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Abstract: 
      Strong and ∆-convergence for a two-step iteration process utilizing asymptotically nonexpansive and 

total asymptotically nonexpansive noneslf mappings in the CAT(0) spaces have been studied. As well, 

several strong convergence theorems under semi-compact and condition (M) have been proved. Our results 

improve and extend numerous familiar results from the existing literature. 
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Introduction: 
      A metric space G is a CAT(0) space, if it is 

geodesically connected and if each geodesic triangle 

in G is at least as thin as its comparison triangle in 

the Euclidean plane. Some typical examples of 

CAT(0) spaces are R-trees, Pre-Hilbert space and 

Euchlidean buldings (1). 

      Fixed point theory in CAT(0) spaces was 

foremost initialized through Kirk (1). He proved 

that each nonexpansive (single valued) mapping 

defined on a bounded closed convex subset of a 

complete CAT(0) spaces permanently has fixed 

point. Therefore, the fixed point theory for single 

valued as well multivalued mappings in CAT(0) 

spaces has intensively been evolved by numerous 

authors. The convergence for nonexpansive 

mappings in CAT(0) spaces was studied by 

Dhompongsa-Panyanak (2). Thereafter, Khan and 

Abbas (3) studied the strong and ∆-convergance in 

CAT(0) space for an iteration process that is 

indepent of the Ishikawa iteration process. As well, 

several of these results obtained for two 

nonexpansive mappins. It is important to remember 

that fixed point theorems in CAT(0) space can be 

stratified to graph theory, computer science and 

biology (1).   

Let (𝐺, 𝑑) be a metric space and 𝑢, 𝑣 ∈ 𝐺 with  
𝑑(𝑢, 𝑣) = 𝑥. A geodesic path from 𝑢 to 𝑣, this 

means an isometry 𝑐: [0, 𝑥] → 𝑐([0,1]) ⸦ 𝐺 such as 

𝑐(0) = 𝑢  and 𝑐(𝑥) = 𝑣. The image of every 

geodesic path between 𝑢 and 𝑣 is called geodesic 

segment. Each point y in the segment is appeared by 

𝜔𝑢 ⊕ (1 − 𝜔)𝑣, where 𝜔 ∈ [0, 1] that is [𝑢, 𝑣] =
{𝜔𝑢 ⊕ (1 − 𝜔)𝑣: 𝜔 ∈ [0, 1]}. The space  (𝐺, 𝑑) is 

called a geodesic if each two points of 𝐺 are jouned 

through a geodesic segment, and 𝐺 is uniquely 

geodesic if there exists properly one geodesic 

jouning 𝑢 and 𝑣 for every 𝑢, 𝑣 ∈ 𝐺. A subset 𝐻 of 

𝐺 is called convex if 𝐻 has each geodesic segment 

joining any two points in 𝐻(4-6). 

      A geodesic triangle ∆(𝑢1, 𝑢2, 𝑢3) is a geodesic 

metric space (𝐺, 𝑑) that consists of three points 

𝑢1, 𝑢2, 𝑢3 in 𝐺 (the vertices ∆) and a geodesic 

segment between every pair of vertices (the edges 

of  ∆).  A comparison triangle ∆̅(𝑢1̅̅ ̅, 𝑢2̅̅ ̅, 𝑢3̅̅ ̅) in 

𝑊2 for ∆(𝑢1, 𝑢2, 𝑢3) 𝑖𝑠 a triangle in 2-dimensional 

Euclidean plane 𝑊2 with 𝑢1̅̅ ̅, 𝑢2̅̅ ̅, 𝑢3̅̅ ̅ ∈ 𝑊2  such as 

𝑑(𝑢1, 𝑢2) = |𝑢1̅̅ ̅ − 𝑢2̅̅ ̅|𝑊2 , 𝑑(𝑢1, 𝑢3) =
|𝑢1̅̅ ̅ −  𝑢3̅̅ ̅|𝑊2 , 𝑑(𝑢2, 𝑢3) = |𝑢2̅̅ ̅ − 𝑢3̅̅ ̅|𝑊2 , where 

|. |𝑊2 is the Eulidean norm on 𝑊2 (7). 
CAT(0): A geodesic space is called CAT(0) space 

if whole geodesic triangles achieve the following 

comparison axiom. 

     Let ∆ be a geodesic triangle in G and  ∆̅ ⸦ 𝑊2 be 

a comparison triangle for ∆. Therefore, ∆ is called to 

achieve the CAT(0) inequality if ∀ 𝑢, 𝑣 ∈ ∆ & 

∀ �̅�, �̅� ∈ ∆̅ , 𝑑(𝑢, 𝑣) ≤ 𝑑𝑊2(�̅�, �̅�). 
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If 𝑢, 𝑣1, 𝑣2 are the points in CAT(0) and if   𝑣0 =
1

2
(𝑣1 ⊕ 𝑣2), therefore the CAT(0) inequality leads 

to 

𝑑(𝑢, 𝑣0)2 ≤
1

2
𝑑(𝑢, 𝑣1)2 +

1

2
𝑑(𝑢, 𝑣2)2 

                      −
1

4
𝑑(𝑣1, 𝑣2)2 

Which is the (CN) inequality of Bruhat and Tits. In 

verity, a geodesic space is a CAT(0) space if it 

accomplishes (CN)(3). 

Lemma (1)(8): Let (𝐺, 𝑑) be a CAT(0) space. 

Therefore,  

𝑑((1 − 𝑘)𝑎 ⊕ 𝑘b, c)
2

≤ (1 − 𝑘)𝑑(𝑎, 𝑐)2 + 𝑘𝑑(𝑏, 𝑐)2

− 𝑘(1 − 𝑘)𝑑(𝑎, 𝑏)2 

for all 𝑘 ∈ [0,1] and 𝑎, 𝑏, 𝑐 ∈ 𝐺.  
      Let {𝑢𝑛} be a bounded sequence in a CAT(0) 

space 𝐺. For 𝑢 ∈ 𝐺, setting 

𝑟(𝑢, {𝑢𝑛}) = lim
𝑛→∞

sup 𝑑(𝑢, 𝑢𝑛). 

The asymptotic radius 𝑟( {𝑢𝑛} ) of  {𝑢𝑛} is given 

through 

𝑟( {𝑢𝑛} ) = inf {𝑟(𝑢, {𝑢𝑛}): 𝑢 ∈ 𝐺}, 

and the asymptotic center 𝐴({𝑢𝑛}) of {𝑢𝑛}  is 

defined as  

𝐴({𝑢𝑛}) = {𝑢 ∈ 𝐺: 𝑟(𝑢, {𝑢𝑛}) = 𝑟( {𝑢𝑛} )} 

It is familiar that in CAT(0) space, 𝐴({𝑢𝑛}) has 

punctually one point.  

Numerous iteration processes have been structured 

and suggested in order to approximate fixed points. 

The Picard iteration for a mapping  𝑇: 𝐸 → 𝐸 is 

defined by 

 𝑢1 = 𝑢 ∈ 𝐸  
 𝑢𝑛+1 = 𝑇𝑛𝑢𝑛                                                    (1) 

The modified Mann iteration is considered by Schu 

(5), as below 

 𝑢1 = 𝑢 ∈ 𝐸  
 𝑢𝑛+1 = (1 − 𝛿𝑛)𝑢𝑛 + 𝛿𝑛𝑇𝑛𝑢𝑛                         (2) 

Where {𝛿𝑛} ∈ (0, 1). 
The modified Ishikawa iteration is studied by Tan 

and Xu (5), as below 

 𝑢1 = 𝑢 ∈ 𝐸  
 𝑢𝑛+1 = (1 − 𝛿𝑛)𝑢𝑛 + 𝛿𝑛𝑇𝑛𝑣𝑛 

 𝑣𝑛 = (1 − 𝛽𝑛)𝑢𝑛 + 𝛽𝑛𝑇𝑛𝑢𝑛                              (3) 

Where {𝛿𝑛} and {𝛽𝑛} ∈ (0, 1). The iteration 

decreases to the modified Mann iteration when 

𝛽𝑛 = 0, ∀𝑛 ≥ 1. 
Lately, the modified S-iteration in a Banach space is 

introduced by Agarwal et al. (5), as below 

𝑢1 = 𝑢 ∈ 𝐸  
𝑢𝑛+1 = (1 − 𝛿𝑛)𝑇𝑛𝑢𝑛 + 𝛿𝑛𝑇𝑛𝑣𝑛 

𝑣𝑛 = (1 − 𝛽𝑛)𝑢𝑛 + 𝛽𝑛𝑇𝑛𝑢𝑛, ∀𝑛 ≥ 1                (4) 

where {𝛿𝑛} and {𝛽𝑛} ∈ (0, 1). Notice that this 

iteration is independent of Ishikawa and Mann 

iterations.  

