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Abstract:

A new method based on the Touchard polynomials (TPs) was presented for the numerical solution of the
linear Fredholm integro-differential equation (FIDE) of the first order and second kind with condition. The
derivative and integration of the (TPs) were simply obtained. The convergence analysis of the presented
method was given and the applicability was proved by some numerical examples. The results obtained in this

method are compared with other known results.
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Introduction:

Integral and integro-differential equations are
originated in many scientific and engineering
applications. In particular Fredholm integral
equation and (FIDE) can be derived from boundary
value problem. The (IDE) contains both differential
and integral signs and the derivative of the unknown
variable may appear to any order. (FIDE) is an
equation derived from the boundary value problem
with given initial boundary condition, where both
the differential and integral signs appeared together
in the same equation. In addition, limits of the
integration are constants. The (FIDE) of the first
order and second kind contains the unknown
variable and its derivative inside and outside the
integral sign respectively. It is noted that initial
condition should be given for (FIDE) to find the
particular solution (1). (FIDEs) often come in
applications being the mathematical models of
processes in biological problems, physics, economy
and chemistry, etc. (2). (FIDEs) are difficult to be
solved analytically, so it requires effective
numerical methods (3). For these reasons, many
scientists have been encouraged to study many
numerical methods to solve (FIDEs). All methods
have pros or cons but that hasn't stopped scientists
from developing various methods such as Bernstein
collocation matrix method (4), the well-posedness
method (5), reproducing kernel method (6),
exponential ~ spline  method (7), improved
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reproducing kernel method (8), priori Nystrom
method (9), and Fibonacci polynomials method
(10).

The general form of the linear (FIDE) of 1% order
and 2" kind is given by (1, 11):
az

XM =ho+n [ TrwXwde v
a
€ [allaZ ]l (1)
with initial boundary condition X(a;) =
Xo, ..(1a)

where a;,a, and n are constants, T(y, u) is a known
function of the variables y and u, called the nucleus
(kernel) of the Integral equation. The unknown
function X(y) will be calculated, which exists inside
and outside the integral sign. h(y) is a given

function, X'(y) = diyx(y) and X(a;) = Xpis a
constant initial boundary condition.

This paper is ordered as follows: Touchard
polynomials, approximation function, solution the
(FIDE), convergence analysis, test examples with
tables and graphs are presented, brief of conclusions
and recommendations, and finally, the references
are listed.
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Touchard Polynomials:

Let’s begin with the definition of the (TPs) that was

studied by the French mathematician Jacques

Touchard. The (TPs) consist of a polynomial

sequence of binomial type, it’s defined on [0, 1] as

follows (12, 13, 14, and 15):
n

n

L(y) = Z E(n, m)y™ = Z (Ir:l) LA (l’rIll)
m=0 m=0
n!
= =] @

where n and m are the degree and index of the (TPs)
respectively.

The 1% five polynomials of the (TPs) are given
below:

L(y) =1

Ly)=1+y

Ly)=1+2y+Yy°

L) =1+3y+3y* +vy°
L(y)=1+4y+6y%+4y3 +vy*

Approximation Function:

Suppose that the function X,, (y) is approximated
using the (TPs) as in the following:

Xp(y) = o(010(1()114‘ oL (Y) + o+ oI (y)
Z amln(y) 0<y

m=0

<1, NE))
for m=0, the function {I,,(y)},=, denotes the
Touchard basis polynomials of nth degree, as
defined in Eq. (2), o, (m = 0,1, ...,n) are the
unknown Touchard coefficients that will be
calculated later.

