On (m,n)-Strongly Fully Stably Banach Algebra Modules Related to an Ideal of $A^{m \times n}$

Radhi Ibraheem Mohammed Ali Muna Jasim Mohammed Ali* Samira Najji Kadhim

Department of Mathematics, College of Science for Women, University of Baghdad, Baghdad, Iraq.
*Corresponding author: radhiim_math@csw.uobaghdad.edu.iq, munajim_math@csw.uobaghdad.edu.iq

Received 3/2/2020, Accepted 27/9/2020, Published Online First 30/4/2021

Abstract:

The aim of this paper is introducing the concept of (m,n) strong full stability B-Algebra-module related to an ideal. Some properties of (m,n)- strong full stability B-Algebra-module related to an ideal have been studied and another characterizations have been given. The relationship of (m,n) strong full stability B-Algebra-module related to an ideal that states, a B-module X is (m,n)- strong full stability B-Algebra-module related to an ideal H, if and only if for any two m-element sub-sets $\{N_k 1, N_k 2, \ldots, N_k 3\}$ and $\{M_j 1, M_j 2, \ldots, M_j 3\}$ of X^n, if $\beta_j \in \sum_{i=1}^{m} a_i A \cap X^n H$, for each $j = 1, \ldots, m$, $i = 1, \ldots, n\alpha_t \in \{N_k 1, N_k 2, \ldots, N_k 3\}$ and $\beta_j \in \{M_j 1, M_j 2, \ldots, M_j 3\}$ implies $\alpha_t \in \{M_j 1, M_j 2, \ldots, M_j 3\}$ have been proved.

Keywords: Baer-(m,n)-criterion related to an ideal, F-S-B-A-module related to an ideal, (m,n)-full-stable-B-A-module related to ideal, Multiplication-(m,n)-B-A-module relative to ideal, Pure-(m, n)- sub-module.

Introduction:

An algebra is a set $A \neq \emptyset$ and if the following conditions are satisfied, 1- the set A with addition and multiplication is satisfied through a domain \mathcal{F} is a space of vectors, 2- $\alpha \ (\alpha \circ \alpha) = (\alpha \circ \alpha) \circ \alpha'$ $= \alpha \circ (\alpha \circ \alpha')$ for all $\alpha \in \mathcal{F}$, $\forall \alpha, \alpha' \in \mathcal{A}$. 3- the set A with + and \cdot forms a ring by -1. \mathcal{R} is called an algebra where \mathcal{R} is a ring, $\mathcal{R} = \{+,-,0\}$ such that \mathcal{R} and \cdot are binary operations, \cdot is unary and nullary element 0 satisfying, $\mathcal{R} = \{+,-,0\}$ group which is commutative, \mathcal{R}, which is a semi-group and α $(\alpha \circ \alpha) = (\alpha \circ \alpha) \circ \alpha' = (\alpha \circ \alpha) \circ \alpha'$ for all $\alpha \in \mathcal{F}$, $\forall \alpha, \alpha' \in \mathcal{A}$. Suppose that \mathcal{A} is an algebra, recall that a B-algebra left module (B-A left module) is a B-space \mathcal{E} insomuch as \mathcal{E} is an algebra-left module, and $||\alpha|| ||x|| \geq ||\alpha \cdot x|| (\alpha \in A, x \in \mathcal{E})$ according to (1). Following (2) a map from a B-algebra left module \mathcal{X} into a B-algebra left module \mathcal{Y} (algebra \mathcal{A} is not necessary abelian) is called a A-multiplier (homomorphism) if it satisfies $\forall \alpha \in A, x \in \mathcal{X}$, $\forall (\alpha \cdot x) = \alpha \cdot T x$. In (1), a sub-module \mathcal{N} in \mathcal{M} is said to be stable, if $\mathcal{N} \supseteq f (\mathcal{N}) \forall \mathcal{R}$ $-$homomorphism f from sub-module \mathcal{N} into module \mathcal{M}. \mathcal{M} is called full stability \mathcal{R}-module, if each sub-module in \mathcal{N} is stable. Assume that \mathcal{X} is B-algebra module, \mathcal{X} is called F-S-B-algebra module related to ideal \mathcal{K} of algebra \mathcal{A}, if \forall sub-module \mathcal{N} in \mathcal{X} and \forall multiplier $\theta : \mathcal{N} \rightarrow \mathcal{X}$ holds $\mathcal{N} + \mathcal{KX} \supseteq \mathcal{O} (\mathcal{N})^{1}$. Let $\mathcal{R}^{m,n}$ be the collection of every matrices $m \times n$ over a ring \mathcal{R}, $\mathcal{A} \in \mathcal{R}^{m,n}$, denote A is transpose of \mathcal{A}. In general, write $\mathcal{N}^{m,n}$ for an \mathcal{R}-module \mathcal{N}, the collection of all matrices $m \times n$ where all elements in \mathcal{N}. Suppose that \mathcal{M} a right Banach Algebra-module and let \mathcal{N} be a left \mathcal{R}-module. Let $\mathcal{A} \in \mathcal{M}^{x,k}, \mathcal{S} \in \mathcal{R}^{m,n}$ and $\mathcal{Y} \in \mathcal{M}^{k \times n}$, with multiplication, \mathcal{S} (resp. \mathcal{Y}) is good defined element in $\mathcal{M}^{x,k}$ (resp. $\mathcal{N}^{m,n}$). If $\mathcal{X} \subseteq \mathcal{M}^{x,k}$, $\mathcal{S} \subseteq \mathcal{R}^{m,n}$ and $\mathcal{Y} \subseteq \mathcal{N}^{m,n}$ we define $\ell_{\mathcal{M}^{x,k}}(\mathcal{S}) = \{ \mathcal{S} \in M^{x,k} | \mathcal{S} = 0 \}$ for all $\mathcal{S} \in \mathcal{S}$ $r_{\mathcal{N}^{m,n}}(\mathcal{S}) = \{ \mathcal{S} \in N^{m,n} | \mathcal{S} = 0 \}$ for all $\mathcal{S} \in \mathcal{S}$. $\ell_{\mathcal{R}^{m,n}}(\mathcal{Y}) = \{ \mathcal{Y} \in R^{m,n} | \mathcal{S} = 0 \}$ for all $\mathcal{Y} \in \mathcal{Y}$. $r_{\mathcal{M}^{x,k}}(\mathcal{X}) = \{ \mathcal{X} \in M^{x,k} | \mathcal{S} = 0 \}$ for all $\mathcal{X} \in \mathcal{X}$. Write $\mathcal{N}^{m,n} \subseteq \mathcal{N}^{m,n}$. In our work for fixed positive integers n,m the concept of (m,n)-full stability Banach Algebra modules related to an ideal have been introduced.
(m, n)-Strongly-Fully-Stable-Banach-Algebra Modules Related to ideal
A left B-algebra-module \(X \) is \(n \)-generated where \(n \in N \) if there is exist \(x_1, ..., x_n \in X \) such that for all \(x \in X \) can be represented \(x = \sum_{k=1}^{n} \alpha_k \cdot x_k \) for some \(\alpha_1, ..., \alpha_n \) in algebra. A module which is \(1 \)-generated is called a cyclic module. A right module over \(M \) is called strongly fully (m, n)-stable relative to an ideal A of \(K^{m,n} \), if \(\forall \alpha \in K \) A \(\supseteq 0 \) for all \(n \)-generated sub-module of \(M \) and \(\theta : N \to M \) \(R \)-homomorphism.

Definition 1: Let \(K \) be a \(B \)-module, \(K \) is called \((m,n)\)-S-F-S-B-A-M-R to ideal \(H \) of \(A^{m,n} \), if for every \(m \)-generated sub-module of \(K \), and for each multiplier \(\theta : \theta \to K \), which satisfies \(\theta(\bar{J}) \subseteq \bar{J} \) for two fixed positive integers \(m, n \).

In (1) \(\lambda \in L \), A nonempty subset of a left \(B \)-module \(X \), the annihilator \(\text{Ann}_A(M) \) of \(B \)-module \(M \) is \(\theta \in A \); \(\lambda \in M \), \(\lambda = 0 \) for all \(\lambda \in M \) = \(\text{Ann}_A(M) \).