Recently, Sahin and Basarir (5) modified the above 

iteration in a CAT(0) space, as follows 

𝑢1 = 𝑢 ∈ 𝐸 

𝑢𝑛+1 = (1 − 𝛿𝑛)𝑇𝑛𝑢𝑛 ⊕ 𝛿𝑛𝑇𝑛𝑣𝑛 

𝑣𝑛 = (1 − 𝛽𝑛)𝑢𝑛 ⊕ 𝛽𝑛𝑇𝑛𝑢𝑛, ∀𝑛 ≥ 1              (5) 

The following iteration has been studied by M. R. 

Yadava (9) for common fixed points of two self 

mappins 𝑆 and 𝑇,  

𝑢1 = 𝑢 ∈ 𝐸 

𝑢𝑛+1 = 𝛿𝑛𝑢𝑛 + 𝛾𝑛𝑇𝑢𝑛 + 𝛽𝑛𝑆𝑣𝑛 

𝑣𝑛 = (1 − 𝛾𝑛)𝑢𝑛 + 𝛾𝑛𝑇𝑢𝑛 ,   𝑛 ∈ 𝑁                    (6) 

Where {𝛿𝑛}, {𝛾
𝑛
} and {𝛽

𝑛
} are real sequences in [0, 1] 

 with 𝛿𝑛 + 𝛾𝑛 + 𝛽𝑛 = 1. This iteration as well 

decreases to Mann iteration when  𝑇 = 𝐼 or 𝛾𝑛 = 0. 
      Inspired and motivated by the work of M. R. 

Yadava (6),  the iteration (6) for common fixed 

points of two mapping asymptotically 

naonexpansive and total asymptotically 

nonexpansive nonself mappings in a CAT(0) space 

is modified, as follows. 

      Deem E to be a nonempty closed convex subset 

of a complete CAT(0) space G, 𝑇: 𝐸 → 𝐸 to be an 

asymptotically nonexpansive and 𝑆: 𝐸 → 𝐸 to be a 

total asymptotically nonexpansive mappings. 

Presume that {𝑢𝑛} is a sequence produced by 

𝑢1 = 𝑢 ∈ 𝐸 

𝑢𝑛+1 = 𝑃(𝛿𝑛𝑢𝑛 ⊕ 𝛾𝑛𝑇(𝑃𝑇)𝑛−1𝑢𝑛

⊕ 𝛽𝑛𝑆(𝑃𝑆)𝑛−1𝑣𝑛) 

𝑣𝑛 = 𝑃((1 − 𝛾𝑛)𝑢𝑛 ⊕ 𝛾𝑛𝑇(𝑃𝑇)𝑛−1𝑢𝑛),   𝑛 ∈ 𝑁 (7)                                        

where {𝛿𝑛}, {𝛾𝑛} and {𝛽𝑛} are real sequences in [0, 1]  

with 𝛿𝑛 + 𝛾𝑛 + 𝛽𝑛 = 1 and  𝑃 is a nonexpansive 

retraction of  𝐺 onto 𝐸. 

      In this paper, a new iteration for approximating 

a common fixed point of asymptotically 

nonexpansive and total asymptotically 

nonexpensive nonself mappings is constructed. 

Some strong convergence theorems and ∆-

convergence theorem under appropriate conditions 

like semi-compact and condition (M) in CAT(0) 

spaces are proved. As well, numerical example to 

elucidate our work is provided.  

 

Preliminaries 
      Let (𝐺, 𝑑) be a metric space & 𝐸 be a nonempty 

subset of 𝐺.  Deem 𝑇: 𝐸 → 𝐸 to be a mapping. A 

point 𝑎 ∈ 𝐸  is called a fixed point of 𝑇 if 𝑇𝑎 = 𝑎. 

As well the set of common fixed points of 𝑇 and 𝑆 

denote by 𝐹 which is  

𝐹 = { 𝑎 ∈ 𝐸: 𝑇𝑎 = 𝑆𝑎 = 𝑎}. Call that 𝐸 is called 

retract of 𝐺 if there is a continuous mapping 

𝑃: 𝐺 → 𝐸 such as 𝑃𝑎 = 𝑎, ∀𝑎 ∈ 𝐸. A mapping 

𝑃: 𝐺 → 𝐸 is called a retraction if 𝑃2 = 𝑃. If 𝑃 is a 

retraction, then 𝑃𝑏 = 𝑏, ∀ 𝑏 in the range of 𝑃. 
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 A mapping 𝑇: 𝐸 → 𝐸 is called 

nonexpansive (10) if 𝑑(𝑇𝑎, 𝑇𝑏) ≤
𝑑(𝑎, 𝑏), ∀𝑎, 𝑏 ∈ 𝐸. 

 A mapping 𝑇: 𝐸 → 𝐸 is called 

asymptotically nonexpansive (11) if ∃  
      a sequence {ϭ𝑛} ⸦ [1, ∞) with ϭ𝑛 → 1  

such as 𝑑(𝑇𝑛𝑎, 𝑇𝑛𝑏) ≤  ϭ𝑛𝑑(𝑎, 𝑏),  
∀𝑛 ≥ 1, ∀𝑎, 𝑏 ∈ 𝐸. 

 A mapping 𝑇: 𝐸 → 𝐺 is called 

asymptotically nonexpansive nonself (11) if 

∃ a sequence {ϭ𝑛} ⸦ [1, ∞) with ϭ𝑛 → 1  
such as 𝑑(𝑇(𝑃𝑇)𝑛−1𝑎, 𝑇(𝑃𝑇)𝑛−1𝑏) ≤ 

 ϭ𝑛𝑑(𝑎, 𝑏), ∀𝑛 ≥ 1, ∀𝑎, 𝑏 ∈ 𝐸, where 𝑃 is a 

nonexpansive retractiopn of 𝐺 onto 𝐸. 

 A mapping 𝑇: 𝐸 → 𝐸 is called uniformly L-

lipschitzain (12) if ∃ a constant 𝐿 > 0 such 

as 𝑑(𝑇𝑛𝑎, 𝑇𝑛𝑏) ≤  𝐿𝑑(𝑎, 𝑏), ∀𝑛 ≥ 1, 
∀𝑎, 𝑏 ∈ 𝐸. 

 A mapping 𝑇: 𝐸 → 𝐸 is called total 

asymptotically nonexpansive (11) if 

∃ positive sequences  {𝑒𝑛}, {𝜎𝑛} with 

 𝑒𝑛 → 0, 𝜎𝑛 → 0 and a strictly 

nondecreasing continuous function  

𝜗: [0, ∞) → [0, ∞) with 𝜗(0) = 0 such as 

𝑑(𝑇𝑛𝑎, 𝑇𝑛𝑏) ≤  𝑑(𝑎, 𝑏) + 𝑒𝑛 𝜗𝑑(𝑎, 𝑏) 

+𝜎𝑛, ∀𝑛 ≥ 1, ∀𝑎, 𝑏 ∈ 𝐸. 
 A mapping 𝑇: 𝐸 → 𝐺 is called total 

asymptotically nonexpansive nonself (11) if 

∃ positive sequences {𝑒𝑛} , {𝜎𝑛} with 

 𝑒𝑛 → 0, 𝜎𝑛 → 0 and a strictly 

nondecreasing continuous function 

𝜗: [0, ∞) → [0, ∞) with 𝜗(0) = 0 such as 

𝑑(𝑇(𝑃𝑇)𝑛−1𝑎, 𝑇(𝑃 𝑇)𝑛−1𝑏) ≤  𝑑(𝑎, 𝑏) +
𝑒𝑛 𝜗𝑑(𝑎, 𝑏) + 𝜎𝑛, ∀𝑛 ≥ 1, ∀𝑎, 𝑏 ∈ 𝐸, 
where 𝑃 is a nonexpansive retraction of 𝐺 

onto 𝐸. 