Now Eqg. (3) can be written as dot product:

Ao
2]
Xn(y) = [l(y) LK) ..In(V]. -~ (4)
e, |
Eq. (4) can be converted into:
Xn(v) o
BOO BOI 602 BOn [ 0]
|[o Bir  Biz - P ]||°‘1|
=[1YV2---YH]-l 0 0. Bzz an JI I
o 0

where B, (r= 0,1,2, ...,n) are the coeff|C|ents of
the power basis that are used to obtain the (TPSs)
coefficients and the matrix is invertible. For
example n=1, 2, and 3, the operational matrices are
shown in Egs. (6), (7), and (8) respectively:

=0 v il [o

1 1 17 [%
Xz(Y):[1YY2]-[0 1 2].[%], - (7)
0 0 11 Lo
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X3(y)
1 1 1 1 0o
—1yy2y31| 0 1 2 3| (x|
Lyv Yl g 01 31l
0 0 0 1lasg
Since the derivative of Eq. (2) is:
n
d n
_ m
() =7 Z(m)v
m=0

n
n

2, ()mvm

m=1
Then, the derivative of Egs. (5), (6), (7) and (8)

respectively is:

Xn(y)
Boo Bo1 Bo2
[ 0 B11 Biz
=[012y.my"L.] 0 o0 B2z
o o0 o
%)
51
: - (10)
la, )

X'm=100 11[; ﬂ.[ﬁ‘l’] ,

-~ Bon
e %n .
i |

. Bnn

. (11)

1 1 1
L' (y)=[012y]|0 1 2 - (12)

0 0 1)

X3'(Y)

1 1 1 17 [%
—[012y3y2].| 9 1 2 3| (%) .3
[ YW g o 1 3l el @

00 0 11l

Solutions the (FIDE) of 1% order and 2™ Kind:

Since Eq. (1) has the following form:
az

X'(y) = h(y) + 1 f ThwXWda ,

a
€ [a;,a; Jand  X(a;)
- )(0 - (]J4)

By using Egs. (5) and (10), suppose that:

X(¥) = Xn(¥)

Boo Bo1 Boz
0 Bi1 Biz
[1yvy*..y"] 0 0. 'B.zz
l o o o
(15)

.. Bon
. Bln

Ao

51
“'Bgn 11,
' B.nn Jl()(nJ
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and
X'(y) =Xy =
Boo Boz Boz - Bon 1 |—a0]
0 B11 Biz - B | |(X.1|
012y.my™* 0o 0 Bz - Ban | | - (16)
0 0 0 By Jlal

now, by substituting Egs. (15) and (16) into Eq. (14)
yields:

Boo Bor  Boz - Bon
0 Bix Bz - B

[012y..ny™1]. 0 0' [322 [32n
0o 0

az

=h(y)+nJT(yu) [1u u?..u"

a

BOO BOl BOZ B()n ZO
0 Bll 812 " Bln .1
9 0. .Bzz “‘Bz_n du. -+ (17)
0 0 0 o Ban e,

Now, in order to determine (ag, tq,..., 0ty) the
integrations in Eg. (17) must be computed by
selectingy, € [0,1],(r = 0,1, ...,n), and applying
the given initial condition, to get a system of (n+1)
linear algebraic equations with the (n+1) of the
unknown values. Solving this system by using
Gauss  elimination  method, the  unknown
coefficients (o, a4, ..., 0, ) are obtained and have a
unique solution, hence, by substituting Touchard
coefficients into Eq. (3) to get the approximate
numerical solution for Eq. (1)

Convergence Analysis:

In this section, the convergence for the suggested
method is proved.

The unknown Touchard coefficients (ag, ay, ..., ay)
are uniquely determined by Eq. (17). Therefore Eq.
(1) with the boundary condition has a unique
solution and this solution is given by truncated
Touchard series in Eg. (3). Now, when the
approximate numerical solution X,(y) and its
derivatives are substituted in Eq. (1), the following
equation should be satisfied approximately, then for
y=71,€[0,1,A=0,1,2,....n,

ER(Y2) = |(Zh=0 Gmlm(y2))' = h(y2) —

N[22 T W) Zheo Gl (W) dul| = 0,
and ER,(y,)< 10772,

If max(107Y2) = 107Y is specified,

then the truncation limit n is increased until the
difference ER(y,) between each of the points y,
becomes less than or equal 107Y. In other words,
the error function ER,(y,) can be estimated by the
relation:

332

n

D () |

) —h(y)
m=0

-1 f T(y,uw) Z O I (W) du,

ER,(y) = <

then, ER,(y) = 0 when nis a very large, then the
error function decreases (3 and 10)

Numerical Examples:

This section checks the computational accuracy
of the (TPs) method, by testing three examples of
linear (FIDE) and one example of a nonlinear
(FIDE). The accuracy of the solution method was
measured by the absolute error for the first three
examples, while the fourth example was measured
by the maximum absolute error, convergence rate
and time of CPU, also all calculations and charts
were accomplished on my PC using the matlab2018
program.

