On (m,n)-Strongly Fully Stably Banach Algebra Modules Related to an Ideal of $A^{m \times R}$

Radhi Ibraheem Mohammed Ali Muna Jasim Mohammed Ali* Samira Najji Kadhim

Department of Mathematics, College of Science for Women, University of Baghdad, Baghdad, Iraq.
*Corresponding author: radhimm_math@csw.uobaghdad.edu.iq, munajm_math@csw.uobaghdad.edu.iq

Received 3/2/2020, Accepted 27/9/2020, Published Online First 30/4/2021

This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract:

The aim of this paper is introducing the concept of (m,n) strongly full stability B-Algebra-module related to an ideal. Some properties of (m,n)-strong full stability B-Algebra-module related to an ideal have been studied and another characterizations have been given. The relationship of (m,n) strongly full stability B-Algebra-module related to an ideal that states, a B-module X is (m,n)-strong full stability B-Algebra-module related to an ideal H, if and only if for any two m-element sub-sets $\{N_1, N_2, N_3, \ldots, N_m\}$ and $\{\tilde{N}_1, \tilde{N}_2, \tilde{N}_3, \ldots, \tilde{N}_m\}$ of X^n, if $\beta_j \notin \sum_{i=1}^{m} \alpha_i A \cap X^n H$, for each $j = 1, \ldots, m$, $i = 1, \ldots, n\alpha_i$ $N_i \in \{N_1, N_2, N_3, \ldots, N_m\}$ and $\tilde{\beta}_j \in \{\tilde{N}_1, \tilde{N}_2, \tilde{N}_3, \ldots, \tilde{N}_m\}$ implies $\sigma(A)(\{N_1, N_2, N_3, \ldots, N_m\}) \subseteq \sigma(A)(\{\tilde{N}_1, \tilde{N}_2, \tilde{N}_3, \ldots, \tilde{N}_m\})$ have been proved.

Keywords: Baer-(m,n)-criterion related to a ideal, F-S-B-A-module related to an ideal, (m,n)-full-stable-B-A-module related to ideal, Multiplication-(m,n)-B-A-module related to ideal, Pure-(m,n)-sub-module.

Introduction:

An algebra is a set $A \neq \emptyset$ and if the following conditions are satisfied, the set A with addition and multiplication are satisfied by a domain F a space of vectors. A $\alpha (a \delta) ^{\alpha \delta} a \delta = \alpha a \delta$ $a \delta = \alpha (a \delta)$ for all $a \in F$, $\alpha a \delta$ is defined, and the set A with α and δ forms a ring by $\alpha -$. \mathcal{R} is called an algebra where \mathcal{R} is a ring, $[\mathcal{R}, +, -, 0]$ such that α and δ are binary operations, and the nullary element is 0 satisfying, $[\mathcal{R}, +, -, 0]$ group which is commutative, $[\mathcal{R}, \cdot]$ which is a semi-group and $\alpha (\delta + \delta) = (\alpha \delta) + (\delta \alpha)$ and $\alpha (\delta + \delta) = (\delta \alpha) + (\delta \alpha)$. Suppose that A is an algebra, recall that a B-algebra left module (B-A-left module) is a B-space E isomorphic to E is an algebra-left module, and $\|a\| \|x\| \geq \|a \cdot x\|$ $(a \in A, x \in E)$ according to (1). Following (2) a map from a B-algebra left module X into a B-algebra left module \tilde{Y} (algebra \tilde{A} is not necessary abelian) is called a A-multiplier (homorphism) if it satisfies $\forall b \in A, x \in X, \tilde{b}(a, x) = a \cdot x$. In (1), a sub-module N in M is said to be stable, if $N \supseteq f(N) \forall R$ -homomorphism f from sub-module N into module M. M is called full stability \mathcal{R}-module, if each sub-module in M is stable. Assume that X is a B-algebra module, Y is called F-S-B-algebra module related to an ideal K of algebra A, if \forall sub-module N in X and \forall multiplier $\theta : N \rightarrow X$ holds $N + \theta(N) \subseteq \theta(N)^{(1)}$. Let $\mathbb{F}^{m \times n}$ be the collection of every matrices $m \times n$ over a ring \mathcal{R}. $\mathcal{A} \in \mathbb{F}^{m \times n}$, denote \tilde{A} is transpose of \mathcal{A}. In general, write $\tilde{N}^{m \times n}$ for an \mathcal{R}-module N, \tilde{N} is the collection of all matrices $m \times n$ where all elements in N. Suppose that M a right Banach Algebra-module and let \mathcal{N} be a left \mathcal{R}-module. Let $\tilde{\mathcal{A}} \in M^{(x \times n)}$, $\mathcal{S} \in \tilde{\mathcal{N}}^{m \times k}$ and $\tilde{Y} \in M^{(k \times x)}$, with multiplication, $\tilde{X} \tilde{S}$ (resp. \tilde{Y}) is a good defined element in $M^{(x \times n)}$ (resp. $N^{m \times k}$). If $\tilde{\mathcal{A}} \in M^{(x \times n)}$, $\mathcal{S} \subseteq \tilde{\mathcal{N}}^{m \times n}$ and $\tilde{\mathcal{Y}} \in \mathcal{N}^{m \times k}$ are define $\mathcal{S} = \{\tilde{\mathcal{S}} : \tilde{\mathcal{S}} \in \tilde{\mathcal{N}}^{m \times k} | x \mathcal{S} = 0 \}$ for all $\tilde{\mathcal{S}} \in \tilde{S}$ $\mathcal{r}_{\tilde{\mathcal{N}}^{m \times k}}(\mathcal{S}) = \{\tilde{\mathcal{S}} \in \tilde{\mathcal{N}}^{m \times k} | x \tilde{\mathcal{S}} = 0 \}$ for all $\tilde{S} \in \tilde{\mathcal{S}}$ $\mathcal{r}_{\tilde{\mathcal{N}}^{m \times k}}(\mathcal{S}) = \{\tilde{\mathcal{S}} \in \tilde{\mathcal{N}}^{m \times k} | x \tilde{\mathcal{S}} = 0 \}$ for all $\tilde{\mathcal{S}} \in \tilde{\mathcal{S}}$ $\tilde{\mathcal{Y}} \in \mathcal{N}^{m \times k}$ and $\tilde{X} \in \mathcal{N}^{m \times k}$ are define $\mathcal{S} = \{\tilde{\mathcal{S}} : \tilde{\mathcal{S}} \in \tilde{\mathcal{N}}^{m \times k} | x \mathcal{S} = 0 \}$ for all $\tilde{X} \in \tilde{X}$ $\tilde{\mathcal{X}} \tilde{\mathcal{Y}} = \{\tilde{\mathcal{S}} \in \tilde{\mathcal{N}}^{m \times k} | x \tilde{\mathcal{S}} = 0 \}$ for all $\tilde{X} \in \tilde{X}$ $\mathcal{Y} = \{\tilde{\mathcal{Y}} : \tilde{\mathcal{Y}} \in \mathcal{N}^{m \times k} | x \tilde{\mathcal{Y}} = 0 \}$ for all $\tilde{X} \in \tilde{X}$ Write $N^{m \times n}$, $\tilde{N}^{m \times n}$, $\tilde{N}^{m \times k}$ $\tilde{N}^{m \times k}$ in (3). In our work for fixed positive integers m,n the concept of (m,n)-full stability Banach Algebra modules relative to an ideal have been introduced.
(m, n)-Strongly-Fully-Stable-Banach-Algebra Modules Related to ideal
A left B-algebra-module X is n-generated where $n \in N$ if there is exist $x_1, \ldots, x_n \in X$ such that for all $\lambda \in X$ can be represented $\lambda = \sum_{k=1}^{n} \lambda_k x_k$ for some $\lambda_1, \ldots, \lambda_n$ in an algebra. A module which is 1-generated is called a cyclic module (4). A right module over R, M is called strongly fully (m, n)-stable relative to an ideal A of $R^{m,n}$, if $\forall \eta \in M^n$ $A \supseteq \theta(\eta)$ for all n-generated sub-module of M^n and $\theta : N \to M$ R-homomorphism (5).

Definition 1: Let K be B-A-module , K is called (m, n)-S-F-S-B-A-M-R to ideal H of $A^{m,n}$, if for every m-generated sub-module of K^n and for each multiplier $\theta : J \to K^n$ which satisfies $\theta(\eta) \subseteq \eta \cap H$ for two fixed positive integers m, n.

In (1) "Let M be nonempty subset of a left B-A-module X, the annihilator $ann_A(M)$ of B-A-module M is $\{a \in A : \forall \lambda \in X, \; \lambda a = 0 \}$ for all $\lambda \in X \in M\} = ann_A(M)$.

Notation 1:
Suppose that X be a B-algebra-module
1) $\mathcal{N}_{x_1, x_2, \ldots, x_n} = (\theta(x_i))_i \in N$, $x_i \in X, i = 1, 2, \ldots, n$.
2) $\mathcal{N}_{x_1, x_2, \ldots, x_n} = \{m \in M, \; \gamma_i \in \gamma, \; i = 1, 2, \ldots, n \}$

Definition 2: A B-A-module X is hold $\theta(\eta)$ is n-generated in algebra. A module which is 1-generated relative to ideal A of $R^{m,n}$, if for all n-generated sub-module of X such that $\theta(\eta)$ is 1-generated relative to A. Moreover, $\theta(\eta)$ is 1-generated relative to A is called hold $\theta(\eta)$ is 1-generated relative to A.

Corollary 1: If X is (m, n)-S-F-S-B-A-M-R to ideal H of $A^{m,n}$, then $\forall \eta \in X^n$ such that $\theta(\eta)$ is 1-generated relative to A.

Proof: The proof is clear in (2). A B-A-module X is hold Baer criterion (B-C) if all submodule of X holds Baer criterion, this mean that for every submodule N in X and algebra multiplior $N \to X$, so $\exists \beta \in A$ s.t $\theta(\eta) = \beta \forall \eta \in N$.

Definition 2: A B-algebra module X is called hold Baer-(m, n)-criterion relates (B-(m, n)-C-R) to an ideal H if each sub-module of X satisfies $B-(m, n)-C-R$ to an ideal H.
generated sub-module of \(X^n \) and \(A \)-multiplier \(\theta : L \to X^n \), there is \(\theta \) such that \(\theta(l) = \delta l \in X^n \) for all \(l \in L \).

Proposition 2: If \(X \) satisfies \(B-(m,n) \)-C-R to ideal and \(\sigma(M) = \sigma_{L}(L \cap M) + \sigma_{R}(M) \) for each \(m \)-generated sub-modules of \(X^n \), then \(X \) satisfies \(B-(m,n) \)-C-R to ideal.

Proof: Let \(P = A\delta x_{1} + A\delta x_{2} + \ldots + A\delta y_{m} \) be \(m \)-generated sub-module of \(X^n \), \(f : P \to X^{n} \) multiplier. Now, by induction on \(m \). Clearly that \(\chi \) holds \(B-(m,n) \)-C-R to ideal, if \(m = 1 \). Suppose that \(\chi \) satisfies \(B-(m,n) \)-C-R to ideal for each \(k \)-generated sub-module of \(X^n \), for \(n \geq k \). Write \(L = A\delta x_{1} + A\delta x_{2} + \ldots + A\delta y_{m} \), therefore for each \(w_{i} \in W \) and \(w_{j} \in M \) \(f \ket{(w_{i})} = y_{1}w_{i} \), \(f \ket{(w_{j})} = y_{2}w_{j} \) for some \(y_{1}, y_{2} \in A \). It is clear \(y_{1}y_{2} \in \sigma_{L}(L \cap M) + \sigma_{R}(M) \). Suppose that \(y_{1}y_{2} = z_{1} + z_{2} \), \(z_{1} \in \sigma_{L}(L), z_{2} \in \sigma_{R}(M) \) and let \(y = x_{1} = x_{2} + x_{3} \), then for any \(w = w_{i} + v_{2} + P \in W \) and \(w_{2} \in M \), \(f(w) = f(w_{1}) + f(v_{2}) = w_{1} + w_{2}y = w_{1}y_{1}x_{1} + w_{2}y_{2}x_{3} = w_{1}(y_{1}x_{1}) + w_{2}(y_{2}x_{2}) \). Hence \(\chi \) satisfies \(B-(m,n) \)-C-R to ideal.

Corollary 2: Let \(\chi \) be a \(B \)-A-module. \(\chi \) is \((m,n) \)-S-F-S-B-A-M-R to ideal if and only if \(\sigma(M) = \sigma_{L}(M) + \sigma_{R}(M) \). The concepts strongly quasi-\((m,n) \)-\(\alpha \)-injective module related to ideal \(H \) of algebra if

\[
\begin{align*}
\sigma_{L}(L \cap M) + \sigma_{R}(M) = \sigma(M) = \sigma_{L}(L) + \sigma_{R}(M)
\end{align*}
\]

Following (1) "suppose that \(\alpha \) is a unital \(B \)-A and assume \(\alpha > 1 \). Algebra-module \(\chi \) is said to be quasi-\(\alpha \)-injective relate to ideal \(H \) of algebra if

\[
\begin{align*}
\sigma_{L}(L \cap M) + \sigma_{R}(M) = \sigma(M) = \sigma_{L}(L) + \sigma_{R}(M)
\end{align*}
\]

Thus \(\chi \) is quasi-\((m,n) \)-\(\alpha \)-injective -B-A-module related to ideal for some \(\alpha \) is introduced.

Definition 3: Suppose that \(\alpha \) is a unital \(B \)-A and \(1 \leq \alpha \). \(\chi \) is said to be strongly quasi-\((m,n) \)-\(\alpha \)-injective relate to an ideal \(I \) of \(A \)-module if \(\sigma(E) = \sigma_{L}(E) + \sigma_{R}(E) \). Then \(\chi \) is quasi-\((m,n) \)-\(\alpha \)-injective module related to ideal if

\[
\begin{align*}
\sigma_{L}(L \cap M) + \sigma_{R}(M) = \sigma(M) = \sigma_{L}(L) + \sigma_{R}(M)
\end{align*}
\]

In ideal for some \(\alpha \) if and only if

\[
\begin{align*}
\sigma_{L}(L \cap M) + \sigma_{R}(M) = \sigma(M) = \sigma_{L}(L) + \sigma_{R}(M)
\end{align*}
\]

The concepts strongly quasi-\((m,n) \)-\(\alpha \)-injective relate to ideal \(1 \) if

\[
\begin{align*}
\sigma_{L}(L \cap M) + \sigma_{R}(M) = \sigma(M) = \sigma_{L}(L) + \sigma_{R}(M)
\end{align*}
\]

Proposition 4**: If \(\chi \) is \((m,n) \)-S-F-S-B-A-M-R to I ideal of an algebra, then \(\chi \) is strongly quasi-\((m,n) \)-\(\alpha \)-injective relate to ideal I if

\[
\begin{align*}
\sigma_{L}(L \cap M) + \sigma_{R}(M) = \sigma(M) = \sigma_{L}(L) + \sigma_{R}(M)
\end{align*}
\]

Proof**: Set \(N = a_{1}A + \ldots + a_{n}A \), \(m \)-generated sub-module of \(X^{n} \), \(a \in X^{n} \), \(\alpha \) be greater than \(1 \) and \(f \) be any algebra-module-homomorphism from \(N \) to \(X^{n} \) such that \(||f|| \leq 1 \). Since \((m,n) \)-S-F-S-R to ideal, therefore \(f(\alpha_{1}A + \ldots + a_{n}A) \leq a_{1}A + \ldots + a_{n}A \cap X^{n} \),
thus there is \(t = (t_1, \ldots, t_n) \in \mathbb{A}_n \) and \(w \in X^n I \). Let \(a_i = (0, 0, \ldots, 1, 0, \ldots, 0) \) such that \(f(\sum_{i=1}^n a_i) = t \). Define \(g : X^n \rightarrow X \) as \(g(a_i) = t^i a_i \), clearly \(g \) is well defined algebra-module homomorphism. Now \(f(\sum_{i=1}^n a_i) - g(\sum_{i=1}^n a_i) = t - w \). Since \(f(\sum_{i=1}^n a_i) - g(\sum_{i=1}^n a_i) = w \in X^m I \) and since for all \(x \in \mathbb{A}_n \), \(f(x) - g(x) = f(\sum_{i=1}^n a_i) - g(\sum_{i=1}^n a_i) = (f - g)(\sum_{i=1}^n a_i) = w = x \). Therefore \(X \) is strongly quasi \((m,n)\)-banach algebra module relative to ideal.

Definition 4: A sub-module \(N \) of Banach \(A \)-module is called pure-(\(m,n \))-sub-module if \(N = N \cap X^n I \cap I \) for some \(s = \mathbb{A}_n \).

When the sub-module of \((m,n)\)-S-F-S-B-A-M-R to ideal have been partial answer in the next proposition.

Proposition 5: Let \(X \) be a \((m,n)\)-S-F-S-B-A-M-R to a non-zero ideal \(I \) of \(A^{m,n} \), then every \((m,n)\)-pure sub-module is \((m,n)\)-S-F-S-B-A-M-R to ideal.

Proof: Assume that \(N \) is pure-(\(m,n \))-sub-module of \(X \). For every sub-module \(L \) of \(N \) and a multiplier \(f: L \rightarrow N \), put \(g = f o i: L \rightarrow X \) where \(i \) is the inclusion mapping of \(N \) to \(X \), then by assumption \(f(L) = g(L) \subseteq X^n I \), since \(f(L) \subseteq N \). Hence \(f(L) \subseteq L \cap X^n I \cap N \). Because \(N \) is pure-(\(m,n \))-sub-module of \(X \) then \(N \cap X^n I = N^m I \), for all ideal \(I \) of \(A^{m,n} \), therefore \(f(L) \subseteq L \cap N^m I \). Therefore \(N \) is \((m,n)\)-S-F-S-B-A-M-R to \(I \).

Conclusion:

In this work, the concept of \((m,n)\) strong full stability \(B\)-Algebra-module related to a non-zero ideal \(I \) of \(A^{m,n} \) has been introduced and it is also easy to study its properties by linking it with other concepts. The relationship of \((m,n)\) strong full stability \(B\)-Algebra-module related to an ideal that states, if \(X \) is \((m,n)\)-strong full stability \(B\)-Algebra-module related to an ideal \(I \) of an algebra, then \(X \) is strongly Quasi \((m,n)\)-inactive \(B\)-algebra module relative to an ideal I have been proved, and show that every \((m,n)\)-pure sub-module of \((m,n)\) strong full stability \(B\)-Algebra-module related to a non-zero ideal \(I \) of \(A^{m,n} \) is \((m,n)\) strong full stability \(B\)-Algebra-module related to a non-zero ideal \(I \) of \(A^{m,n} \).

Authors' declaration:

- Conflicts of Interest: None.
- Ethical Clearance: The project was approved by the local ethical committee in University of Baghdad.

References: