DOI: http://dx.doi.org/10.21123/bsj.2021.18.4.1234 # On (m,η) -Strongly Fully Stably Banach Algebra Modules Related to an Ideal of $A^{m \times \eta}$ Radhi Ibraheem Mohammed Ali Muna Jasim Mohammed Ali* Samira Naji Kadhim Department of Mathematics, College of Science for Women, University of Baghdad, Baghdad, Iraq. *Corresponding author: <u>radhiim_math@csw.uobaghdad.edu.iq</u>, <u>munajm_math@csw.uobaghdad.edu.iq</u>*, <u>samirank_math@csw.uobaghdad.edu.iq</u>* ORCID ID: https://orcid.org/0000-0002-4428-6659*, https://orcid.org/0000-0002-4428-6659 Received 3/2/2020, Accepted 27/9/2020, Published Online First 30/4/2021, Published 1/12/2021 This work is licensed under a Creative Commons Attribution 4.0 International License. ## **Abstract:** The aim of this paper is introducing the concept of $(\mathfrak{M},\mathfrak{n})$ strong full stability B-Algebra-module related to an ideal. Some properties of $(\mathfrak{M},\mathfrak{n})$ - strong full stability B-Algebra-module related to an ideal have been studied and another characterizations have been given. The relationship of $(\mathfrak{M},\mathfrak{n})$ strong full stability B-Algebra-module related to an ideal that states, a B-A-module X is $(\mathfrak{M},\mathfrak{n})$ - strong full stability B-Algebra-module related to an ideal Y if and only if for any two Y-element sub-sets $\{X_{i_1}, X_{i_1,i_2}, \cdots, X_{i_1,i_2$ **Keywords:** Baer- (m,η) -criterion related to an ideal, F-S-B-A-module related to an ideal, (m,η) -full-stable-B-A-module related to ideal, Multiplication- (m,η) -B-A-module relative to ideal, Pure- (m,η) - sub-module. # **Introduction:** An algebra is a set $A \neq \emptyset$ and if the following conditions are satisfied, 1- the set A with addition and multiplication are satisfied through a domain \mathcal{F} is a space of vectors, 2- α ($\mathring{a} \circ d$) =($\alpha \mathring{a}$) $\circ d$ = $\mathring{a} \circ (\alpha d')$ for all $\alpha \in \mathcal{F}$, $\forall \mathring{a}$, $d' \in A$, 3- the set Awith + and \circ forms a ring by -1-. \Re is called an algebra where \Re is a ring, $[\Re, +, \cdot, -, 0]$ such that+ and · are binary operations ,- is unary and nullaryelement is 0 satisfying, $[\Re, +, -, 0]$ group which is commutative, $[\Re,.]$ which is a semi-group and \mathring{a} . $(\mathring{e} + \mathring{o}) = (\mathring{a} \cdot \mathring{e}) + (\mathring{a} \cdot \mathring{o})$ and $(\mathring{a} + \mathring{e}) \cdot \mathring{o} =$ $(\mathring{a}.\mathring{b}) + (\mathring{e} + \mathring{b})(1)$. Suppose that A is an algebra, recall that a B- algebra- left module (B-A-left module) is a B-space E insomuch as E is an algebraleft module, and $\|\mathring{a}\| \|\dot{x}\| \ge \|\mathring{a}.\dot{x}\| (\mathring{a} \in A, \dot{x} \in \dot{E})$ according to (1). Following (2) a map from a Balgebra- left module X into a B-algebra - left module Ў (algebra A is not necessary abelian) is called a A-multiplier (homomorphism) if it satisfies $\forall \dot{a} \in \dot{A}, \dot{x} \in X, T(\dot{a}.\dot{x}) = \dot{a}. T\dot{x}.