Notation 1: Suppose that \(X \) is a \(B \)-algebra-module

\[nx_{k_1,x_{k_2},...,x_{k_n}} = \{ \theta(x_k), x \in X, \theta = 1, 2, ..., \eta \} \]

\[M_{y_1,y_2,\cdots,y_n} = \{ \theta(m), m \in M, y \in X, i = 1, 2, \eta \} \]

Proposition 1: A \(B \)-module \(X = (m,n) \)-S-F-S-B-A-M-R to ideal \(H \) if and only if any \(\lambda \)-element sub-modules \(\{ nx_{k_1,x_{k_2},...,x_{k_n}} \} \) and \(\{ M_{y_1,y_2,\cdots,y_n} \} \) of \(X \), if \(\eta \notin \sum_{i=1}^{n} \alpha_i A \cap X^{m,n}H \), for each \(j = 1, \eta \), \(\alpha_i \in \{ n_{i,k_1}, n_{i,k_2},...,n_{i,k_n} \} \) and \(\beta_j \in \{ m_{j_1}, m_{j_2},\cdots,m_{j,k_n} \} \) implies

\[r \alpha_i \in \{ n_{i,k_1}, n_{i,k_2},...,n_{i,k_n} \} \]

Proof: Assume that \(X = (m,n) \)-S-F-S-B-A-M-R to ideal and there exist two \(\mu \)-element sub-modules \(\{ nx_{k_1,x_{k_2},...,x_{k_n}} \} \) and \(\{ M_{y_1,y_2,\cdots,y_n} \} \) of \(M \), such that if \(M \notin \sum_{i=1}^{n} \alpha_i A \cap X^{m,n}H \), for each \(j = 1, \eta \), \(\alpha_i \in \{ n_{i,k_1}, n_{i,k_2},...,n_{i,k_n} \} \) and \(\beta_j \in \{ m_{j_1}, m_{j_2},\cdots,m_{j,k_n} \} \).

Corollary 1: If \(X = (m,n) \)-S-F-S-B-A-M-R to ideal \(H \) of \(A^{m,n} \), therefore any two \(\lambda \)-element sub-modules \(\{ nx_{k_1,x_{k_2},...,x_{k_n}} \} \) and \(\{ M_{y_1,y_2,\cdots,y_n} \} \) of \(X \), implies

\[r \alpha_i \in \{ n_{i,k_1}, n_{i,k_2},...,n_{i,k_n} \} \]

Proof: The proof is clear.

In (2), A \(B \)-module \(X \) is called to holds Baer criterion (B-C) if all submodule of \(X \) holds Baer criterion, this mean that for every sub-module \(N \) in \(X \) and algebra- multiplier : \(N \to X \), so \(\forall \alpha \in A \) s.t

\[\theta(\bar{N}) = \bar{N} \forall \alpha \subseteq N^n \].

Definition 2: A \(B \)-algebra-module \(X \) is called hold Baer-(m,n)-criterion relates (B-(m,n)-C-R) to an ideal \(H \) if each sub-module of \(X \) satisfies B-(m,n)-C-R to an ideal \(H \), this mean that, for every \(\eta \)-
generated sub-module L of X^n and A-multiplier $f:L \to X^3$, there is a α such that $
exists \theta(t) = \Theta \in X^0H$ for all $\Theta \in L$.

Proposition 2: If χ satisfies $B-(m_1,n)-C$ to D ideal and $\rho_{\lambda}(L \cap \mathbb{M}) = \rho_{\lambda}(L) + \rho_{\lambda}(\mathbb{M})$ for each m_1,n-generated sub-modules of X^n, then χ satisfies $B-(m_1,n)-C$ to D ideal.

Proof: Let $P = A\chi + A\chi_{x_{k}+ \ldots + A\chi_{m}}$ be m_1,n-generated sub-module of X^n, $f:P \to X^3$ multiplies. Now, by induction on m_1,n. Clearly that χ holds $B-(m_1,n)-C$ to D ideal, if $m_1,n = 1$. Suppose that χ satisfies $B-(m_1,n)-C$ to D ideal for each k-generated submodule of X^n, for $n \geq k$. Write $L = A\chi_1 \cup \ldots \cup A\chi_m$, therefore for each $\Theta \in L$ and $w \in \mathbb{M}$ $f(\Theta)(w) = y_1(w), f(\Theta)(w_2) = y_2(w_2)$ for some $y_1, y_2 \in A$. It is clear $y_1, y_2 \in \rho_{\lambda}(L \cap \mathbb{M}) = \rho_{\lambda}(L) + \rho_{\lambda}(\mathbb{M})$ and $w \in \rho_{\lambda}(L), z \in \rho_{\lambda}(\mathbb{M})$ such that $y_1 = y_2 = \rho_{\lambda}(L \cap \mathbb{M})$. Then for any $w = w_1 + w_2 \in \mathbb{P}$ with $\mathbb{E}, \mathbb{W} \in \mathbb{E}$, $f(w) = f(w_1) + f(w_2) = y_1(w_1) + y_2(w_2) = y_1(w_1) + y_2(w_2) = y$. Hence χ satisfies $B-(m_1,n)-C$ to D ideal.