 A mapping 𝑇: 𝐸 → 𝐺 is called uniformly L-

lipschitzain (11) if ∃ a constant 𝐿 > 0 such 

as 𝑑(𝑇(𝑃𝑇)𝑛−1𝑎, 𝑇(𝑃𝑇)𝑛−1𝑏) ≤
𝐿𝑑(𝑎, 𝑏), ∀𝑛 ≥ 1, ∀𝑎, 𝑏 ∈ 𝐸. 

The notion of asymptotcally nonexpansive mapping 

was foremost introduced by Gloebel and Kirk. 

Therefore Alber et al. introduced the class of total 

asymptotically nonexpensive, which generalizes 

some classes of mappings that are spans of 

asymptotically nonexpensive. Several authours have 

been extensively studied these classes of mappings 

(6). 

Definition (2)(13): A sequence {𝑢𝑛} in a CAT(0) 

space 𝐺 is called ∆-convergence to 𝑢 ∈ 𝐺 if 𝑢  is the 

unique asymptotic center of {𝑣𝑛} ∀ subsequence 

{𝑣𝑛} of {𝑢𝑛}. Here, note down ∆ − lim𝑛→∞ 𝑢𝑛 =
𝑢 and 𝑢 is the ∆-limit of {𝑢𝑛}. 
 

Note that given {𝑢𝑛} ⸦ 𝐺, {𝑢𝑛} ∆ − convergence to 

𝑢 and 𝑣 ∈ 𝐺 with 𝑣 ≠ 𝑢 through the uniqueness of 

the asymptotic center that gives  

lim
𝑛→∞

sup 𝑑( 𝑢𝑛, 𝑢) ≤ lim
𝑛→∞

sup 𝑑( 𝑢𝑛, 𝑣) 

Therefore, each CAT(0) space achieves the Opial 

property. 

Lemma (3)(8): Let 𝐺 be a CAT(0) space and 

𝑎 ∈ 𝐺. Presume {𝑠𝑛} is a sequence in [𝑧, 𝑐] for 

several 𝑧, 𝑐 ∈ (0, 1) and {𝑎𝑛} , {𝑏𝑛} are sequences 

in 𝐺 such as lim𝑛→∞ 𝑠𝑢𝑝  𝑑(𝑎𝑛, ℎ∗) ≤
𝑡,  lim

𝑛→∞
𝑠𝑢𝑝  𝑑(𝑏𝑛, ℎ∗) ≤ 𝑡 and lim𝑛→∞ 𝑑((1 −

𝑠𝑛) 𝑎𝑛 ⊕ 𝑠𝑛𝑏𝑛) = 𝑡  
for several 𝑡 ≥ 0. Thus  lim𝑛→∞𝑑( 𝑎𝑛, 𝑏𝑛) = 0. 

Lemma (4)(6): Let {𝜍𝑛}, {𝛼𝑛} and {𝜆𝑛} be the 

sequences of positive numbers such as 𝜍𝑛+1 ≤
(1 + 𝛼𝑛)𝜍𝑛 + 𝜆𝑛, ∀𝑛 ≥ 1.  

 If ∑ 𝛼𝑛 < ∞ and ∑ 𝜆𝑛 < ∞ ∞
𝑛=1

∞
𝑛=1 , 

therefore lim𝑛→∞ 𝜍𝑛 exists. 

 If there is a subsequence {𝜍𝑛𝑖} ⸦ {𝜍𝑛} such 

as 𝑎𝑛𝑖 → 0 thus lim𝑛→∞ 𝜍𝑛 = 0. 
Lemma (5)(14): Each bounded sequence in a 

complete CAT(0) space 𝐺 holds a ∆-convergence 

subsequence. 

Lemma (6)(15): If 𝐸 is closed convex subset of a 

complete CAT(0) space 𝐺 and if  {𝑢𝑛} is bounded 

sequence in 𝐸, thus the asympitotic center of {𝑢𝑛} is 

in 𝐸. 
Theorem (7)(11): Let 𝐸 be a closed convex subset 

of a complete CAT(0) space 𝐺. Let T be a mapping 

accomplishing one of the following conditions: 

 𝑇: 𝐸 → 𝐸 is an asymptotically 

nonexpansive mapping with a sequence 

{ϭ𝑛} ⸦ [1, ∞) &  ϭ𝑛 → 1. 
 𝑇: 𝐸 → 𝐺 is an asymptotically 

nonexpansive nonself mapping. 
 𝑇: 𝐸 → 𝐸 is a total asymptotically 

nonexpansive mapping. 
Let {𝑢𝑛} be a bounded sequence in 𝐸 such as 

lim𝑛→∞ 𝑑( 𝑢𝑛, 𝑇𝑢𝑛) = 0 and ∆ − lim𝑛→∞ 𝑢𝑛 = ℎ∗. 
Thus, 𝑇ℎ∗ = ℎ∗, ℎ∗ ∈ 𝐹.  
 

The convergence results  
      In this part, ∆-convergance and some strong 

convergnce theorems by using iteration (7) for 

asymptotically nonexpansive and total 

asymptotically nonexpansive nonself mappings in 

CAT(0) spaces are proved. 

Theorem (8): Let 𝐸 be a nonempty closed convex 

subset of a complete CAT(0) space 𝐺. Let 𝑇: 𝐸 → 𝐸 

be a uniformly L-lipschitzain and asymptotically 

nonexpansive and  𝑆: 𝐸 → 𝐺 be a uniformly L-

lipschitzain total asymptotically nonexpansive 

nonself mappings with 𝐹(𝑇, 𝑆) ≠ ∅. Presume that{ 

𝑢𝑛} is defined by (7). If 𝐹: = 𝐹(𝑇) ∩ 𝐹(𝑆) and the 

following conditions are accomplished: 
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i) ∑ 𝑒𝑛
∞
𝑛=1 < ∞ & ∑ 𝜎𝑛

∞
𝑛=1 < ∞. 

ii) There is a constant 𝐵∗ > 0 such as 𝜗(ϻ) < 𝐵∗ϻ,
ϻ ≥ 0. 
Thus, the sequence {𝑢𝑛} is ∆-convergence to a 

several points ℎ∗ ∈ 𝐹 (𝐹 ≔ 𝐹(𝑇) ∩ 𝐹(𝑆)). 
Proof: Step 1: Firstly, proving that 

lim𝑛→∞ 𝑑(𝑢𝑛, ℎ∗) for each ℎ∗𝐹 and lim𝑛→∞ 𝑑(𝑢𝑛, 𝐹)  
exist. 

Since ℎ∗ ∈ 𝐹, 𝑃ℎ∗ = ℎ∗. Now,   

𝑑(𝑣𝑛, ℎ∗) = 𝑑(𝑃((1 − 𝛾𝑛)𝑢𝑛

⊕ 𝛾𝑛T(𝑃𝑇)𝑛−1 𝑢𝑛), 𝑃ℎ∗) 

                  ≤ 𝑑((1 − 𝛾𝑛)𝑢𝑛 ⊕ 𝛾𝑛T(𝑃𝑇)𝑛−1 𝑢𝑛, 𝑃ℎ∗) 

                  ≤ (1 − 𝛾𝑛)𝑑(𝑢𝑛, ℎ∗)
+ 𝛾𝑛𝑑(T(𝑃𝑇)𝑛−1 𝑢𝑛, ℎ∗) 

                  ≤ (1 − 𝛾𝑛)𝑑(𝑢𝑛, ℎ∗) + 𝛾𝑛ϭ𝑛𝑑(𝑢𝑛, ℎ∗) 

                  = (1 − 𝛾𝑛 + 𝛾𝑛ϭ𝑛)𝑑(𝑢𝑛, ℎ∗) 
Thus, 

𝑑(𝑢𝑛+1, ℎ∗) = 𝑑(𝑃(𝛿𝑛𝑢𝑛 ⊕ 𝛾𝑛𝑇(𝑃𝑇)𝑛−1𝑢𝑛

⊕ 𝛽𝑛𝑆(𝑃𝑆)𝑛−1𝑣𝑛), 𝑃ℎ∗) 

≤ 𝑑(𝛿𝑛𝑢𝑛 ⊕ 𝛾𝑛𝑇(𝑃𝑇)𝑛−1𝑢𝑛

⊕ 𝛽𝑛𝑆(𝑃𝑆)𝑛−1𝑣𝑛, ℎ∗) 

