

based on log-likelihood AIC, CAIC, BIC, and 

HQIC values. Therefore, they concluded that the 

Marshall Olkin inverse Lomax distribution is the 

most appropriate model amongst the considered 
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distributions and a very competitive model for 

describing lifetime phenomenon. Recently in 2019, 

Hassan12 and Falgore et. al.13 extended the ILD with 

the Weibull G family by Bourgnuignon14  in 2014. 

They called it Weibull Inverse Lomax (WIL). Some 

structural properties were derived. Such properties 

include moments, Reliability Characterization, 

Inverse moments and moments. The model 

parameter estimation was carried out based on 

censored samples of Type II. Maximum likelihood 

estimators are built along with confidence intervals 

and reliability function asymptotic population 

parameters. The accuracy property of maximum 

likelihood estimators was verified based on 

simulated samples. Also, the results were  applied to 

two real data. 

 

The motivation behind this research is to explore 

the work of Falgore15 et. al. by conducting 

simulation study to assess the consistency of the 

parameter estimates and provide some applications 

to real-world datasets. The simulation studies are to 

check the desirable properties of the estimates like 

Unbiasedness, Consistency, Sufficiency, and 

Efficiency. While the application will be based on 

the datasets used by the New Weibull G family by 

Tahir16 et. al . in 2016. 

 

The probability density function (pdf) and 

cumulative distribution function (CDF) of ILD are 

given by the following equations as defined by 

Yadav17 in 2016 as: 
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 where > 0x > 0  and > 0  are the scale and 

shape parameters respectively. 

Let ( ; )g x   and ( ; )G x   denote the (pdf) and  

(CDF) of a baseline model with parameter vector 

 . Based on this CDF, (16) replaced the argument 

[ ( )] = [ ( ; )]W G x log G x   and define the CDF 

and the pdf of the New Weibull-G family by: 
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 where ( ; )G x   is any baseline CDF which 

depends on a parameter vector  .  
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 The additional parameters caused by the New 

Weibull generator are only needed to increase 

distribution flexibility. 

The pdf, CDF, and quantile function of the NWIL 

distribution as defined by Falgore15 et. al. (15) are 

given below: 
1
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where = ( , , , )      and α and γ are the scale 

parameters while β and λ are the shape parameters, 

respectively. 

Nevertheless, some of the NWIL distribution's 

statistical properties and derivations such as, 

entropies, Moments, Moment Generating Functions, 

distribution of Order Statistics and estimations were 

given in Falgore15 et. al.  

Methods 
In this section, simulation procedures and Goodness 

of fit criteria are to be explained. 

Simulation Studies  

Monte Carlo is a process or methodology 

that uses replicated trials (sampling) that are 

generated using random numbers in computer 

programs like R, as given in Sambridge18  in the 

year 2002. However, in 1997 Mooney19 highlighted 

five (5) steps on how to do a Monte Carlo 

simulation study as follows:  

1. Clearly state the pseudo-population that can be 

used in generating random samples usually by 

writing code in a specific method. 

2. Sample from the population of interest 

(depending on your objective).  
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3. Estimate the parameter of interest from the 

sample and keep it in a vector.  

4. Repeat the previous steps i.e 2 and 3 N-times (N 

is the number of replications).  

5. Create a relative frequency distribution of 

resulting values that is a Monte Carlo 

approximation of the distribution of samples under 

the conditions defined by the pseudo-population and 

the procedures of sampling. 

 Based on the above procedure, we carry out our 

simulation studies as explained below. 

1. For specific parameter values i.e 
1= ( , , , )     , we simulated a random sample 

of size n from the NWIL distribution using equation 

(7).  

2. We then estimated the parameters of the NWIL 

distribution by the method of Maximum Likelihood. 

3. Perform 1,000 replications of steps 1 through 2. 

4. For each of the four (4) parameters of the NWIL, 

we computed the estimate, bias, variance, and Mean 

Squared Error (MSE) from the 1,000 parameter 

estimates. The statistics are given by:  

 
21000 1000 1000

=1 =1 =1

ˆ( )1 1ˆ ˆ ˆ ˆ ˆ= , ( ) = ( ), ( ) =
1000 1000 1000

i
i i

i i i

Bias V
 
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

    

2ˆ ˆ ˆ( ) = ( ) ( ( ))MSE V Bias                                                                                                                  (8) 

 

where ˆ ˆ ˆˆ ˆ= ( , , , )i i i i i      is the MLE for 

the ith replication (i =1, 2, …,1000). 

( = 30,50,100,200,300,500)n .  These 

estimations are conducted for sample sizes n 

ranging from 30, 50, 100, 200, 300, and 500. The 

true values of the parameters used in the simulation 

are =1 , = 0.5 , =1  and = 0.7 .  