The general formulas of the testes were defined as
follows:

Absolute error:

|ER| = 1X(ya) = Xa(¥)l, Yaepo) and A =
0,1,..,n

Maximum error:  ||ER||,, = maxy, efo,171X(y2) —
Xn(y)l, where X(y;), and X, (y,) are the exact
and approximate numerical solutions with the

Touchard’s approximation of the (FIDEs),
respectively.

i ERn—l
Convergence rate: Ratio = W’ where ||ER"||

and [|[ER"1||., are the maximum absolute errors of
degree n and n—1, respectively.

Examplel: Solve the linear (FIDE) given in (1):
1

X’(y)=h(y)+fqu(u)du, 0<y<1
0

where h(y) =3+6y, n= 1,T(y,u) =xu,
X(0) = 0, and the exact solution X(y) = 3y + 4y?
Now, by applying the (TPs), the approximate
solutions of this example for n = 1, 2 and 3 are
respectively:

1

X, = ) tmln®) = aoly() + a1y ¥)

m=0
= (—3.0D)I,(y) +
GOLMK),

X,(y) = z O I (V)
m=0
= aplo(Y) + o111 (¥) + o215 (y)
= (0.76) Iy (y) +
(—4.5556)1;(v) + (3.7778) I, (y)
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3 The approximate solutions and absolute error were

X3(y) = Z A Im (V) =l (y) + o1 () compared in Tables 1 and 2, respectively, showing

m=0 that the accuracy of the results increases as n

increases. In Fig.1, the exact solution was compared
with Touchard solution for n = 3.

+ ol (v) + azlz(y)
= (0.8)Io(y) +
(—4.5556)1,(y) + (3.7778)1,(y) + (0)I5(y).

Table 1.Approximate Numerical and Exact Solutions of Example 1.

Exact Approximate Solutions
Y Solution n=1 n=2 n=3
0.0 0.0 —1.0000e—-02 —1.7778e—02 2.2222e—02
0.1 3.4000e—01 2.9000e—01 3.2000e—01 3.6000e—01
0.2 7.6000e—01 5.9000e—01 7.3333e—01 7.7333e—01
0.3 1.2600e+00 8.9000e—-01 1.2222e+00 1.2622e+00
0.4 1.8400e+00 1.1900e+00 1.7867e+00 1.8267e+00
0.5 2.5000e+00 1.4900e+00 2.4267e+00 2.4667e+00
0.6 3.2400e+00 1.7900e+00 3.1422e+00 3.1822e+00
0.7  4.0600e+00 2.0900e+00 3.9333e+00 3.9733e+00
0.8  4.9600e+00 2.3900e+00 4.8000e+00 4.8400e+00
0.9 5.9400e+00 2.6900e+00 5.7422e+00 5.7822e+00
1.0 7.0000e+00 2.9900e+00 6.7600e+00 6.8000e+00

Table 2. Comparison of the Absolute Error of Example 1.
Absolute Errors

Y

n=1 n=2 n=3
0.0 1.0000e — 02 1.7778¢ — 02 2.2222e¢ — 02
0.1 5.0000e — 02 1.9999¢ — 02 2.0001e — 02
0.2 1.7000e — 01 2.6666e — 02 1.3334e — 02
0.3 3.7000e — 01 3.7778e — 02 2.2223e — 03
0.4 6.5000e — 01 5.3333e — 02 1.3333e — 02
0.5 1.0100e + 00 7.3333e — 02 3.3333e — 02
0.6 1.4500e + 00 9.7777¢ — 02 5.7777e — 02
0.7 1.9700e + 00 1.2667¢ — 01 8.6667¢ — 02
0.8 2.5700e + 00 1.6000e — 01 1.2000e — 01
0.9 3.2500e + 00 1.9778¢ — 01 1.5778¢ — 01
1.0 4.0100e + 00 2.4000e — 01 2.0000e — 01

Exact Solution
#  Approximate Solution, n=3

Solution-Axis
S

w
T

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X’_;A.ns

Figure 1. Numerical Result and Exact Solution of Example 1 for n = 3.

Example 2: Solve the linear (FIDE) given in (16, 1
and 17) X'(y) =h(y) + fyX(u) du,
0

0<y<1
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where h(y) =yeY+e"—y,n =1, T(y,u) =
v, X(0) = 0 and the exact solution is X(y) = y e".
The approximate numerical results are obtained for

n =1, 3 and 4, respectively:

X1(v) = (=0.97)I,(y) + (0.9657)1; (y).

X3(y) = (=0.45)I(y) + (0.5351)1;(y)
+ (—0.7436)1,(y)
+(0.6523)15(y)

X4(v) = (=0.15)I5(v) + (—0.6898)1; (v) +
(1.0507)L,(y) + (—0.4411)I5(y)
+(0.2278) L (Y).

Table 3 shows the absolute errors for n=4, and
compares with methods included in (16 and 17). In
Fig. 2, the exact solution is compared with
Touchard solution for n = 4.

Table 3. Comparison of the Absolute Error of Example 2.

Y Absolute Errors, n=4
Current Method Method in (16) Method in (17)

0.1 1.5839709e — 03 1.34917637e — 03 1.00118319 — 02
0.2 1.0428977e — 03 1.15960044e — 03 2.78651355e — 02
0.3 5.4169991e — 03 5.67152531e — 03 5.08730892e — 02
0.4 1.1544044e — 02 5.93105650e — 02 7.55356316e — 02
0.5 1.9394491e — 02 1.32330751e — 02 9.71888592e — 02
0.6 2.8827524e — 02 4.39287720e — 02 1.09551714e — 01
0.7 3.9505430e — 02 1.41201624e — 02 1.04133232e — 01
0.8 5.0796945e — 02 1.34514117e — 02 6.94512700e — 02
0.9 6.1668672e — 02 1.32045209¢ — 02 1.00034260e — 02

25

Exact Solution

#*  Approximate Solution.n=4

Solution-Axis
n

05

0.2 0.3 0.4

Example 3: Solve the linear (FIDE) given in (11,
16, and 17)
1

0<y<1

X'(y) =h(y) + fyu X(u) du,
0
h(D=1-y, n =1, T, =
yu,X(0) = 0 and the exact solution is X(y) = y.
By applying suggested method for this example, for
n =5, the Touchard solution is:

where

0.5

0.6 0.7 0.8 0.9

X-Axis
Figure 2. Numerical Result and Exact Solution of Example 2 for n = 4.
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Xs(v) = (DI + (MWL) +0=X({y) =Y.

In Table 4, the absolute error in the current method
is compared with those in (11, 16 and 17), and it is
found that the absolute error in the current method
is the highest accuracy. In Fig. 3, for n = 5, the
Touchard solution is compared with the exact
solution.
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Table 4. Comparison of the Absolute Error of Example 3.

Absolute Errors

Yy Current Method n=5  Method in (11) Method in (16) Method in (17)
0.1 0.0 3.7900e — 06 2.1794e — 04 1.6667¢ — 03
0.2 0.0 1.5160e — 05 6.3855¢ — 04 6.0939¢ — 03
0.3 0.0 3.4110e - 05 7.9137¢ — 04 1.3202e — 02
04 0.0 6.0640e — 05 2.1559%9¢ — 02 2.2914e — 02
0.5 0.0 9.4750e — 05 4.9936e — 03 3.5158e — 02
0.6 0.0 1.3644e — 04 2.2173e - 02 6.6965¢ — 02
0.7 0.0 1.8571e - 04 1.0565e — 04 7.1243e — 02
0.8 0.0 2.4256e — 04 1.4323e - 03 8.6398e — 02
0.9 0.0 3.0699% — 04 2.0775e — 02 1.0810e — 01

1
Exact Solution

0.9 #  Approximate Solution,n=5

0.8

0.7
-Z 0.6
T
§ 0.5
E 0.4

e
w

o
[N}

o
o

0
0

0.1

0.2

0.3 04

0.5

06 07 08 09 1

X-Axis
Figure 3. Numerical Result and Exact Solution of Example 3 for n = 5.

Example 4: Finally, solve the nonlinear (FIDE)

given in (18)

x%w=hwy+ff<mwfdm

where

0

1

0<y<1

h( =1-3v*, n =1, T,w =
v3,X(0) = 0 and the exact solution is X(y) = y.
By applying suggested method for n=1, 2 and 3, the
Touchard solutions are obtained respectively:

Xi() = (=Dl + (DL ) =X() =v.

X2(v) = (=DIo(y) + (D11 (v)

+ (4.4522e — 16)1,(Y).
X3(v) = (=Dl (y) + WL () + (-=7.1067e —
15)1,(y) + (1.8000e — 15)I5(y).
The comparison of the maximum error, ratio of
error and CPU times of the current method with
those in (18) is shown in Table 5, and shows that
the current method for n = 1, 2 and 3 has a much
higher accuracy than those in (18) for n = 5, 9 and
17. In Fig. 4, for n = 2 and 3, the Touchard solutions
were compared with the exact solution.

Table 5. Comparison of the Maximum Absolute Error, Error Ratio and CPU Time of Example 4.

Current Method Method in (18)
n llell o Ratio Time n llell o Ratio Time
1 1.3989 e-14 - 0.036 5 3.26 e 03 - 0.37
2 6.2172 e—15 2.25 0.039 9 8.44 ¢ 04 3.87 0.41
3 3.3307 e—15 1.87 0.092 17 2.16 e 04 3.90 0.56
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Exact Solution
© Approximate Solution,n=2
=+  Approximate Solution,n=3

0.8

Solution-Axis
o
[#)]

0.4 -

0.2 r

0 0.1 0.2 0.3 0.4

0.5 0.6 0.7 0.8 0.9 1

X3Axis

Figure 4. Numerical results and Exact Solution of Example 4 for n =2 and 3.

Conclusions and Recommendations:

In this study, numerical solutions are obtained for
linear (FIDEs) of the first order and second kind
under condition, using Touchard polynomials, and
different degrees for purpose of comparing. This
method reduces the (FIDES) into a set of algebraic
equations. It's worth noting that one of the
important features of this method is that the
Touchard coefficients of the solutions are found
easily by using PC programs. Also, another
advantage is the obtaining solution is polynomials
of the degree equal or less than selected n.
However, the solution converges rapidly to the
exact solution when n increases. The comparison
between the absolute errors for four test examples
and those methods included in (11, 16, 17 and 18),
shows that the accuracy of the current method is
almost similar or better than those of the existing
methods. As a future work, the current method can
also applied to the system of linear (FIDES),
because it is effective and applicable for the linear
and nonlinear for these kinds of equations and the
results obtained support this claim. Because the
solutions obtained here are approximate solutions, it
is expected in some examples that the absolute error
increases when y approaches 1 in the interval [0, 1]
as in examples 1 and 2.

All the methods referred to in the introduction to
this study are approximate numerical methods that
have been used to solve the Fredholm integro-
differential equations that are difficult to solve
analytically. These methods have been used to solve
them numerically. The pros of these methods are to
obtain approximate solutions and the possibility of
writing algorithms for solutions in these methods.
Programming these algorithms on personal
computers by writing computer programs to identify
unknown values and then the possibility of
comparing the results obtained in these methods by
graphs. The cons of these methods are the existence

of errors in the accuracy of the results in reaching
the approximate solutions.
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