≤ 𝛿𝑛𝑑(𝑢𝑛, ℎ∗) + 𝛾𝑛𝑑(𝑇(𝑃𝑇)𝑛−1𝑢𝑛, ℎ∗)
+ 𝛽𝑛𝑑(𝑆(𝑃𝑆)𝑛−1𝑣𝑛, ℎ∗) 

≤ 𝛿𝑛𝑑(𝑢𝑛, ℎ∗) + 𝛾𝑛ϭ𝑛𝑑(𝑢𝑛, ℎ∗)
+ 𝛽𝑛[𝑑(𝑣𝑛, ℎ∗) + 𝑒𝑛𝜗𝑑(𝑣𝑛, ℎ∗)
+ 𝜎𝑛)] 

≤ 𝛿𝑛𝑑(𝑢𝑛, ℎ∗) + 𝛾𝑛ϭ𝑛𝑑(𝑢𝑛, ℎ∗)
+ 𝛽𝑛(1 + 𝑒𝑛𝐵∗)𝑑(𝑣𝑛, ℎ∗) + 𝛽𝑛𝜎𝑛 

≤ 𝛿𝑛𝑑(𝑢𝑛, ℎ∗) + 𝛾𝑛ϭ𝑛𝑑(𝑢𝑛, ℎ∗)
+ 𝛽𝑛(1 + 𝑒𝑛𝐵∗)(1 − 𝛾𝑛

+ 𝛾𝑛ϭ𝑛)𝑑(𝑢𝑛, ℎ∗) + 𝛽𝑛𝜎𝑛 

≤ [𝛿𝑛 + 𝛾𝑛ϭ𝑛 + 𝛽𝑛(1 + 𝑒𝑛𝐵∗)(1 − 𝛾𝑛

+ 𝛾𝑛ϭ𝑛)]𝑑(𝑢𝑛, ℎ∗) + 𝛽𝑛𝜎𝑛 

≤ [𝛿𝑛 + 𝛾𝑛ϭ𝑛 + 𝛽𝑛 + 𝛽𝑛𝑒𝑛𝐵∗ − 𝛽𝑛𝛾𝑛 − 𝛽𝑛𝑒𝑛𝐵∗𝛾𝑛

+ 𝛽𝑛𝛾𝑛ϭ𝑛

+ 𝛽𝑛𝑒𝑛𝐵∗𝛾𝑛ϭ𝑛]𝑑(𝑢𝑛, ℎ∗) + 𝛽𝑛𝜎𝑛 

≤ [𝛿𝑛 + 𝛾𝑛 + 𝛽𝑛 + 𝛽𝑛𝑒𝑛𝐵∗ − 𝛽𝑛𝛾𝑛 − 𝛽𝑛𝑒𝑛𝐵∗𝛾𝑛

+ 𝛽𝑛𝛾𝑛ϭ𝑛

+ 𝛽𝑛𝑒𝑛𝐵∗𝛾𝑛ϭ𝑛]𝑑(𝑢𝑛, ℎ∗) + 𝛽𝑛𝜎𝑛 

≤ [1 + (𝛽𝑛𝑒𝑛𝐵∗ − 𝛽𝑛𝛾𝑛 − 𝛽𝑛𝑒𝑛𝐵∗𝛾𝑛 + 𝛽𝑛𝛾𝑛ϭ𝑛

+ 𝛽𝑛𝑒𝑛𝐵∗𝛾𝑛ϭ𝑛)]𝑑(𝑢𝑛, ℎ∗) + 𝛽𝑛𝜎𝑛 

= (1 + 𝜌𝑛)𝑑(𝑢𝑛, ℎ∗) + 𝜃𝑛 

where 𝜌𝑛 ≔ 𝛽𝑛𝑒𝑛𝐵∗ − 𝛽𝑛𝛾𝑛 − 𝛽𝑛𝑒𝑛𝐵∗𝛾𝑛 +
𝛽𝑛𝛾𝑛ϭ𝑛 + 𝛽𝑛𝑒𝑛𝐵∗𝛾𝑛ϭ𝑛 and 𝜃𝑛 ≔ 𝛽𝑛𝜎𝑛.  
Whereas ∑ 𝑒𝑛

∞
𝑛=1 < ∞ and ∑ 𝜎𝑛

∞
𝑛=1 < ∞,  

it follows up that ∑ 𝜌𝑛
∞
𝑛=1 < ∞ & ∑ 𝜃𝑛

∞
𝑛=1 < ∞. 

Therefore through Lemma (4), 

lim𝑛→∞ 𝑑(𝑢𝑛, ℎ∗), ∀ ℎ∗ ∈
𝐹 and lim𝑛→∞ 𝑑(𝑢𝑛, 𝐹) exist. 

Step 2: Next, proving that 

lim
𝑛→∞

𝑑( 𝑢𝑛, 𝑇𝑢𝑛) = 0 and lim
𝑛→∞

𝑑( 𝑢𝑛, 𝑆𝑢𝑛) = 0. 

In verity, it follows up from step (1) that for each 

given ℎ∗ ∈ 𝐹, lim
𝑛→∞

𝑑(𝑢𝑛, ℎ∗) exists. Presume that 

lim
𝑛→∞

𝑑(𝑢𝑛, ℎ∗) = 𝑟,    𝑟 ≥ 0 

𝑑(𝑣𝑛, ℎ∗) = 𝑑(𝑃((1 − 𝛾𝑛)𝑢𝑛

⊕ 𝛾𝑛T(𝑃𝑇)𝑛−1 𝑢𝑛), 𝑃ℎ∗) 

                  ≤ (1 − 𝛾𝑛)𝑑(𝑢𝑛 , ℎ∗)
+ 𝛾𝑛𝑑(T(𝑃𝑇)𝑛−1 𝑢𝑛, ℎ∗) 

                  ≤ (1 − 𝛾𝑛)𝑑(𝑢𝑛 , ℎ∗) + 𝛾𝑛ϭ𝑛𝑑(𝑢𝑛, ℎ∗) 
Hence, 

 lim
𝑛→∞

𝑠𝑢𝑝  𝑑(𝑣𝑛, ℎ∗) ≤ 𝑟                                     (8) 

 

As well from 𝑑(T(𝑃𝑇)𝑛−1 𝑢𝑛, ℎ∗) ≤ ϭ𝑛𝑑(𝑢𝑛, ℎ∗), 
∀ 𝑛 = 1, 2, …, gives 

 lim
𝑛→∞

𝑠𝑢𝑝 𝑑(T(𝑃𝑇)𝑛−1 𝑢𝑛, ℎ∗) ≤ 𝑟 

Now,  

𝑑(𝑆(𝑃𝑆)𝑛−1𝑣𝑛, ℎ∗) ≤ ((1 + 𝑒𝑛𝐵∗)𝑑(𝑣𝑛, ℎ∗) + 𝜎𝑛) 

Therefore,  

 lim
𝑛→∞

𝑠𝑢𝑝 𝑑(𝑆(𝑃𝑆)𝑛−1𝑣𝑛, ℎ∗) ≤ 𝑟 

Moreover, 

𝑟 = lim
𝑛→∞

𝑑( 𝑢𝑛+1, ℎ∗) 

   = lim
𝑛→∞

𝑑(𝑃(𝛿𝑛𝑢𝑛 ⊕ 𝛾𝑛𝑇(𝑃𝑇)𝑛−1𝑢𝑛

⊕ 𝛽𝑛𝑆(𝑃𝑆)𝑛−1𝑣𝑛), 𝑃ℎ∗) 

   ≤ lim𝑛→∞[𝛿𝑛𝑑( 𝑢𝑛, ℎ∗) +  𝛾𝑛𝑑(𝑇(𝑃𝑇)𝑛−1𝑢𝑛, ℎ∗) 

        + 𝛽𝑛𝑑(𝑆(𝑃𝑆)𝑛−1𝑣𝑛, ℎ∗) 
   

=
(𝛿𝑛 + 𝛾𝑛)𝑑(𝑇(𝑃𝑇)𝑛−1𝑢𝑛, ℎ∗) +
            𝛽𝑛𝑑(𝑆(𝑃𝑆)𝑛−1𝑣𝑛, ℎ∗) 

   = (1 − 𝛽𝑛)𝑑(𝑇(𝑃𝑇)𝑛−1𝑢𝑛, ℎ∗) 