 

Discussion of the Simulation Results 

The estimates of the unknown parameters are 

relatively good as they are approaching the true 

parameter values  as n increases (see Table 1). 

Moreover, the bias of the estimates of the first 

parameter ( ) decreases when n is small but 

started increasing as the sample size increases. 

Similarly, the bias of the estimates of the second 

parameter (  ) behaves as the first one. However, 

the bias of the third estimates ( ) reduces as the 

sample size (n) increases. Lastly, the bias of the 

fourth estimates ( ) behaves as  and  . 

Generally, the variances are very small for all the 

estimates. The MSEs of   and   generally 

reduces as n increases. While that of   almost 

maintain its value as n increases. According to 

Walther20  in 2005, Small variance shows high 

precision, and MSE as a measure of accuracy is 

good when the value is small. Also, small bias 

indicates a highly accurate estimator.  

 

Table1. Simulation Results: Estimates, Bias, Variance, and MSE for 1,000 iterations. 
sample sizes (n) Estimates Bias Variance MSE 

n=30 ̂ = 0.9482 -0.0518 0 0.0028 

 ̂ = 0.0241 -0.4759 0.0002 0.2267 

 
̂ = 0.0131 0.1313 0 0.0002 

 ̂ = 0.7189 0.0189 0 0.0004 

n=50 ̂ = 0.9546 -0.0454 0 0.0021 

 ̂ = 0.0288 -0.4712 0.003 0.2223 

 
̂ = 1.0143 0.0143 0 0.0002 

 ̂ = 0.7269 0.0269 0 0.0008 

n=100 ̂ = 0.9635 -0.3653 0 0.2184 

 ̂ = 0.0332 -0.4669 0.0004 0.2184 

 
̂ = 1.0163 0.0163 0 0.0003 

 ̂ = 0.7379 0.0379 0 0.0015 

n=200 ̂ = 0.9665 -0.0335 0 0.0011 

 ̂ = 0.0389 -0.461 0.0005 0.2131 

 
̂ = 1.0196 0.0196 0 0.0004 
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 ̂ = 0.7516 0.0516 0 0.0027 

n=300 ̂ = 0.9719 -0.028 0 0.0008 

 ̂ = 0.0304 -0.4697 0.0003 0.2209 

 
̂ = 1.0205 0.0205 0 0.0004 

 ̂ = 0.7571 0.0571 0 0.0033 

n=500 ̂ = 0.9776 -0.0224 1.2367 0.0005 

 ̂ = 0.0401 -0.4599 0.0006 0.2121 

 
̂ = 1.0199 0.0199 0 0.0004 

 ̂ = 0.7585 0.0583 0 0.0035 

 

Shapes of the NWIL distribution 

The following are the plots of the pdfs, hazard rate 

functions, and CDF (Fig. 1) according to Falgore15 

et. al. . The plots in Fig. 2 are other indications of 

the fat tail properties of the NWIL. The hazard rate 

functions in Fig. 3 exhibits large skewness. For the 

graphs below, the letters a,b,c,d stands for the   , 

 ,  , and   respectively. 

 
Figure 1. The CDF of NWIL at various 

parameter values. 

 

 

 

 
Figure 2. The Densities of NWIL at different 

values of parameter 

 

 

 



Open Access     Baghdad Science Journal                                P-ISSN: 2078-8665 

Published Online First: November 2021            2022, 19(3): 528-535                                              E-ISSN: 2411-7986 

 

532 

 

 
Figure 3. The hazard functions of NWIL 

distribution at various parameter values 

 

 

 

Results and Discussion: 
Data Set 1 

 Here, the applicability of the NWIL 

distribution to the breaking strength of 100 Yarn as 

reported by Duncan21 is presented. The summary 

statistics for this data is presented in Table 2. The 

plots of the Data set 1 are presented in Fig. 4. 

Throughout this section, a maxLik package 

developed by Henningsen22 in R Software by Team 

R23 in 2014 was used. The parameters of each 

model were estimated by the method of ML 

Estimation (MLE) using the Simulated ANNealing 

(SANN) method. The goodness of fit statistics used 

in comparing the performances are the Akaike 

Information Criterion (AIC) and Bayesian 

Information Criterion (BIC). However, Smaller 

values of the AIC and BIC statistics indicate better 

model fittings. Throughout the analysis, we used 

negative log-likelihood (-ll) value to derive the AIC 

and BIC by using the following relations: 

= 2( ) 2AIC ll R                             (9) 

And 

= 2( ) ( )BIC ll Rlog n                 (10) 

Where R is the parameter number and n is the 

sample size. 
 

Table 2. Summary Statistics of the first data set 
Min. Max. Median Mean S.D. Sk. Kur. 