Corollary 2: Let χ be a B-A- module. χ is (m_1,n)-S-F-S-B-A-M-R to D ideal if and only if $\rho_{\lambda}(\Theta_{\chi_1} + \Theta_{\chi_{x_2}A} + \ldots + \Theta_{\chi_{x_{k}2-\ldots-x_{k}A}}) \subseteq \chi_{\chi_1} + \chi_{\chi_{x_2}A} + \ldots + \chi_{\chi_{x_{k}2-\ldots-x_{k}A}}\cap X^0H$, for each $\chi_{\chi_1} + \chi_{\chi_{x_2}A} + \ldots + \chi_{\chi_{x_{k}2-\ldots-x_{k}A}}\cap X^0H$, for some $t \in A$.

Following (1) "suppose that A is a unital B- and assume $\alpha > 1$. Algebra-module χ is said Quasi α-injective (Q-α-inj), if algebra-module homomorphism $\varphi:N \to X$, s.t $\varphi \leq 1$ and there is algebra-module homomorphism $\theta:X \to Y$, s.t $\theta \circ i = \varphi$ and $|| \theta || \leq \alpha$, i is an isometry from submodule N of X. Call χ is $-\text{inj}$, if it is Q-α-inj for some α.

Following (1), assume that A is unital B- and suppose that $\alpha > 1$. Algebra-module χ is said to be Quasi-α-injective relate to an ideal H of algebra if,

$\varphi : N \to X$ is algebra-module homomorphism $s.t \ 1 \geq ||\varphi||$, and there is algebra-module homomorphism $\theta:X \to Y$, s.t $\theta \circ i = \varphi$ and $|| \theta || \leq \alpha$, i is an isometry from submodule N of X to Y.

The concepts strongly Quasi-(m_1,n)- α-injective -B-A- module related to ideal for some α introduced.

Definition 3: Suppose that A is a unital B-A and $1 < \alpha$. χ is said to be strongly Quasi- (m_1,n)- α-injective relate to an ideal I of A^max if $\beta:N \to X^\alpha$ is algebra-module homomorphisms such that $1 \geq ||\beta||$, there is a $\chi :X^\alpha \to X^\alpha$ algebra-module homomorphism, such that $(\alpha o i)(n) - \beta(n) \in X^\alpha H$ and $1 \geq ||\beta||$, i is an isometry from m_1,n-generated submodule N in X. χ is strongly Quasi-(m_1,n)-injective relate to an ideal I if χ is strongly – Quasi - (m_1,n)- α- injective relate to ideal for some α.

Proposition 4: If χ is (m_1,n)-S-F-S-B-A-M-R to I ideal of an algebra, then χ is strongly Quasi (m_1,n)-injective B- algebra module relate to an ideal I.

Proof: Set $N = \alpha A + \ldots + \alpha A$, m_1,n-generated sub-module of $X^\alpha, \alpha \in X^\alpha$, let α be greater than 1 and f be any algebra-modulehomomorphism from N to X^α.

\[f(x_1 + x_{2-\ldots-x_{k}A}) \subseteq x_{\chi_1} + \chi_{\chi_{x_2}A} + \ldots + \chi_{\chi_{x_{k}2-\ldots-x_{k}A}} \cap X^0H. \] Conversely, suppose that \[f(x_1 + x_{2-\ldots-x_{k}A}) \subseteq x_{\chi_1} + \chi_{\chi_{x_2}A} + \ldots + \chi_{\chi_{x_{k}2-\ldots-x_{k}A}} \cap X^0H. \]
such that \(\| f \| \leq 1 \). Since \(X(\mathfrak{m}, \eta) \)-S-F-S-R to ideal, therefore \(f(aA + \cdots + aA) \subseteq a_1A + \cdots + a_nA \cap X^mI \), thus there is \(t = (t_1, \ldots, t_n) \in \mathbb{E}_A \), and \(w \in X^mI \). Let \(a_i = (0, \ldots, 1, 0, \ldots, 0) \) such that \(f(\sum_{i=1}^{n} a_i t_i) = (\sum_{i=1}^{n} a_i t_i) + w \). Define \(g : X^m \to X \) as \(g(\alpha) = t'\alpha \), clearly \(g \) is well defined algebra-module homomorphism. Now \(f(\sum_{i=1}^{n} a_i t_i) = (\sum_{i=1}^{n} a_i t_i) + w - t (\sum_{i=1}^{n} a_i t_i) = w \in X^mI \) and since for all \(y \in a_1A + \cdots + a_nA \), \(y = \sum_{i=1}^{n} a_i s_i \) for some \(s_i \in s \in A \), \(f(y) - g(y) = f(\sum_{i=1}^{n} a_i s_i) - g(\sum_{i=1}^{n} a_i s_i) = (f(\sum_{i=1}^{n} a_i s_i) - s \in X^mI \), therefore \(X \) is strongly quasi \((\mathfrak{m}, \eta)\)-banach algebra module relative to ideal.

Definition 4: A sub-module \(\mathcal{N} \) of Banach \(A \)-module is called pure-(\(\mathfrak{m}, \eta \))-sub-module if \(\mathcal{N} = \mathcal{N} \cap X^mI \) for all ideal \(\mathfrak{m} \) of \(A^{m \times \eta} \).

When the sub-module of \((\mathfrak{m}, \eta)\)-S-F-S-B-A-M-R to ideal have been partial answer in the next proposition.

Proposition 5: Let \(X \) be a \((\mathfrak{m}, \eta)\)-S-F-S-B-A-M-R to a non-zero ideal \(I \) of \(A^{m \times \eta} \), then every \((\mathfrak{m}, \eta)\)-pure sub-module of \(X \) is \((\mathfrak{m}, \eta)\)-S-F-S-B-A-M-R to an ideal.

Proof: Assume that \(\mathcal{N} \) is pure-(\(\mathfrak{m}, \eta \))-sub-module of \(X \). For every sub-module \(L \) of \(\mathcal{N} \) and a multiplier \(f : L \to \mathcal{N} \), put \(g = id f : L \to X \) (where \(i \) is the inclusion mapping of \(\mathcal{N} \) to \(X \)), then by assumption \(f(L) = g(L) \subseteq X^mI \), since \(f(L) \subseteq L \). Hence \(f(L) \subseteq L \cap X^mI \cap \mathcal{N} \). Because \(\mathcal{N} \) is pure-(\(\mathfrak{m}, \eta \))-sub-module of \(X \) then \(\mathcal{N} \cap X^mI = \mathcal{N} \mathfrak{m} I \), for all ideal \(I \) of \(A^{m \times \eta} \), therefore \(f(L) \subseteq L \cap X^mI \). Therefore \(\mathcal{N} \) is \((\mathfrak{m}, \eta)\)-S-F-S-B-A-M-R to \(I \).

Conclusion:
In this work, the concept of \((\mathfrak{m}, \eta)\) strong full stability \(B \)-Algebra-module related to a non-zero ideal \(I \) of \(A^{m \times \eta} \) has been introduced and it is also easy to study its properties by linking it with other concepts. The relationship of \((\mathfrak{m}, \eta)\) strong full stability \(B \)-Algebra-module related to an ideal that states, if \(X \) is \((\mathfrak{m}, \eta)\)-strong full stability \(B \)-Algebra-module related to an ideal \(I \) of algebra, then \(X \) is strongly quasi \((\mathfrak{m}, \eta)\)-injective \(B \)-algebra module relate to an ideal I have been proved, and show that every \((\mathfrak{m}, \eta)\)-pure sub-module of \(X \) strong full stability \(B \)-Algebra-module related to a non-zero ideal \(I \) of \(A^{m \times \eta} \) is \((\mathfrak{m}, \eta)\) strong full stability \(B \)-Algebra-module related to a non-zero ideal \(I \) of \(A^{m \times \eta} \).