       +𝛽𝑛𝑑(𝑆(𝑃𝑆)𝑛−1𝑣𝑛, ℎ∗) 
By Lemma (3), getting 

lim
𝑛→∞

𝑑( 𝑇(𝑃𝑇)𝑛−1𝑢𝑛, 𝑆(𝑃𝑆)𝑛−1𝑣𝑛) = 0 

Now, 

𝑑(𝑢𝑛+1, ℎ∗) = 𝑑(𝑃(𝛿𝑛𝑢𝑛 ⊕ 𝛾𝑛𝑇(𝑃𝑇)𝑛−1𝑢𝑛

⊕ 𝛽𝑛𝑆(𝑃𝑆)𝑛−1𝑣𝑛), 𝑃ℎ∗) 

                       = 𝑑(𝑃(𝛿𝑛𝑇(𝑃𝑇)𝑛−1𝑢𝑛

⊕ 𝛾𝑛𝑇(𝑃𝑇)𝑛−1𝑢𝑛

⊕ 𝛽𝑛𝑆(𝑃𝑆)𝑛−1𝑣𝑛), 𝑃ℎ∗) 

                       ≤ 𝑑((1 − 𝛽𝑛)𝑇(𝑃𝑇)𝑛−1𝑢𝑛

+ 𝛽𝑛𝑆(𝑃𝑆)𝑛−1𝑣𝑛, ℎ∗) 

                       ≤ 𝑑(T(𝑃𝑇)𝑛−1 𝑢𝑛, ℎ∗)
+ 𝛽𝑛𝑑(𝑇(𝑃𝑇)𝑛−1𝑢𝑛, 𝑆(𝑃𝑆)𝑛−1𝑣𝑛) 

Which yields that  

𝑟 ≤ lim
𝑛→∞

𝑖𝑛𝑓 𝑑(T(𝑃𝑇)𝑛−1 𝑢𝑛, ℎ∗) 

That gives 

lim
𝑛→∞

𝑑(T(𝑃𝑇)𝑛−1 𝑢𝑛, ℎ∗) = 𝑟 

In turn, 

𝑑(T(𝑃𝑇)𝑛−1 𝑢𝑛, ℎ∗) 

≤ 𝑑(𝑇(𝑃𝑇)𝑛−1𝑢𝑛, 𝑆(𝑃𝑆)𝑛−1𝑣𝑛) 

    +𝑑(𝑆(𝑃𝑆)𝑛−1𝑣𝑛, ℎ∗) 

 ≤  𝑑(𝑇(𝑃𝑇)𝑛−1𝑢𝑛, 𝑆(𝑃𝑆)𝑛−1𝑣𝑛) 

     +(1 + 𝑒𝑛𝐵∗)𝑑(𝑣𝑛, ℎ∗) + 𝜎𝑛 
That implies 

    𝑟 ≤ lim
𝑛→∞

inf 𝑑( 𝑣𝑛, ℎ∗)                             (9) 

From (8) and (9), that deduces 
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lim
𝑛→∞

𝑑( 𝑣𝑛, ℎ∗) = 𝑟 

Again,  

𝑟 = lim
𝑛→∞

𝑑( 𝑣𝑛, ℎ∗) 

   = lim
𝑛→∞

𝑑 (𝑃(1 − 𝛾𝑛)𝑢𝑛 ⊕ 𝛾𝑛T(𝑃𝑇)𝑛−1 𝑢𝑛), ℎ∗) 

Through Lemma (3), getting 

lim
𝑛→∞

𝑑(  T(𝑃𝑇)𝑛−1 𝑢𝑛, 𝑢𝑛) = 0 

Notice that  

lim𝑛→∞ 𝑑( 𝑣𝑛, ℎ∗) = 𝛾𝑛d(T(𝑃𝑇)𝑛−1 𝑢𝑛, ℎ∗) 

Therefore,  
lim

𝑛→∞
𝑑( 𝑣𝑛, ℎ∗) = 0 

Now, 

𝑑(𝑢𝑛+1, 𝑢𝑛) = 𝑑(𝑃((𝛿𝑛𝑢𝑛 ⊕ 𝛾𝑛𝑇(𝑃𝑇)𝑛−1𝑢𝑛

⊕ 𝛽𝑛𝑆(𝑃𝑆)𝑛−1𝑣𝑛), 𝑢𝑛) 

                        ≤  𝑑((𝛿𝑛 + 𝛾𝑛)𝑇(𝑃𝑇)𝑛−1𝑢𝑛

+ 𝛽𝑛𝑆(𝑃𝑆)𝑛−1𝑣𝑛, 𝑢𝑛) 

                        ≤ (1 − 𝛽𝑛)𝑑(𝑇(𝑃𝑇)𝑛−1𝑢𝑛, 𝑢𝑛)
+ 𝛽𝑛𝑑(𝑆(𝑃𝑆)𝑛−1𝑣𝑛, 𝑢𝑛) 

This gives 

lim
𝑛→∞

𝑑( 𝑢𝑛+1, 𝑢𝑛) = 0 

Thus, 

𝑑(𝑢𝑛+1, 𝑣𝑛) ≤ 𝑑(𝑢𝑛+1, 𝑢𝑛) + 𝑑(𝑣𝑛, 𝑢𝑛)  
→ 0  𝑎𝑠  𝑛 → ∞ 

Which gives 

lim
𝑛→∞

𝑑( 𝑢𝑛+1, 𝑣𝑛) = 0 

Moreover, from  

𝑑(𝑢𝑛+1, 𝑆(𝑃𝑆)𝑛−1𝑣𝑛) 

≤ 𝑑(𝑢𝑛+1, 𝑢𝑛)   + 𝑑(𝑢𝑛, 𝑇(𝑃𝑇)𝑛−1𝑢𝑛) 

    +𝑑(𝑇(𝑃𝑇)𝑛−1𝑢𝑛, 𝑆(𝑃𝑆)𝑛−1𝑣𝑛) 
That gives 

lim𝑛→∞ 𝑑( 𝑢𝑛+1, 𝑆(𝑃𝑆)𝑛−1𝑣𝑛) = 0. 

𝑑(𝑢𝑛, 𝑇(𝑃𝑇)𝑛−1𝑢𝑛) 

≤ 𝑑(𝑢𝑛, 𝑇(𝑃𝑇)𝑛−1𝑢𝑛) 

   +𝑑(𝑇(𝑃𝑇)𝑛−1𝑢𝑛, 𝑆(𝑃𝑆)𝑛−1𝑣𝑛) 

   +𝑑(𝑆(𝑃𝑆)𝑛−1𝑣𝑛), 𝑇(𝑃𝑇)𝑛−1𝑢𝑛) 
Gives that 

lim
𝑛→∞

𝑑( 𝑢𝑛, 𝑇(𝑃𝑇)𝑛−1𝑢𝑛) = 0 

And 

𝑑(𝑢𝑛, 𝑇𝑢𝑛) ≤ 𝑑(𝑢𝑛, 𝑢𝑛+1) 

                         +𝑑(𝑢𝑛+1, 𝑇(𝑃𝑇)𝑛𝑢𝑛+1) 

                         +𝑑(𝑇(𝑃𝑇)𝑛𝑢𝑛+1, 𝑇(𝑃𝑇)𝑛𝑢𝑛) 

                      +𝑑(𝑇(𝑃𝑇)𝑛𝑢𝑛, 𝑇𝑢𝑛) 
By uniformly L-lipschitzain, getting 

 ≤ (1 + 𝐿)𝑑(𝑢𝑛, 𝑢𝑛+1) +  𝑑(𝑢𝑛+1, 𝑇(𝑃𝑇)𝑛𝑢𝑛+1) 

     +𝐿 𝑑((𝑃𝑇)𝑛𝑢𝑛, 𝑢𝑛) 

= (1 + 𝐿)𝑑(𝑢𝑛, 𝑢𝑛+1) + 𝑑(𝑢𝑛+1, 𝑇(𝑃𝑇)𝑛𝑢𝑛+1) 

     +𝐿 𝑑(𝑃𝑇(𝑃𝑇)𝑛−1𝑢𝑛, 𝑢𝑛) 

≤ (1 + 𝐿)𝑑(𝑢𝑛, 𝑢𝑛+1) + 𝑑(𝑢𝑛+1, 𝑇(𝑃𝑇)𝑛𝑢𝑛+1) 