62 138 99 99.43 12.46 0.64 5.76 

 
 

 
Figure 4. Histogram and cumulative plots for Data set 1 
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  The New Weibull-Inverse Lomax (NWIL) 

distribution defined by Falgore15 et. al. was fitted. 

Its fit is also compared with the Weibull-Lomax 

distribution by9 Odd generalized exponential 

Inverse Lomax distribution by8 logistic Lomax 

distribution by Zubair24 Inverse Lomax distribution, 

as in3 Weibull Log-logistic by Tahir (16), and 

Weibull exponential by Oguntunde25 et. al. with the 

pdfs given below (Table 3):  
11

1 1
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for 0 < <x   and  ,  ,  and   > 0 . 

Table 3. MLE, -LL, AICs, and BICs for the first data set fitted to NWIL and other models 

Model Estimates ll AIC BIC 

NWIL 26.94, 0.24, 9.08, 19.54 356.75 721.5 731.92 

WLL 0.66, 25.59, 97.75 383.59 773.18 785.6 

OGEILD 24.2, 28.2, 24.49, 9.17 395.59 799.77 810.2 

LLO 0.45, 12.35, 19.59 411.56 829.12 836.94 

WE 0.66, 4.03, 0.01 413.4 832.8 845.22 

WL 0.01, 2.27, 1.01, 2.34 495.67 999.34 1009.76 

IL 4.93, 20.09 562.37 1128.75 1133.95 

 

Data Set 2 

 The second set of real-world data corresponds to 

the survival times (in days) recorded by26 of 72 

guinea pigs infected with Virulent Tubercle Bacilli. 

The summary statistics for this Data set is presented 

in Table 4. The plots of the data is presented in Fig. 

5. The NWIL distribution alongside Weibull-

Weibull by17 (Table 5) was fitted, Odd Generalized 

exponential Inverse Lomax distribution by8 and 

Inverse Lomax distribution with the pdf: 
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     (17) 

other pdfs are defined earlier. 

 

Table 4. Summary Statistics of the Second data 

set 
Min. Max. Median Mean S.D. Sk. Kur. 

10 555 145 175.4 104.19 1.37 5.16 
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Figure 5. Histogram and cummulative plot for Data set 2 

 

Table 5. MLE, -LL, AIC and BIC for the second data set fitted to NWIL and other models 

Model Estimates ll AIC BIC 

NWIL 20.64, 0.25, 11.51, 12.71 308.14 624.29 633.39 

WW 2.66, 0.69, 0.03 390.23 786.47 797.57 

OGEILD 3.64, 0.02, 0.55, 2.45 425.77 859.53 868.65 

IL 9.18, 13.32 450.23 904.46 909.01 

  

Concluding Remarks 

  A simulation study based on NWIL by 

Falgore15 et. al. in 2019 was performed. The results 

indicated that the ML estimates were cosistent most 

of the times. The distribution was fitted to two data 

sets. The New Weibull-Inverse Lomax distribution 

(NWIL) was fitted to two datasets. Alongside the 

comparator distributions, the NWIL distribution 

outperformed its comparators, as shown in Table 3 

and Table 4. For the first dataset, NWIL was 

compared with the Weibull Log Logistics which 

was fitted by Tahir16 et. al. in 2016 using the same 

data set. It is clear from Table 5 that the NWIL 

distribution performed much better than the New 

Weibull-Weibull distribution. We can therefore 

conclude that based on these two datasets the NWIL 

distribution outperfomed its comparators.  
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 الجديد ويبل العكسي لوماكس توزيع مع التطبيقات
 

             ساني ابراهيم                يونس فالغوجميل 
 

 نيجيريا ،أحمدو بيلو زارياجامعة 
 

 الخلاصة:
الجديد. في دراسات المحاكاة ،  Weibull-Inverse Lomax (NWIL)في هذه الورقة ، نقدم دراسات وتطبيقات محاكاة لتوزيع 

تكرار للتجربة. لا يتبع التحيز  1000.لقد درسنا أيضًا 500و  300و  200و  100و  50و  30درسنا أحجام عينات مختلفة تتراوح بين 

ع بعض التقريبية.ومع ذلك ، ( قانون الأعداد الكبيرة سواء كان توزيع ذيل الدهون. لا يتم اشتقاق لحظات أعلى إلا مMSEوالخطأ التربيعي )

 من خلال تركيب مجموعتي بيانات. NWILفإن التقديرات لديها دقة أعلى مع تباينات منخفضة. أخيرًا ، أثبتنا فائدة توزيع 

 

 الجديد ، اللحظات ، وظائف توليد اللحظات ، دراسات المحاكاة. Weibull-Inverse Lomax، توزيع  Entropy الكلمات المفتاحية:
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