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Abstract:

In this paper, we proved coincidence points theorems for two pairs mappings which are defined on
nonempty subset A in metric spaces X by using condition (1.1). As application, we established a unique
common fixed points theorems for these mappings by using the concept weakly compatible (R-weakly
commuting) between these mappings.
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Introduction:

The common fixed point theory is so  set of coincidence points of f and g is denoted by
powerful in Mathematics. It can be used in various (f,g) , the set of fixed points of f is denoted by
fields, for example, variation al inequalities,  F(f) and the closure of the set A is denoted by A.
optimization, and approximation theory. The  The pair (f, g) said to be
common fixed point theorems for mappings  (a) " Commuting maps if fg(a) = gf(a), for
achieving certain contractive conditions in metric  all g € A."(11);
spaces have been continually studied for decades (b) " R-weakly commuting maps if for alla € 4
(see _(1, 2, 3, 4, 5, 6)) and references contained there existsR > 0 such thatd(fg(a),gf(a)) <
therein. Rd(f(a), g(a)), if R=1, then the maps are called

In 2015 (7) Chahan, Imdad, Kadelbrg and Vetro weakly commuting." (12);
proved a fixed and coincidence point theorem for a (c) " weakly compatible if they commute at their
hybr_id pair of compatible mappings via an implicit  coincidence  points, that is fg(a) = gf ()
relation. _ whenever f(a) = g(a)." (13).

In 2017 (8) Xu, Chen and Aleksic proved In 2016 (14) Choudhury and Som proved unigue
common random fixed point theorems for the  fixed point results for quasi contraction mappings
generalized quasi-contraction with the spectral on a metric space satisfying some generalized
radius r (1) of the quasi-contractive constant vector inequality conditions and unique common fixed
A satisfying r (1) € [0,%) in the setting of cone b-  point result for asymptotically regular mappings of
metric spaces over Banach algebras, where the certa?n- kind and satisfying a generalized contraction
coefficient & satisfies § > 1. condition .

In 2018 (9) Tomar and Sharma proved common )
fixed point theorems for a pair of self-maps in ~ Main Results:
metric space. Theorem (1.1).

In 2019 (10), Mitrovic, Aydi, Hussain and  Letfi,f2,g1,92:A > A such that for all a;,a; € A
Mukheimer proved certain common fixed point and 0< M <% , the pair (fy,f,) satisfy the
theorems in F-metric spaces. following condition

Let A be a nonempty subset of a metric space X d(fi(ar), f2(az))

and let f and g be self-mappings of A. A point <
a € A is a common fixed [coincidence] point of f  ~ M max{d(g1(a,), g.(a2)),d(g1(a1), f1(ar)),

and g if f(a) = g(a) = a [f(a) = g(a)] [9]". The d(gz(az):fz(az)):d(g1(a1):f2(a2)).
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d(g2(ay), fi(a))} - (1.1)

If £,(A) € g,(A), f>,(4A) S g,(A) and one of the
Subsets f;(4), f,(A), g1(A) or g,(A) is complete,
then c(f1,91) # @ and c(f,, g2) # 0.

Proof:

Let a.be arbitrary, Using f;(4) € g,(A)and
f,(A) € g,(A) , there exists two sequences
{b,r}and {b,r+1}, kK € N, such that
bok = fi(azk) = g2(azk41) (1.2)
bar+1 = f2(azks1) = g1(azi42)
From (1.2), (1.3) and (1.1), we have
d(bzk+2, bors1) = d(f1 (a2k+z)»f2 (a2641))
<M max{d(gl(aZHZ),gz (a2k+1));
d(g1 (azk+2) f1 (a2k+2))'d(g2 (azk+1)) f2 ((12k+1))
:d(..‘h (azk+2)) f2 (02k+1))'d(92 (azk+1)s f1(Az2k42))}
= M max{d(bzx+1,b21), A(bzk41, D2ic+2),

d(b2kl b2k+1)' d(b2k+1' b2k+1)) d(bZkr b2k+2)}
= M max{d(bzx+1, bar), d(bar 41, Dakcs2),

d(bzk, bags2)}
Using the following condition of metric space

(x,z) <d(x,y) +d(y,z) , we have

< M max{d(bzx+1, b2k ), d(b2k+1, b2k+2),

d(bzksbaks1) + d(bag1, boks2)}
= Md(bzy, byk+1) + Md(bag41, bok+2)
d(bak+1,bak+2) — Md(bagy1, boyyr)
< Md(byy, byjs1)

(1 — M)d(bai41, bais2) < Md(bak, baks1)

Hence, d(baj+1, bok+2) < vd(bag, bas1), Where

y = M < 1, by similar way we have
1-M
d(bai—1, box) < yd(byg—2, bak—1), therefore
d(bak, bo+1) < vd(bzr-1,bar)
< y2d(bak—2,bog—1) < -
< ykd(bO' bl)
To prove (b ) is a Cauchy sequence, for
k,zeN,k >z
d(by,b,) < d(by,bx—1) + d(bg_1,br_3) + -
+ d(bz41,b,)
< (YRR 4 4+ y7)d(bo, by)
yZ
< =y d(bo, by)

Let € > 0 be given, choose a natural number v large

enough such that 1’/—_]/ <eforeveryk >z>v .So,

(by)is a Cauchy sequence. Suppose that g,(A4) is a
complete subspace of X, this implies the sequence
(by) has a limit b. Since f;(A) € g,(4) , then
g>(a) = b forsome a € A . Thus we have

b= ,11_{{}0 bak = ;11_{130 fiaz,) = ,11_{1010 92(azx+1)
= ]11_{1;10 91(azp+1) = ;11_{130 f2(az)
Using (1.2) and (1.1), we have
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d (bZk' fz(a)) = d(fl(aZk)f fz(a))
< M max{d (g, (azk), 92(a)), d(g1 (azx), f1(azr))
) d(gz (@), f> (a)),d(g1(a2k):f2 (a)), d(g2(a), f1(az))}
Taking k — oo , we get

d(b, f2(a))

< Mmax{d(b, g,(a)),d(b,b),d(g,(a), f,(a))

) d(b! fZ(a))l d(gZ (a)! b)}
=M max{d(b, gz(a)),d(gz(a),fz(a)),d(b,fz(a))}
From b = g,(a) , we get
d(b, f(a)) sM d(b, f>(a)) =
(1 =M)d(b, f,(a)) <0
Hence, b = f,(a) = g,(a)
Therefore c(f,, g,) # ©.
Since f,(A) € g,(A4), then b € g, (A). We are
obtained w € A such that g;(w) = b
Using (1.4), (1.1) and (1.5), we have
d(f,(w),b) = d(f,(w), f,())
<M max{d(gl w), g2 (a)), d(91(W);f1 (W)),
d(g2(a), f2(@)), d(g1(w), f2(@)), d(g2(a), L(W))}
= M max{d(b, b),d(b, f;(w)),d(b,b),d(b,b),
d(b, fr(w))}

This implies d(b, f,(w)) = 0 therefore

b = f;(w) = g, (w). Hence w a coincidence point
of g, and f; . we conclude that
fiw) = g1(w) =b = fr(a) = g,(a)
Theorem (1.2).
Let fi1, /2 91,92, f1(A), f2(A), g1 (4) and g,(A) as
in theorem (1.1). If the pairs (f;, g1)and (f3, g,) are
weakly compatible (R-weakly commuting), then
F(fi) NF(f;) N F(g1) N F(g,) is asingle element.
Proof:
By theorem(1.1), there exists coincidence point a
of f,and g, such that f,(a)=g,(a) and
coincidence point w of f; and g,such that
fi(w) = g1 (w). If the pairs (f1, g1)and (f2, g,) are
weakly compatible, then
f1(.91(W)) = .91(f1(W)) and
f2 (.92 (a)) =92 (fz(a))
By (1.6), we get

f1(b) = g1(b) and f>(b) = g, (b).....(1.7)
Using (1.6), (1.1) and (1.7), we get
d(b, f2(b)) = d(fr(w), (b))
<M max{d(91 W), 92 (b))» d(g1(W);f1 (W)),
d(g2(b), f2(b)), d(g1(w), f2(b)), d(g2(b), fr(W))}
=M max{d(b,fz(b)),d(b,b),d(gz(b),gz(b)),

d(b, f,(b)),d(b, f())}

= M {d(b, f>(b))}
Then we get, (1 — M)d(b, f,(b)) < 0, this implies
b = f,(b), using (1.7) we have
b = g,(b) = f,(b) (1.8)
Again, by (1.8), (1.1) and (1.7), we have

(1.4)

(1.6).
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d(f1(b), b) = d(f1(b), f2(b))
<M max{d(g1 (b), 92 (b)): d(g1 (b).f1(b));
d(g2(b), f2(b)), d(g1(b), f2(b)), d(g2(b), f (b))}
=M max{d(fl(b)' b), d(fl(b)'fl(b))J d(b' b):
= M d(f1(b), b)
Getting (1 — M)d(f,(b),b) < 0, this implies
b = f;(b), using (1.7) we have
b = g,(b) = f1(b) (1.9)
Using (1.8). we have
b =g1(b) = f1(b) = g2(b) = f2(b).....(1.10)
Thus b is a common fixed point of f;,f,, g, and
92-
Singleton: let ¢ be another common fixed point of
f1, f2, g1 and g,, then from (1.1) we get
d(b,c) = d(f1(b), f2(c))
=< M max{d(gl(b), 92 (C))ld(gl(b)Jfl(b)):
d(g2(¢), £2(0)), d(g1(b), f2(€)),, d(g2(c), 1 (h))}
= M max{d(b, c),d(b,b),d(c,c),d(b,c),d(c,b)
= Md(b,c)
We get (1 — M) d(b,c) < 0, thisimplies b = c.
Suppose that (f, g1) is R-weakly commuting and w
is a coincidence point of f; and g4, then
d(fLgs (W), (g1fr(w)) < RA(fi(w), (9:(w)) = 0,
hence f19:(w) = g,fi(w), therefore the pair
(f1, g1) is weakly compatible.
Similarly, we have (f,, g,) is weakly compatible,
then the same steps above we can show that b is a
unique common fixed point of f;, f5, g, and g,.
Remark. Put f; = f,, g1=g>, and 0 <M < 1in the
above theorem, we have the theorem (2.1) in (13).

Conclusion:

In this work, common fixed (coincidence)
points of two pairs mappings which are defined on
nonempty subset A of metric space X are found
using the condition (1.1) and some relations
between the pair of mappings.
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