     +𝐿 𝑑(𝑇(𝑃𝑇)𝑛−1𝑢𝑛, 𝑢𝑛)   → 0  𝑎𝑠  𝑛 → ∞. 
Therefore,  

       lim
𝑛→∞

𝑑( 𝑢𝑛, 𝑇𝑢𝑛) = 0                         (10) 

and 𝑑(𝑢𝑛, 𝑆𝑢𝑛) ≤ 𝑑(𝑢𝑛 , 𝑇𝑢𝑛) + 𝑑(𝑇𝑢𝑛, 𝑢𝑛) +
𝑑(𝑢𝑛, 𝑆𝑢𝑛), letting 𝑛 → ∞, that gives 

𝑑(𝑢𝑛, 𝑆𝑢𝑛) ≤ 𝑑(𝑢𝑛, 𝑆𝑢𝑛) 
This means, 

              lim
𝑛→∞

𝑑( 𝑢𝑛, 𝑆𝑢𝑛) = 0                    (11) 

Step 3: Now, proving that  

Ϩ∆(𝑢𝑛) ≔ ⋃ 𝐴([𝑧𝑛]) ⸦ 𝐹(𝑇, 𝑆)

{𝑧𝑛} ⸦ {𝑢𝑛}

 

And Ϩ∆(𝑢𝑛) has punctually one point. Since  

lim𝑛→∞ 𝑑( 𝑢𝑛, 𝑇𝑢𝑛) = 0 & lim𝑛→∞ 𝑑( 𝑢𝑛, 𝑆𝑢𝑛) =
0 are proved. 

Let Ϩ∆(𝑢𝑛) ≔ ⋃ 𝐴([𝑧𝑛]) ⸦ 𝐹(𝑇, 𝑆){𝑧𝑛} ⸦ {𝑢𝑛} , where 

the union is taked over all subsequence {𝑢𝑛} over 

{𝑧𝑛}. To belay that ∆-convergance of {𝑧𝑛} to a 

common fixed point of 𝑇 and 𝑆, first, elucidating 

that Ϩ∆(𝑢𝑛) ⸦ 𝐹(𝑇, 𝑆) & Ϩ∆(𝑢𝑛) is a singleton set. 

To show that  Ϩ∆(𝑢𝑛) ⸦ 𝐹(𝑇, 𝑆), presume that 

𝑧 ∈ Ϩ∆(𝑢𝑛). Therefore, there is a subsequence {𝑧𝑛} 

of {𝑢𝑛}. Such that 𝐴([𝑧𝑛]) = {𝑧}. Through Lemma 

(5) & (6), ∀ a subsequence {𝑦𝑛} of {𝑧𝑛} such as 

 ∆ − lim𝑛→∞ 𝑦𝑛 = 𝑦 and 𝑦 ∈ 𝐸.  
Since 

lim𝑛→∞ 𝑑( 𝑦𝑛, 𝑇𝑦𝑛) = 0 and lim𝑛→∞ 𝑑( 𝑦𝑛, 𝑆𝑦𝑛) =
0. It follows up from Theorem (7) that 𝑦 ∈ 𝐹. By 

the Opial property lim𝑛→∞ sup 𝑑( 𝑦𝑛, 𝑦) ≤
 lim𝑛→∞ sup 𝑑( 𝑦𝑛, 𝑇𝑦) and  lim𝑛→∞ sup 𝑑( 𝑦𝑛, 𝑦) ≤
 lim𝑛→∞ sup 𝑑( 𝑦𝑛, 𝑆𝑦). Thus, 𝑇𝑦 = 𝑦 and 𝑆𝑦 = 𝑦 

 𝑖. 𝑒 𝑦 ∈ 𝐹. Now, claiming that 𝑧 = 𝑦. If not, by step 

(1), lim𝑛→∞ 𝑑(𝑢𝑛, 𝑦) exists and holding to the 

uniquness of the asymptotic centers, 

lim
𝑛→∞

sup 𝑑(𝑦𝑛, 𝑦) < lim
𝑛→∞

sup 𝑑(𝑦𝑛, 𝑧) 

                                 ≤ lim
𝑛→∞

sup 𝑑(𝑧𝑛, 𝑧) 

                             < lim𝑛→∞ sup 𝑑(𝑧𝑛, 𝑦) 

                                 ≤ lim
𝑛→∞

sup 𝑑(𝑢𝑛, 𝑦) 

                                 = lim
𝑛→∞

sup 𝑑(𝑦𝑛, 𝑦) 

Which is a contradication. Thus, 𝑧 = 𝑦. To confirm 

that  and Ϩ∆(𝑢𝑛) is a singleton, let {𝑧𝑛} be a 

subsequence of  {𝑢𝑛}.  

By Lemma (5) & (6), there exists a subsequence 

{𝑦𝑛} of {𝑧𝑛} such as ∆ − lim𝑛→∞ 𝑦𝑛 = 𝑦 and 𝑦 ∈ 𝐸. 
Let 𝐴([𝑧𝑛]) = {𝑧} and 𝐴([𝑢𝑛]) = {𝑢}. Previously, 

showing that 𝑧 = 𝑦. Threrefore, it is sufficient to 

show 𝑦 = 𝑢, thus by step (1) lim𝑛→∞ 𝑑(𝑢𝑛, 𝑦) 

converges. By uniqueness 

lim
𝑛→∞

sup 𝑑(𝑦𝑛, 𝑦) < lim
𝑛→∞

sup 𝑑(𝑦𝑛, 𝑢) 

                                 ≤ lim
𝑛→∞

sup 𝑑(𝑢𝑛, 𝑢) 

                             < lim𝑛→∞ sup 𝑑(𝑢𝑛, 𝑦) 

                                 = lim
𝑛→∞

sup 𝑑(𝑦𝑛, 𝑦) 

Whish is a contradication. Thus, 𝑦 = 𝑢 the 

conclusion is belayed. 

Lastly, proving {𝑢𝑛} ∆-convergence to a common 

fixed point of 𝑆 and 𝑇. Of step (1) 𝑑(𝑢𝑛, ℎ∗), ∀ ℎ∗ ∈
𝐹,  and from step (2) lim𝑛→∞ 𝑑( 𝑢𝑛, 𝑇𝑢𝑛) =
0 & lim𝑛→∞ 𝑑( 𝑢𝑛, 𝑆𝑢𝑛) = 0, Ϩ∆(𝑢𝑛) has 
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punctually one point. Hence,{𝑢𝑛} is ∆-convergence 

to a common fixed point of 𝐹. 
Theorem (9): Under the presumption of Theorem 

(8). Therefore the sequence {𝑢𝑛} is defined by : 

 

 𝑢1 = 𝑢0 ∈ 𝐸  
 𝑢𝑛+1 = 𝛿𝑛𝑢𝑛 ⊕ 𝛾𝑛𝑇𝑛𝑢𝑛 ⊕ 𝛽𝑛𝑆𝑛𝑣𝑛 

 𝑣𝑛 = (1 − 𝛾𝑛)𝑢𝑛 ⊕ 𝛾𝑛𝑇𝑛𝑢𝑛                        (12)                                                       

is ∆-convergence to a common fixed point of 

𝑆 and 𝑇. 

Proof: 𝑇 and 𝑆 are self-mappings from 𝐸 to 𝐸, take 

𝑃 = 𝐼 ( the identity mapping on 𝐸). 

Therefore, (𝑇𝑃)𝑛−1 = 𝑇𝑛. The consequence of this 

Theorem is got of Theorem (8). 

Theorem (10): Under the presumption of Theorem 

(8). Presume that{ 𝑢𝑛} is defined by (7). If 

lim𝑛→∞ inf 𝑑(𝑢𝑛, 𝐹) =
0  or lim𝑛→∞ sup 𝑑(𝑢𝑛, 𝐹) = 0,  
where 𝑑(𝑢, 𝐹) = 𝑖𝑛𝑓ℎ∗∈𝐹𝑑(𝑢, ℎ∗), therefore the 

sequence {𝑢𝑛} converges strongly to a point in 𝐹.  

Proof: Through theorem (8),  

𝑑(𝑢𝑛+1, ℎ∗) ≤ (1 + 𝜌𝑛)𝑑(𝑢𝑛, 𝐹) + 𝜃𝑛           (13) 

where ℎ∗ ∈ 𝐹. Since ∑ 𝜌𝑛 < ∞∞
𝑛=1  and ∑ 𝜃𝑛 <∞

𝑛=1

∞, through the presumption of Theorem (10).  