$ In (1), a submodule \dot{N} in \dot{M} is said to be stabile, if $\dot{N} \supseteq f(\dot{N}) \forall$ R-homomorphism f from sub-module N into module \dot{M} . M is called full stability \Re -module ,if each sub-module in \dot{M} is stable . Assume that X is B-algebra - module, X F-Sis called B-algebra -module related to an ideal K of algebra A, if ∀ sub-module N in X and, ∀ multiplier $\theta: \dot{N} \longrightarrow X$ holds $\dot{N} + \dot{K}\dot{X} \supseteq \theta(\dot{N})$ " (1). Let $\Re^{m \times n}$ be the collection of every matrices $m \times n$ over a ring \Re . $\ddot{A} \in \Re^{m \times n}$, denote \ddot{A}^T is transpose of \ddot{A} . In general, write $\dot{N}^{m\times n}$ for an \Re -module \dot{N} , the collection of all matrices $m \times n$ where all elements in \dot{N} . Suppose that \dot{M} a right Banach Algebra-module and let \dot{N} be a left \mathcal{R} -module. Let $\dot{x} \in \dot{M}^{l \times m}, \dot{s} \in \mathfrak{R}^{m \times n}$ and $\dot{y} \in$ $\dot{M}^{\eta \times k}$, with multiplication, $\dot{x}\dot{s}$ (resp. $\dot{s}\dot{y}$) is good defined element in $\dot{M}^{l\times m}$ (resp. $\dot{N}^{n\times k}$). "If $X\subseteq \dot{M}^{l\times m}$, $S \subseteq \Re^{m \times n}$ and $y \subseteq N^{n \times k}$ are define P-ISSN: 2078-8665 E-ISSN: 2411-7986 $$\begin{array}{l} \ell_{\dot{\mathrm{M}}^{l\times \mathrm{m}}}(\dot{S}) = \{\dot{\mathrm{w}} \in \dot{\mathrm{M}}^{l\times \mathrm{m}}| \dot{\mathrm{w}}\dot{\mathrm{s}} = 0 \; ; \; \textit{for all } \dot{\mathrm{s}} \in \dot{S} \} \\ r_{\dot{\mathrm{N}}^{\mathrm{n}\times k}}(\dot{S}) = \{\ddot{\mathrm{v}} \in \dot{\mathrm{N}}^{\mathrm{n}\times k}| \dot{\mathrm{s}}\ddot{\mathrm{v}} = 0 \; ; \; \textit{for all } \dot{\mathrm{s}} \in \dot{S} \} \\ \ell_{\Re^{\mathrm{m}\times \mathrm{n}}}(Y) = \{\dot{\mathrm{s}} \in \Re^{\mathrm{m}\times \mathrm{n}}| \dot{\mathrm{s}}\dot{\mathrm{w}} = 0 \; ; \; \textit{for all } \dot{\mathrm{w}} \in Y \} \\ r_{\Re^{\mathrm{m}\times \mathrm{n}}}(X) = \{\dot{\mathrm{s}} \in \Re^{\mathrm{m}\times \mathrm{n}}| \dot{\mathrm{x}}\dot{\mathrm{s}} = 0 \; ; \; \textit{for all } \dot{\mathrm{w}} \in X \} \\ \text{Write } \dot{\mathcal{N}}^{l=} \dot{\mathcal{N}}^{l\times \mathrm{n}}, \; \dot{\mathcal{N}}_{\eta} = \mathcal{N}^{\mathrm{n}\times l}(3) \; . \; \text{In our work for fixed} \\ \text{positive integers n,m} \; \text{the concept of } (\mathrm{m,n})\text{-full} \\ \text{stability Banach Algebra modules relative to an ideal have been introduced.} \end{array}$$ # (m,η)-Strongly-Fully-Stable-Banach-Algebra Modules Related to ideal A left B-algebra-module X is η -generated where $\eta \in N$ if there is exist $\dot{x}_1, ..., \dot{x}_n \in X$ such that for all $\dot{x} \in X$ can be represented $\dot{x} = \sum_{k=1} \dot{a}_k.\dot{x}_k$ for some $\dot{a}_1, ..., \dot{a}_n$ in algebra. A module which is 1-generated is called a cyclic module (4) .A right module over \Re , \dot{M} is called strongly fully $(\mathfrak{M}, \mathfrak{N})$ -stable relative to an ideal A of $R^{\eta \times \mathfrak{M}}$, if $\dot{N} \cap \dot{M}^{\mathfrak{M}}$ $\dot{A} \supseteq \theta(\dot{N})$ for all η -generated sub-module of $\dot{M}^{\mathfrak{M}}$ and $\dot{\theta} : \dot{N} \rightarrow \dot{M}$ \Re -homomorphism (5) **Definition 1:** Let $\c K$ be B- $\c A$ -module, $\c K$ is called (m,n)-S-F-S-B-A-M-R to ideal $\c H$ of $\c A^{m\times n}$, if for everym —generated sub-module $\c J$ of $\c K^n$ and for each multiplier $\c \theta: \c J \to \c K^n$ which satisfies $\c \theta(\c J) \subseteq \c J \cap \c K^n$ H for two fixed positive integers $\c n,m$. In (1) "Let \dot{M} be nonempty subset of a left B- \dot{A} -module \ddot{M} , the annihilater $ann_{\dot{A}}(\dot{M})$ of B-A-module \dot{M} is $\{\dot{a} \in \dot{A} ; \dot{a}.\dot{x} = 0 \text{ for all } \dot{x} \in \dot{M}\} = ann_{\dot{A}}(\dot{M})$. ### **Notation 1:** Suppose that X be a B-algebra-module $$\begin{aligned} 1) \ &\mathring{\mathbf{N}}_{\dot{\mathbf{x}}_{1},\dot{\mathbf{x}}_{2},\cdots,\dot{\mathbf{x}}_{\eta}} = \{ \bigoplus \mathring{\mathbf{n}}_{\dot{\mathbf{x}}_{i}} \middle| \mathring{\mathbf{n}} \in \mathring{\mathbf{N}}, \ \dot{\mathbf{x}}_{i} \in \mathring{\mathbf{X}}, i = \\ 1,2,\cdots,\eta \} \\ &\mathring{\mathbf{M}}_{\mathring{\mathbf{y}}_{1},\mathring{\mathbf{y}}_{2},\cdots,\mathring{\mathbf{y}}_{\eta}} = \{ \bigoplus \mathring{\mathbf{m}}_{\mathring{\mathbf{y}}_{i}} \middle| \ \mathring{\mathbf{m}} \in \mathring{\mathbf{M}}, \ \ \mathring{\mathbf{y}}_{i} \in \mathring{\mathbf{X}}, i \\ &= 1,2,\cdots,\eta \} \\ 2) \ &\ell_{\mathring{\mathbf{A}}^{\mathfrak{m}\times\eta}} \ &\mathring{\mathbf{N}}_{\dot{\mathbf{x}}_{1},\dot{\mathbf{x}}_{2},\cdots,\dot{\mathbf{x}}_{\eta}} = \{ \mathring{a} \in \mathring{\mathbf{A}}^{\mathfrak{m}\times\eta}, \ \mathring{a}. \ (\bigoplus \mathring{\mathbf{n}}_{\dot{\mathbf{x}}_{i}}) = \\ 0, \ & \forall \mathring{\mathbf{n}}_{\dot{\mathbf{x}}_{i}} \in \mathring{\mathbf{N}}_{\dot{\mathbf{x}}_{1},\mathring{\mathbf{x}}_{2},\cdots,\mathring{\mathbf{x}}_{\eta}} \} \\ &\ell_{\mathring{\mathbf{A}}^{\mathfrak{m}\times\eta}} \mathring{\mathbf{M}}_{\mathring{\mathbf{y}}_{1},\mathring{\mathbf{y}}_{2},\cdots,\mathring{\mathbf{y}}_{\eta}} = \{ \mathring{a} \in \mathring{\mathbf{A}}^{\mathfrak{m}\times\eta}, \ \mathring{a}. \ (\bigoplus \mathring{\mathbf{m}}_{\mathring{\mathbf{y}}_{i}}) \\ &= 0, \ \forall m_{\mathring{\mathbf{y}}_{i}} \in \mathring{\mathbf{M}}_{\mathring{\mathbf{y}}_{1},\mathring{\mathbf{y}}_{2},\cdots,\mathring{\mathbf{y}}_{\eta}} \} \end{aligned}$$ **Proposition 1:** A B- A-module X is $(\mathfrak{m},\mathfrak{n})$ -S-F-S-B-A-M-R to ideal , if and only if for any two \mathfrak{m} -element sub-sets $\{ N_{\dot{x}_1}, N_{\dot{x}_1,\dot{x}_2}, \cdots, N_{\dot{x}_1,\dot{x}_2}, \cdots, \hat{\lambda}_{\dot{x}_1,\dot{x}_2}, \cdots, \hat{\lambda}_{\dot{x}_1,\dot{x}_2}, \cdots, \hat{\lambda}_{\dot{x}_1} \}$ and $\{ M_{\dot{y}_1}, M_{\dot{y}_1,\dot{y}_2}, \cdots, M_{\dot{y}_1,\dot{y}_2}, \cdots, \hat{y}_{\dot{\eta}} \}$ of $X^{\mathfrak{n}}$, if $\beta_j \notin \sum_{i=1}^n \alpha_i A \cap X^{\mathfrak{m}} H$, for each $j=1,\ldots,\mathfrak{m}$, $i=1,\ldots,\mathfrak{m}$, $\alpha_i \in \{ N_{\dot{x}_1}, N_{\dot{x}_1,\dot{x}_2}, \cdots, N_{\dot{x}_1,\dot{x}_2}, \cdots, \hat{x}_{\dot{\eta}} \}$ and $\beta_j \in \{ M_{\dot{y}_1}, M_{\dot{y}_1,\dot{y}_2}, \cdots, M_{\dot{y}_1,\dot{y}_2}, \cdots, \hat{y}_{\dot{\eta}} \}$ implies $\mathcal{T}_{A\mathfrak{n}}(\{ N_{\dot{x}_1}, N_{\dot{x}_1,\dot{x}_2}, \cdots, N_{\dot{x}_1,\dot{x}_2}, \cdots, \hat{y}_{\dot{\eta}} \})$. **Proof:** Presume that X is (m,η)-S-F-S-B-A-M-R to ideal and there exist two m- element subsets { N_{x1}, N_{x1,x2}, ..., N_{x1,x2},...,x_η} and {M_{y1}, M_{y1,y2}, ..., M_{y1,y2},...,y_η} of M_η such that if M_{y1} ∉ $\sum_{i=1}^{n} A\alpha_i \cap X^mH$, for each j=1, ..., m and $\mathcal{M}_{Aη}(\{N_{x1}, N_{x1,x2}, ..., .$ where $r = (r_1, \ldots,$ r_n and hence $\mathbf{r}^{\mathrm{T}} \in \mathscr{T} \dot{\mathbf{A}}_{\eta} \{ \overset{\mathsf{N}}{\mathbf{N}}_{\dot{\mathbf{X}}_{1}}, \overset{\mathsf{N}}{\mathbf{N}}_{\dot{\mathbf{X}}_{1}, \dot{\mathbf{X}}_{2}}, \cdots, \overset{\mathsf{N}}{\mathbf{N}}_{\dot{\mathbf{X}}_{1}, \dot{\mathbf{X}}_{2}, \cdots, \dot{\mathbf{X}}_{n}} \}.$ assumption $rK_{\hat{v}_{i}} = 0$ where j = 1, ...,m, when $\sum_{i=1}^{n} r_i \acute{\mathbf{M}}_{\grave{\mathbf{v}}_i} = 0$. Thus f is well defined. Clearly that f is multiplier. (m,η) - strongly-fully-stable of X implies that there is $t = (t_1,...,t_n) \in A^n$ such that $f(\sum_{\substack{n=1\\n}}^{n}r_{i}N_{\hat{x}_{i}}) = \sum_{k=1}^{n}t_{k}(\sum_{i=1}^{n}r_{i}N_{\hat{x}_{i}}) + b$ $\sum_{k=1}^{n} \sum_{i=1}^{n} (t_k r_i) \mathring{\mathbb{N}}_{\dot{\mathbf{x}}_i} + b \text{for} \qquad \text{each} \sum_{i=1}^{n} r_i \mathring{\mathbb{N}}_{\dot{\mathbf{x}}_i} \in$ $\sum_{i=1}^{n} N_{x_i} \dot{A}$ and $b \in X^m I$. Let $r_i = (0, ..., 0, 1, 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ...,$ 0) $\in A^n$, have 1 in the position i-th and otherwise put 0. $\dot{\mathbf{M}}_{\dot{\mathbf{y}}_i} = \mathbf{f}(\dot{\mathbf{N}}_{\dot{\mathbf{x}}_i}) = \sum_{k=1}^{n} t_k \dot{\mathbf{N}}_{\dot{\mathbf{x}}_i} + b \in \sum_{i=1}^{n} \dot{\mathbf{N}}_{\dot{\mathbf{x}}_i} \dot{\mathbf{A}} \cap$ X^mH,this is contradiction. Conversely suppose that there exists m-generated B-A-sub-module of X^n and $\mu: \sum_{i=1}^{\eta} \dot{N}_{\dot{x}_i} \dot{A} \rightarrow X^{\eta} \text{such}$ multiplier $\mu(\sum_{i=1}^n \dot{N}_{x_i} \dot{A}) \not\subset \sum_{i=1}^n \dot{N}_{x_i} \dot{A} \cap X^m \dot{H}$. Therefore there exists an element $\beta(=\sum_{i=1}^{n} r_i N_{\dot{x}_i}) \in \sum_{i=1}^{n} N_{\dot{x}_i} Asuch$ that $\mu(M_{\hat{y}}) \notin \sum_{i=1}^{n} N_{\hat{x}_{i}} A \cap X^{m} H.Take M_{\hat{y}_{i}} = M_{\hat{y}},$ when j is 1, ..., m, hence own m-element subset $\{\mu(M_{\grave{v}}), ..., \mu(M_{\grave{v}})\}$, such that $\mu(M_{\grave{v}}) \notin \sum_{i=1}^{n} N_{\grave{x}_{i}} A \cap$ X^mH , $j = 1, \dots, m$. Let $\eta = (t_1, \dots, t_n)$ t_n) $\in \mathscr{T}_{An}(\{\ N_{\dot{x}_1},\ N_{\dot{x}_1,\dot{x}_2},\cdots,\ N_{\dot{x}_1,\dot{x}_2,\cdots,\dot{x}_n}\})$, then $\eta\alpha_j=0$, i.e $\sum_{i=1}^{n} t_i a_{ij} = 0$, for each j = 1, ..., m, $N_{x_i} = (a_{1j}, a_{2j}, a_{2j}$..., a_{nj}) and $\{\mu(M_y), ..., \mu(M_y)\}\ \eta = \sum_{k=1}^{n} t_k \mu(M_y) =$ $\sum_{k=1}^{n} t_{k} \mu(\sum_{i=1}^{n} r_{i} N_{\dot{x}_{i}}) = \sum_{k=1}^{n} \mu(\sum_{i=1}^{n} t_{k} r_{i} N_{\dot{x}_{i}}) = 0$ P-ISSN: 2078-8665 E-ISSN: 2411-7986 $$\begin{split} & \mathscr{T}_{\text{A}\eta}(\{\ \c N_{\dot{x}_1},\ \c N_{\dot{x}_1,\dot{x}_2},\cdots,\ \c N_{\dot{x}_1,\dot{x}_2,\cdots,\dot{x}_\eta}\}) \subseteq \ \mathscr{T}_{\text{A}\eta}(\{\mu(\acute{M}_{\dot{y}}),\\ \ldots,\ \mu(\acute{M}_{\dot{y}})\}), \ \text{hence} \end{split}$$ $\mathscr{V}_{A\eta}(\{\ \ \ \mathring{N}_{\dot{x}_1},\ \ \ \mathring{N}_{\dot{x}_1,\dot{x}_2},\cdots,\ \ \ \mathring{N}_{\dot{x}_1,\dot{x}_2,\cdots,\dot{x}_{\eta}}\})\subseteq \mathscr{V}_{A\eta}(\{\mu(\mathring{M}_{\dot{y}_1}),\ \dots,\ \mu(\mathring{M}_{\dot{y}_1,\dot{y}_2,\cdots,\dot{y}_{\eta}})\})$ this is a contradiction. Hence X is $(\mathfrak{m},\mathfrak{n})$ -S-F-S-B-A-M-R to ideal H of $\mathring{A}^{\mathfrak{m}^{\times\eta}}$. **Corollary 1 :**If X is (m,η) -S-F-S-B-A-M-R to ideal H of $A^{m\times\eta}$, therefore any two m-element sub-sets $\{\ \dot{N}_{\dot{x}_1},\ \dot{N}_{\dot{x}_1,\dot{x}_2},\cdots,\ \dot{N}_{\dot{x}_1,\dot{x}_2},\cdots,\dot{x}_\eta\}$ and $\{\dot{M}_{\dot{y}_1},\dot{M}_{\dot{y}_1,\dot{y}_2},\cdots,\dot{M}_{\dot{y}_1,\dot{y}_2},\cdots,\dot{y}_n\}$ of X^η , $r_{A\eta}(\{\ \begin{subarray}{c} \begin{subarra$ $\subseteq \mathscr{V}_{A\eta}(\{\mathring{M}_{\mathring{y}_{1}},\mathring{M}_{\mathring{y}_{1},\mathring{y}_{2}},\cdots,\mathring{M}_{\mathring{y}_{1},\mathring{y}_{2}},\dots,\mathring{y}_{\eta}}\}) \quad \text{implies} \quad \text{that} \\ \mathring{N}_{\mathring{x}_{1}}\mathring{A} + \mathring{N}_{\mathring{x}_{1},\mathring{x}_{2}}\mathring{A} + \dots + \mathring{N}_{\mathring{x}_{1},\mathring{x}_{2}},\dots,\mathring{x}_{\eta}}\mathring{A} \cap \mathring{X}^{m}\mathring{H} =$ $\acute{M}_{\grave{y}_{1}} \dot{A} + \acute{M}_{\grave{y}_{1}, \grave{y}_{2}} \dot{A} + \acute{M}_{\grave{y}_{1}, \grave{y}_{2}, \cdots, \grave{y}_{\eta}} \dot{A} \cap \ \c X^m H.$ **Proof:** The proof is clear In (2), A B- \dot{A} - module \ddot{X} is called to holds Baer criterion (B-C) if all submodule of \ddot{X} holds Baer criterion, this mean that for every sub-module \dot{N} in \ddot{X} and algebra— multiplier : $\dot{N} \rightarrow \ddot{X}$, so $\exists \mathring{a} \in \dot{A}$ s.t $\theta(n) = \mathring{a}n \quad \forall n \in \dot{N}$ ". **Definition 2 :**A B- algebra- module X is called hold Baer-(m,n)-criterion relates (B-(m,n)-C-R) to an ideal H if each sub-module of X satisfies B-(m,n)-C-R) to an ideal H, this mean that, for every M-generated sub-module L of X^n and A- multiplier $\theta\colon L \longrightarrow \mbox{\it X}^{\mbox{\it η}}$,there is a in A such that $\theta(l)=\mbox{\it a} l\in \mbox{\it $X^{\mbox{\it η}}$}$ H for all $l\in L$. **Proposition 2 :** If X satisfies B-(m,1)-C-R to ideal and $\mathcal{V}_A(L \cap \dot{M}) = \mathcal{V}_A(L) + \mathcal{V}_A(\dot{M})$ for each m-generated sub-modules of X^n , then X satisfies B-(m,n)-C-R to an ideal. **Proof :** Let $P = A\dot{x}_1 + A\dot{x}_2 + ... + A\dot{x}_m$ be m-generated sub-module of X^n , $f: P \to X^n$ multiplier. Now, by induction on m. Clearly that X holds B-(m,n)-C-R to an ideal, if m = 1. Suppose that X satisfies B-(m,n)-C-R to an ideal for each k-generated sub-module of X_n , for n- $1 \ge k$. Write $L = A\dot{x}_1$, $M = A\dot{x}_2 + ... + A\dot{x}_m$, therefore for each $w_1 \in L$ and $w_2 \in M$ of $w_1 \in L$ and $w_2 \in M$ function $w_2 \in M$ function $w_3 \in M$ function $w_4 \in$ **Proposition 3:** Suppose that X is a B-A- module. Get X holds B-(m,n) – C-R to an ideal if and only if $\ell_X^n r_{An}(N_{\dot{x}_1}A + N_{\dot{x}_1,\dot{x}_2}A + \ldots + N_{\dot{x}_1,\dot{x}_2}\ldots N_{\dot{x}_n}A) \subseteq N_{\dot{x}_1}A + N_{\dot{x}_1,\dot{x}_2}A + \ldots + N_{\dot{x}_1,\dot{x}_2}\ldots N_{\dot{x}_n}A \cap X^mH$ for any n-elements subset $\{N_{\dot{x}_1}, N_{\dot{x}_1,\dot{x}_2}, \cdots, N_{\dot{x}_1,\dot{x}_2}, \cdots, N_{\dot{x}_1,\dot{x}_2}, \cdots, N_{\dot{x}_n}\}$ of X^n . **Proof :** Assume that B-(m,n)-C-R to an ideal holds for m-generated sub-module of X^{η} , let $N_{\dot{x}_i} = (k_{i1}; \ k_{i2}, ..., k_{im})$, for each $i=1, \ ..., \ \eta$ $\{ \check{\mathsf{M}}_{\check{\mathsf{V}}_1}, \check{\mathsf{M}}_{\check{\mathsf{V}}_1, \check{\mathsf{V}}_2}, \cdots, \check{\mathsf{M}}_{\check{\mathsf{V}}_1, \check{\mathsf{V}}_2, \cdots, \check{\mathsf{V}}_n} \} \in$ $\ell_{\chi}^{\eta} r_{A\eta}(\ \c N_{\dot{x}_1}\dot{A} + \c N_{\dot{x}_1,\dot{x}_2}\dot{A} + \ldots + \c N_{\dot{x}_1,\dot{x}_2},\ldots,\dot{x}_{\eta}}\dot{A}),\ \acute{M}_{\dot{y}_i} = (a_{1i},$ a_{2i} , ..., a_{ni}). Define $\mu: N_{\dot{x}_1} \dot{A} + N_{\dot{x}_1,\dot{x}_2} \dot{A}$ $+\ldots + N_{\dot{x}_1,\dot{x}_2,\cdots,\dot{x}_n}A \rightarrow X^n by$ $\mu(\sum_{i=1}^{n} N_{x_i} a_i)$ $\textstyle \sum_{i=1}^{\mathfrak{n}} \check{\mathsf{M}}_{\check{\mathsf{y}}_{i}} \, a_{i}. \text{If } \check{\sum}_{i=1}^{\mathfrak{n}} \, \check{\mathsf{N}}_{\check{\mathsf{x}}_{i}} a_{i}, \, \text{then} \textstyle \sum_{i=1}^{\mathfrak{n}} k_{ij} \, a_{i} = 0 \text{ where }$ j = 1, ..., m, therefore $L_{x_i} r = 0$ and $r = (r_1, ..., r_n)$ $r \in r_{A_{\eta}}(N_{\dot{x}_1}A$ $+\ldots+N_{\dot{x}_1,\dot{x}_2,\ldots,\dot{x}_n}\dot{A}$). By assumption $rN_{\dot{x}_i}=0$, $i=1,\ldots,$ η so $\sum_{i=1}^{\eta} \hat{M}_{v_i} a_i = 0$. Therefore f is well defined and μ is an multiplier it is an easy. By assumption exist t $\in \text{Asuch that } \mu(\sum_{i=1}^{\mathfrak{q}} \mathring{N}_{\dot{x}_{i}} a_{i}) = \mathsf{t}(\sum_{i=1}^{\mathfrak{q}} \acute{M}_{\dot{y}_{i}} a_{i}) = \sum_{i=1}^{\mathfrak{q}} \acute{M}_{\dot{y}_{i}} (\mathsf{t} a_{i}) \text{ for each } \sum_{i=1}^{\mathfrak{q}} \mathring{N}_{\dot{x}_{i}} a_{i} \in \sum_{i=1}^{\mathfrak{q}} \mathring{N}_{\dot{x}_{i}} \dot{A}. \text{ Let}$ $r_i {=}~(0,~...,0,~1,~0,~...,~0) \in \Breve{A}^{\eta},$ in the i-the position is 1 and 0 otherwise. $M_{y_i} = \mu(\sum_{i=1}^n N_{\dot{x}_i}) = \sum_{i=1}^n N_{\dot{x}_i} t \in$ $\sum_{i=1}^{n} \dot{N}_{\dot{x}_i} \dot{A}$ which is contradiction. This implies that $\ell_{\mathbf{X}}^{\mathsf{n}} r_{\mathsf{A} \mathsf{q}} (\stackrel{\mathsf{N}}{\mathsf{N}}_{\dot{\mathbf{X}}_{1}} \stackrel{\mathsf{A}}{\mathsf{A}} + \stackrel{\mathsf{N}}{\mathsf{N}}_{\dot{\mathbf{X}}_{1}, \dot{\mathbf{X}}_{2}} \stackrel{\mathsf{A}}{\mathsf{A}} + \ldots + \stackrel{\mathsf{N}}{\mathsf{N}}_{\dot{\mathbf{X}}_{1}, \dot{\mathbf{X}}_{2}, \cdots, \dot{\mathbf{X}}_{\mathbf{q}}} \stackrel{\mathsf{A}}{\mathsf{A}}) \subseteq \stackrel{\mathsf{N}}{\mathsf{N}}_{\dot{\mathbf{X}}_{1}} \stackrel{\mathsf{A}}{\mathsf{A}}$ $+ \ \ \mathring{N}_{\dot{x}_1,\dot{x}_2} \dot{A} + \ldots + \ \ \mathring{N}_{\dot{x}_1,\dot{x}_2,\cdots,\dot{x}_{\eta}} \dot{A} \ \cap \ \ \mathring{X}^m \ \ H. \ \ Conversely,$ $\begin{array}{lll} \ell_{X}^{\ n} r_{A\eta}(\ \c N_{\dot{x}_{1}}\c A \ + \ \c N_{\dot{x}_{1},\dot{x}_{2}}\c A \ + \ldots + \ \c N_{\dot{x}_{1},\dot{x}_{2},\ldots,\dot{x}_{\eta}}\c A) &\subseteq \ \c N_{\dot{x}_{1}}\c A \\ + \ \c N_{\dot{x}_{1},\dot{x}_{2}}\c A \ \ + \ldots + \ \c N_{\dot{x}_{1},\dot{x}_{2},\ldots,\dot{x}_{\eta}}\c A \ \cap \ \c X^{m}\c H, for each \end{array}$ P-ISSN: 2078-8665 E-ISSN: 2411-7986 **Corollary 2**:Let X be a B-A- module. X is (m,n)-S-F-S-B-A-M-R to an ideal if and only if $\ell_{X}^{n}r_{An}(\ N_{\dot{x}_{1}}A+N_{\dot{x}_{1},\dot{x}_{2}}A+\dots+N_{\dot{x}_{1},\dot{x}_{2},\dots,\dot{x}_{n}}A)=N_{\dot{x}_{1}}A+N_{\dot{x}_{1},\dot{x}_{2}}A+\dots+N_{\dot{x}_{1},\dot{x}_{2},\dots,\dot{x}_{n}}A\cap X^{m}H$ for n-element subset $\{\ N_{\dot{x}_{1}},\ N_{\dot{x}_{1},\dot{x}_{2}},\dots,\ N_{\dot{x}_{1},\dot{x}_{2},\dots,\dot{x}_{n}}\}$ of X^{n} . Following (1) "suppose that A is a unital B-A and assume $\alpha > 1$. Algebra-module X is said Quasi α -injective (Q- α -inj), if algebra-module homomorphism $\varphi : N \longrightarrow X$ s.t $\| \varphi \| \le 1$ and there is algebra-module homomorphism $\theta : X \longrightarrow X$, s.t θ o $i = \varphi$ and $\| \theta \| \le \alpha$, i is an isometry from submodule N of X. Call X is -inj, if it is Q- α - inj for some α ". Following (1), assume that A is unital B- A and suppose that $\alpha > 1$. Algebra—module X is said to be Quasi- α -injective relate to an ideal A of algebra if, $\varphi: \dot{N} \longrightarrow X$ is algebra-module homomorphism s.t $1 \ge \|\varphi\|$, and there is algebra-module homomorphism $\theta: X \longrightarrow X$, s.t $(\theta \ o \ i)(n) - \varphi(n) \in XH$ and $\alpha \ge \|\theta\|$ where i is an isometry from submodule \dot{N} of X to X. The concepts strongly Quasi-(m,n)- α -injective -B-A- module related to ideal for some α is introduced. **Definition 3**: Suppose that \dot{A} is a unital B-A and $1 < \alpha$. \dot{X} is said to be strongly Quasi- (m,n)- α -injective relate to an ideal I of $A^{m \times n}$ if β : $\dot{N} \rightarrow \dot{X}^n$ is algebra-module homomorphisms such that $1 \ge ||\beta||$, there is $\alpha : \dot{X}^n \longrightarrow \dot{X}^n$ algebra-module homomorphism, such that $(\alpha \circ i)(n) - \beta(n) \in \dot{X}^m I$ and $1 \ge ||\theta||$, i is an isometry from m-generated submodule \dot{N} in \dot{X} . \dot{X} is strongly Quasi-(m,n)-injective relate to an ideal \dot{X} is strongly \dot{X} Quasi- \dot{X} quasi- \dot{X} injective relate to ideal for some \dot{X} . **Proposition 4 :** If X is (m,n)-S-F-S-B-A-M-R to I ideal of an algebra, then X is strongly Quasi (m,n)-inective B- algebra module relate to an ideal I. **Proof :** set $N = \alpha_1 \dot{A} + \ldots + \alpha_n \dot{A}$, m-generated submodule of X^n , $\alpha_i \in X^n$, let α be greater than 1 and f be any algebra-modulehomomorphism from N to X^n such that $\|f\| \le 1$. Since X(m,n)-S-F-S-R to ideal, therefore $f(\alpha_1 \dot{A} + \ldots + \alpha_n \dot{A}) \subseteq \alpha_1 \dot{A} + \ldots + \alpha_n \dot{A} \cap X^n I$, Open Access Published Online First: April 2021 thus there is $\mathbf{t}=(\ t_1,\ \dots,\ t_n\)\in A_n$ and $\mathbf{w}\in X^nJI.$ Let $a_i=(\ 0,\ \dots,\ 1,\ 0,\ \dots,\ 0)$ such that $f(\sum_{i=1}^n\alpha_i)=\mathbf{t}$ $(\sum_{i=1}^n\alpha_i)+\mathbf{w}.$ Define $g:X^n\to X$ as $g\ (\alpha_i)=\mathbf{t}^T\alpha_i,$ clearly g is well defined algebra-module homomorphism. Now $f(\sum_{i=1}^n\alpha_i)-g(\sum_{i=1}^n\alpha_i)=\mathbf{t}$ $(\sum_{i=1}^n\alpha_i)+\mathbf{w}-\mathbf{t}$ $(\sum_{i=1}^n\alpha_i)=\mathbf{w}\in X^mI$ and since for all $\mathbf{y}\in\alpha_1A+\dots+\alpha_nA$, $\mathbf{y}=\sum_{i=1}^n\alpha_is_i$ for some $\mathbf{s}=(s_1,\dots,\ s_n)\in A,\ f(\mathbf{y})-g(\mathbf{y})=f(\sum_{i=1}^n\alpha_is_i)-g(\sum_{i=1}^n\alpha_is_i)=f((\sum_{i=1}^n\alpha_i)s)-g((\sum_{i=1}^n\alpha_i)s)=(\ f(\sum_{i=1}^n\alpha_i)-g(\sum_{i=1}^n\alpha_i)s)\in X^mI,\$ therefore X is strongly quasi (m,n)-banach algebra module relative to ideal. **Definition 4:** A sub-module \dot{N} of Banach \dot{A} -module is called pure- $(\mathfrak{M}, \mathfrak{N})$ - sub-module if $I\dot{N} = \dot{N} \cap X^{\mathfrak{M}} I \ \forall I$ of $A^{\mathfrak{M}^{y \times \eta}}$. When the sub-module of (m, η)-S-F-S-B-A-M-R to ideal have been partial answer in the next proposition . **Proposition 5:** Let X be a $(\mathfrak{m}, \mathfrak{n})$ -S-F-S-B-A-M-R to a non-zero ideal I of $A^{\mathfrak{m}^{\times}\mathfrak{n}}$, then every $(\mathfrak{m},\mathfrak{n})$ -pure sub-module is $(\mathfrak{m},\mathfrak{n})$ -S-F-S-B-A-M-R to an ideal. **Proof:** Assume that \dot{N} is pure- (m,η) - sub-module of \dot{X} . For every sub-module L of \dot{N} and a multiplier f: $L \to \dot{N}$, put g=i o f: $L \to X$ (where i is the inclusion mapping of \dot{N} to X), then by assumption $f(L) = g(L) \subseteq X^mI$, since $f(L) \subseteq N$. Hence $f(L) \subseteq L \cap X^mI \cap \dot{N}$. Because \dot{N} is pure (m, η) -sub-module of X then $\dot{N} \cap X^mI = \dot{N}^mI$, for all ideal I of $A^{m \times n}$, therefore $f(L) \subseteq L \cap \dot{N}^mI$. Therefore N is (m, η) -S-F-S-B-A-M-R to I. # **Conclusion:** In this work, the concept of $(\mathfrak{M},\mathfrak{n})$ strong full stability B-Algebra-module related to a non- zero ideal I of $A^{m_i \times n_i}$ has been introduced and it is also easy to study its properties by linking it with other concepts. The relationship of (m,n) strong full stability B-Algebra-module related to an ideal that states, if X is (m,n)- strong full stability B-Algebra-module related to an ideal I of an algebra, then X is strongly Quasi (m,n)-inective B- algebra module relate to an ideal I have been proved, and show that every (m,n)-pure sub-module of (m,n) strong full stability B-Algebra-module related to a non-zero ideal I of $A^{m_i \times n_i}$ is (m,n) strong full stability B-Algebra-module related to a non-zero ideal I of $A^{m_i \times n_i}$ P-ISSN: 2078-8665 E-ISSN: 2411-7986 #### **Authors' declaration:** - Conflicts of Interest: None. - Ethical Clearance: The project was approved by the local ethical committee in University of Baghdad. #### **References:** - Kadhim, S. N. and Mohammed Ali M. J., On Fully Stable Banach Algebra Modules Relative to an Ideal, Baghdad Sci. J. 2017;14 (4):813-815. - 2. Mohammed Ali J. M. and Ali M., Fully Stable Banach Algebra Module, Math. Theory and Mod. 2016; 6(1): 136-139,. - 3. Abbas M. S. and Mohammed Ali J. M, A Note On Fully (*m*,*n*)-Stable Modules, International Electronic J. of A. . 2009; 6: 65-73. - 4. Brac'i'c J., Local Operators on Banach Modules, University of Ljubljana, Slovenia, Mathematical Proceedings of the Royal Irish Academy. 2004. - Mohammed Ali M. J., On Fully (m,n)-stable modules relative to an ideal A of R^{m×n}, Baghdad Sci. J. 2015; Vol. 12 (2): 400-405. # ${f A}^{m imes \eta}$ بالنسبة الى مثالي ${f m}, {f m}$ عول مقاسات بناخ الاجبرا تامة الاستقرارية من النمط ${f m}, {f m}$ عاظم محمدعلي محمدعلي محمدعلي ابراهيم محمدعلي محمدعلي محمدعلي محمدعلي المعبد في المعبد في المحمد علي محمد علي المعبد في ال قسم الرياضيات، كلية العلوم للبنات، جامعة بغداد، بغداد، العراق. #### لخلاصة: في هذا البحث تم دراسة مفهوم مقاسات بناخ الاجبرا تام الاستقراية من النمط (m,n) بالنسبة الى مثالي $A^{m \times n}$ و دراسة بعض خواصه قد تم بر هنت العديد من العلاقات منها يكون المقاس X تام الاستقرارية من النمط $\{m,n\}$ بالنسبة الى مثالي M اذا وفقط اذا لاي خواصه قد تم بر هنت العديد من العلاقات منها يكون المقاس X تام الاستقرارية من النمط $\{M_{\hat{y}_1},M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}$ الكلمات المفتاحية : مقاسات بناخ الاجبرا تامة الاستقراية بالنسبة الى مثالي، مقاسات بناخ الاجبرا جداء مباشر من النمط (m, η) بالنسبة الى مثالى، مقاسات بناخ الاجبرا تام الاستقراية من النمط (m, η) بالنسبة الى مثالى، مقاسات جزئية خالصة من مقاسات بناخ النمط (m, η) .