Lemma (4) and lim𝑛→∞ inf 𝑑(𝑢𝑛, 𝐹) = 0  or 

 lim𝑛→∞ sup 𝑑(𝑢𝑛, 𝐹) = 0, gives that  

lim
𝑛→∞

𝑑(𝑢𝑛, 𝐹) = 0 

Next, { 𝑢𝑛} is a cauchy sequence in 𝐸. In verity, 

from (13) ∀ ℎ∗ ∈ 𝐹, 𝑑(𝑢𝑛+1, ℎ∗) ≤ (1 +
𝜌𝑛)𝑑(𝑢𝑛, ℎ∗) + 𝜃𝑛      ∀𝑛 ≥ 1 

Since ∀ 𝑢 ≥ 0, 1 + 𝑢 ≤ 𝑒𝑢, gives that 

𝑑(𝑢𝑛+𝑟, ℎ∗) ≤ 𝑒𝜌𝑛+𝑟−1  𝑑(𝑢𝑛+𝑟−1, ℎ∗) + 𝜃𝑛+𝑟−1 

                       ≤ 𝑒𝜌𝑛+𝑟−1𝑒𝜌𝑛+𝑟−2  𝑑(𝑢𝑛+𝑟−2, ℎ∗) +
                            𝑒𝜌𝑛+𝑟−1𝜃𝑛+𝑟−2+𝜃𝑛+𝑟−1 

                    ≤ ⋯ 

                       ≤ 𝑒∑ 𝜌𝑐
𝑛+𝑟−1
𝑐=𝑛 𝑑(𝑢𝑛, ℎ∗) + 

                           (𝑒∑ 𝜌𝑐
𝑛+𝑟−1
𝑐=𝑛 ) ∑ 𝜃𝑗

𝑛+𝑟−1
𝑗=𝑛   

                     ≤ 𝑒∑ 𝜌𝑛
∞
𝑛=1 𝑑(𝑢𝑛 , ℎ∗) + 

                        (𝑒∑ 𝜌𝑛
∞
𝑛=1 ) ∑ 𝜃𝑗

𝑛+𝑟−1
𝑗=𝑛  

                     

≤ 𝐻𝑑(𝑢𝑛, ℎ∗) +                             𝐻 ∑ 𝜃𝑗
𝑛+𝑟−1
𝑗=𝑛                             

(14) 

where 

𝐻 = 𝑒∑ 𝜌𝑛
∞
𝑛=1 < ∞. Since lim𝑛→∞ 𝑑(𝑢𝑛, 𝐹) =

0, presume a subsequence { 𝑢𝑛𝑤} of { 𝑢𝑛} and  

a sequence {ℎ𝑛𝑤
∗ } ∈ 𝐹, 𝑑(𝑢𝑛𝑤, ℎ𝑛𝑤

∗ ) → 0 as 𝑤 →
∞. Thus ∀ 𝜀 > 0, there is 𝑤𝜀 > 0 

𝑑(𝑢𝑛𝑤, ℎ𝑛𝑤
∗ ) <

𝜀

4𝐻
 𝑎𝑛𝑑 ∑ 𝜃𝑗

∞
𝑗=𝑛𝑤𝜀

<
𝜀

4𝐻
        (15)                     

for all 𝑤 > 𝑤𝜀. 

For any 𝑟 > 1 and ∀ 𝑛 ≥ 𝑛𝑤𝜀
, by (14) and (15), 

getting 

𝑑(𝑢𝑛+𝑟, 𝑢𝑛) ≤ 𝑑(𝑢𝑛+𝑟, ℎ𝑛𝑤
∗ ) + 𝑑(𝑢𝑛, ℎ𝑛𝑤

∗ ) 

                       ≤ 𝐻𝑑(𝑢𝑛𝑤, ℎ𝑛𝑤
∗ ) + 𝐻 ∑ 𝜃𝑗

∞
𝑗=𝑛𝑤𝜀

+

                           𝐻𝑑(𝑢𝑛𝑤, ℎ𝑛𝑤
∗ ) + 𝐻 ∑ 𝜃𝑗

∞
𝑗=𝑛𝑤𝜀

  

                       ≤ 2𝐻 𝑑(𝑢𝑛𝑤, ℎ𝑛𝑤
∗ ) + 2𝐻 ∑ 𝜃𝑗

∞
𝑗=𝑛𝑤𝜀

  

                       ≤  2𝐻.
𝜀

4𝐻
+ 2𝐻.

𝜀

4𝐻
 = 𝜀 

This displays that { 𝑢𝑛} is a cauchy sequence in 𝐸. 

Therefore, the completeness of 𝐺 means that { 𝑢𝑛} 

have to be convergent. Presume that lim𝑛→∞ 𝑢𝑛 =
𝑘∗. Since E is closed, therefore 𝑘∗ ∈ 𝐸. Next, prove 

that 𝑘∗ ∈ 𝐹, since lim𝑛→∞ 𝑑(𝑢𝑛, 𝐹) = 0, so that  

𝑑(𝑘∗, 𝐹) = 0. The closedness of F gives that 

𝑘∗ ∈ 𝐹. 
Theorem (11): Under the presumption of Theorem 

(8). Presume that {𝑢𝑛} is defined by (7). If 𝑇 and 𝑆 

satisfy the following condition  

(i) 

lim𝑛→∞ 𝑑( 𝑢𝑛, 𝑇𝑢𝑛) = 0 & lim𝑛→∞ 𝑑( 𝑢𝑛, 𝑆𝑢𝑛) =
0. 

(ii) If the sequence { 𝑧𝑛} in 𝐸 satisfies 

lim𝑛→∞ 𝑑( 𝑧𝑛, 𝑇𝑧𝑛) = 0 & lim𝑛→∞ 𝑑( 𝑧𝑛, 𝑆𝑧𝑛) = 0 

, then 

lim𝑛→∞ inf 𝑑(𝑧𝑛, 𝐹) =
0  or lim𝑛→∞ sup 𝑑(𝑧𝑛, 𝐹) = 0. Therefore, the 

sequence {𝑢𝑛} converges strongly to a point of 𝐹. 

Proof: Through Theorem (8),  

lim𝑛→∞ 𝑑( 𝑢𝑛, 𝑇𝑢𝑛) = 0 & lim𝑛→∞ 𝑑( 𝑢𝑛, 𝑆𝑢𝑛) =
0 and from the second condition (ii) 

lim𝑛→∞ inf 𝑑(𝑧𝑛, 𝐹) = 0  or 

 lim𝑛→∞ sup 𝑑(𝑧𝑛, 𝐹) = 0.Therefore, {𝑢𝑛} must 

converge strongly to a point in F through Theorem 

(10). 

      A mapping 𝑇: 𝐸 → 𝐸 is called semi-compact 

(16) if for a sequence {𝑢𝑛} in 𝐸 with 

lim𝑛→∞ 𝑑( 𝑢𝑛, 𝑇𝑢𝑛) = 0, there is a subsequence 

{𝑢𝑛𝑤} of {𝑢𝑛} such as 𝑢𝑛𝑤 → ℎ∗ ∈ 𝐸. 
Theorem (12): Under the presumption of Theorem 

(8). If either 𝑆 or 𝑇 is semi-compact, hence the 

sequence {𝑢𝑛} converges strongly to a point of 𝐹. 

Proof: Presume that S is semi-compact. By 

Theorem (8), getting lim𝑛→∞ 𝑑( 𝑢𝑛, 𝑆𝑢𝑛) = 0. 
Thus, ∃ {𝑢𝑛𝑤} of {𝑢𝑛} such as 𝑢𝑛𝑤 → ℎ∗.  
Now, by Theorem (8) encloses that 

lim𝑛→∞ 𝑑( 𝑢𝑛𝑤, 𝑆𝑢𝑛𝑤) = 0  and thus 𝑑(ℎ∗, 𝑆ℎ∗) =
0. In a similar way, proving that 𝑑(ℎ∗, 𝑇ℎ∗) = 0. 
Hence, ℎ∗ ∈ 𝐹, by (*), gives that  

𝑑(𝑢𝑛+1, ℎ∗) ≤ (1 + 𝜌𝑛)𝑑(𝑢𝑛, 𝐹) + 𝜃𝑛 

where ∑ 𝜌𝑛 < ∞∞
𝑛=1 , ∑ 𝜃𝑛 < ∞,∞

𝑛=1  by Lemma (4) 

lim𝑛→∞ 𝑑( 𝑢𝑛, ℎ∗) exists and 𝑢𝑛𝑤 → ℎ∗ ∈ 𝐹 gives 

that  

𝑢𝑛 → ℎ∗. This proves that {𝑢𝑛} converges strongly. 

 

Notice: The following condition is recalled: 

A mapping 𝑇: 𝐸 → 𝐸, where 𝐸 is a subset of a 

normed linear space 𝐺, is named to accomplish 

condition (N) (5) if there is a nondecreasing 
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function 𝜉: [0, ∞) → [0, ∞) with 𝜉(0) =
0 & 𝜉(Ϸ) > 0 , 
∀ Ϸ ∈ (0, ∞) such as   
‖𝑎 − 𝑇𝑎‖ ≥ 𝜉(𝑑(𝑎, 𝐹(𝑇)) for all 𝑎 ∈ 𝐸, where 

 𝑑(𝑎, 𝐹(𝑇)) = inf{‖𝑎 − ℎ∗‖ , ℎ∗ ∈ 𝐹(𝑇) ≠ ∅}. 
Yet, modify that definition to two mappings : 

Two mappings 𝑇: 𝐸 → 𝐸, where 𝐸 is a subset of a 

normed linear space 𝐺, is named to accomplish 

condition (M) (5) if ∀ a nondecreasing function 

𝜉: [0, ∞) → [0, ∞) with 𝜉(0) = 0 &𝜉(Ϸ) > 0 ,  
∀ Ϸ ∈ (0, ∞) such as 𝑙1‖𝑎 − 𝑆𝑎‖ + 𝑙2‖𝑎 − 𝑇𝑎‖ ≥ 

𝜉(𝑑(𝑎, 𝐹(𝑇)) for all 𝑎 ∈ 𝐸, where 𝑑(𝑎, 𝐹) =

inf{‖𝑎 − ℎ∗‖ , ℎ∗ ∈ 𝐹 ≠ ∅} and 𝑙1, 𝑙2 are two 

positive real numbers such as 𝑙1 + 𝑙2 = 1. Note, the 

condition (M) is weaker than the compactness of the 

domain 𝐸. As well Condition (M) decrease to 

condition (N) when 𝑆 = 𝑇. 
Theorem (13): Under the presumption of Theorem 

(8). If S and T satisfy condition (M), hence the 

sequence {𝑢𝑛} converges strongly to a point of 𝐹. 

Proof: Through Theorem (8), obtaining 

lim𝑛→∞ 𝑑( 𝑢𝑛, 𝑇𝑢𝑛) =
0 and lim𝑛→∞ 𝑑( 𝑢𝑛, 𝑆𝑢𝑛) = 0.   

From condition (M),  

lim
𝑛→∞

𝜉(𝑑(𝑢𝑛, 𝐹)) ≤ 𝑙1 lim
𝑛→∞

𝑑(𝑢𝑛, 𝑆𝑢𝑛)       

                                    +𝑙2 lim
𝑛→∞

𝑑(𝑢𝑛, 𝑇𝑢𝑛) = 0 

i.e lim𝑛→∞ 𝜉(𝑑(𝑢𝑛, 𝐹)) = 0. Therefore  

lim
𝑛→∞

𝑑 (𝑢𝑛, 𝐹) = 0 

The illation just now follows up of Theorem (10). 

 

Numerical example 

     Our results through the following example is 

elucidated (Table 1) 

Example (14): Deem 𝐺 = 𝑅 with its usual metric, 

so 𝐺 is as well complete CAT(0) space. Let 

𝐸 = [0, 1], which is a closed bounded convex 

subset of 𝐺. Define two mappings 𝑇, 𝑆: 𝐸 →

𝐸 by 𝑇(𝑢) = 𝑘𝑢 and 𝑆(𝑢) =
𝑢

𝑘+1
, 0 < 𝑘 < 1. So 𝑇 

is asymptotically nonexpansive mapping with 
{ϭ𝑛 = 2}, ∀ 𝑛 ∈ 𝑁 and 𝑆 is a total asymptotically 

nonexpansive nonself mapping with 𝑒𝑛 =
1

𝑛2  & 

 𝜎𝑛 =
1

𝑛3 , ∀ 𝑛 ≥ 1. Obviously, 𝐹(𝑇) = {0} = 𝐹(𝑆) 

of the mappings 𝑇 and 𝑆. Put 𝛿𝑛 = 0.2, 𝛾𝑛 =
0.5 & 𝛽𝑛 = 0.3 (𝛿𝑛 + 𝛾𝑛 + 𝛽𝑛 = 1).  By using 

Matlab,the iteration which is defined by (1) for 

initial points 𝑢1 = 0.76 and 𝑘 = 0.59, 𝑢1 =
0.88 and 𝑘 = 0.75, 𝑢1 = 0.9 and 𝑘 =
0.9 is calculated. Lastly, the convergence 

demeanors of the iteration (7) is appeared in Fig. 1. 

The consequence is that 𝑢𝑛 converges to zero. 

 

 

 

Table 1. Numerical results for 40 steps 
n 𝑢1 = 0.76, 𝑘

= 0.59 

𝑢1 = 0.88, 𝑘
= 0.75 

𝑢1 = 0.9, 𝑘
= 0.9 

2 0.4902 0.6380 0.7200 

3 0.3162 0.4626 0.5760 

4 0.2039 0.3353 0.4608 

5 0.1315 0.2431 0.3686 

6 0.0848 0.1763 0.2949 

7 0.0547 0.1278 0.2359 

8 0.0353 0.0927 0.1887 

9 0.0228 0.0672 0.1510 

10 0.0147 0.0487 0.1208 

11 0.0095 0.0353 0.0966 

12 0.0061 0.0256 0.0773 

13 0.0039 0.0186 0.0618 

14 0.0025 0.0135 0.0495 

15 0.0016 0.0098 0.0396 

16 0.0011 0.0071 0.0317 

17 0.0007 0.0051 0.0253 

18 0.0004 0.0037 0.0203 

19 0.0003 0.0027 0.0162 

20 0.0002 0.0020 0.0130 

21 0.0001 0.0014 0.0104 

22 0.0001 0.0010 0.0083 

23 0.0000 0.0007 0.0066 

24 0.0000 0.0005 0.0053 

25 0.0000 0.0004 0.0043 

26 0.0000 0.0003 0.0034 

27 0.0000 0.0002 0.0027 

28 0.0000 0.0001 0.0022 

29 0.0000 0.0001 0.0017 

30 0.0000 0.0001 0.0014 

31 0.0000 0.0001 0.0011 

32 0.0000 0.0000 0.0009 

33 0.0000 0.0000 0.0007 

34 0.0000 0.0000 0.0006 

35 0.0000 0.0000 0.0005 

36 0.0000 0.0000 0.0004 

37 0.0000 0.0000 0.0003 

38 0.0000 0.0000 0.0002 

39 0.0000 0.0000 0.0002 

40 0.0000 0.0000 0.0001 

 

 
Figure 1. Convergence behaviors for different 

initial points for 40 steps. 
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 CAT(0) في فضاء اللامتمددة المقاربة كليآ يقتطبل جديدة نقاط صامدة مشتركة  

 

 احمد جميل كاظم
 

  العراق ،بغداد ،جامعة بغداد ،كلية العلوم للبنات ،قسم علوم الحاسوب

 

 الخلاصة:
 asymptotically)اللامتمددة المقاربة تقارب لعملية تكرار من خطوتين بأستخدام تطبيقات  -Δتم دراسة التقارب و           

nonexpansive) واللامتمددة المقاربة كليآ (total asymptotically nonexpansive) في فضاء CAT(0)  وكذلك تم مبرهنة بعض

(. نتائجنا تحسن وتطور العديد من النتائج المعروفة في Μوشرط ) (semi-compact) تراصةشبه المالتقارب القوي باستخدام  نظريات

 ودة.الادبيات الموج

 

  .تقارب-Δ ,( Μوشرط )‚ نقاط صامدة تقريبيةCAT(0)‚ فضاء‚ اللامتمددة المقاربة بيقتط الكلمات المفتاحية:


