DOI: http://dx.doi.org/10.21123/bsj.2021.18.4.1234

# On $(m,\eta)$ -Strongly Fully Stably Banach Algebra Modules Related to an Ideal of $A^{m \times \eta}$

Radhi Ibraheem Mohammed Ali Muna Jasim Mohammed Ali\* Samira Naji Kadhim

Department of Mathematics, College of Science for Women, University of Baghdad, Baghdad, Iraq.

\*Corresponding author: <u>radhiim\_math@csw.uobaghdad.edu.iq</u>, <u>munajm\_math@csw.uobaghdad.edu.iq</u>\*, <u>samirank\_math@csw.uobaghdad.edu.iq</u>\*

ORCID ID: https://orcid.org/0000-0002-4428-6659\*, https://orcid.org/0000-0002-4428-6659

Received 3/2/2020, Accepted 27/9/2020, Published Online First 30/4/2021, Published 1/12/2021



This work is licensed under a Creative Commons Attribution 4.0 International License.

## **Abstract:**

The aim of this paper is introducing the concept of  $(\mathfrak{M},\mathfrak{n})$  strong full stability B-Algebra-module related to an ideal. Some properties of  $(\mathfrak{M},\mathfrak{n})$ - strong full stability B-Algebra-module related to an ideal have been studied and another characterizations have been given. The relationship of  $(\mathfrak{M},\mathfrak{n})$  strong full stability B-Algebra-module related to an ideal that states, a B-A-module X is  $(\mathfrak{M},\mathfrak{n})$ - strong full stability B-Algebra-module related to an ideal Y if and only if for any two Y-element sub-sets  $\{X_{i_1}, X_{i_1,i_2}, \cdots, X_{i_1,i_2$ 

**Keywords:** Baer- $(m,\eta)$ -criterion related to an ideal, F-S-B-A-module related to an ideal,  $(m,\eta)$ -full-stable-B-A-module related to ideal, Multiplication- $(m,\eta)$ -B-A-module relative to ideal, Pure- $(m,\eta)$ - sub-module.

# **Introduction:**

An algebra is a set  $A \neq \emptyset$  and if the following conditions are satisfied, 1- the set A with addition and multiplication are satisfied through a domain  $\mathcal{F}$  is a space of vectors, 2-  $\alpha$  ( $\mathring{a} \circ d$ ) =( $\alpha \mathring{a}$ )  $\circ d$ =  $\mathring{a} \circ (\alpha d')$  for all  $\alpha \in \mathcal{F}$ ,  $\forall \mathring{a}$ ,  $d' \in A$ , 3- the set Awith + and  $\circ$  forms a ring by -1-.  $\Re$  is called an algebra where  $\Re$  is a ring,  $[\Re, +, \cdot, -, 0]$  such that+ and · are binary operations ,- is unary and nullaryelement is 0 satisfying,  $[\Re, +, -, 0]$  group which is commutative,  $[\Re,.]$  which is a semi-group and  $\mathring{a}$ .  $(\mathring{e} + \mathring{o}) = (\mathring{a} \cdot \mathring{e}) + (\mathring{a} \cdot \mathring{o})$  and  $(\mathring{a} + \mathring{e}) \cdot \mathring{o} =$  $(\mathring{a}.\mathring{b}) + (\mathring{e} + \mathring{b})(1)$ . Suppose that A is an algebra, recall that a B- algebra- left module ( B-A-left module) is a B-space E insomuch as E is an algebraleft module, and  $\|\mathring{a}\| \|\dot{x}\| \ge \|\mathring{a}.\dot{x}\| (\mathring{a} \in A, \dot{x} \in \dot{E})$ according to (1). Following (2) a map from a Balgebra- left module X into a B-algebra - left module Ў (algebra A is not necessary abelian ) is called a A-multiplier (homomorphism) if it satisfies  $\forall \dot{a} \in \dot{A}, \dot{x} \in X, T(\dot{a}.\dot{x}) = \dot{a}. T\dot{x}.$  In (1), a submodule $\dot{N}$  in  $\dot{M}$  is said to be stabile, if  $\dot{N} \supseteq f(\dot{N}) \forall$ R-homomorphism f from sub-module N into module  $\dot{M}$ . M is called full stability  $\Re$ -module ,if

each sub-module in  $\dot{M}$  is stable . Assume that X is B-algebra - module, X F-Sis called B-algebra -module related to an ideal K of algebra A, if ∀ sub-module N in X and, ∀ multiplier  $\theta: \dot{N} \longrightarrow X$  holds  $\dot{N} + \dot{K}\dot{X} \supseteq \theta(\dot{N})$ " (1). Let  $\Re^{m \times n}$  be the collection of every matrices  $m \times n$  over a ring  $\Re$ .  $\ddot{A} \in \Re^{m \times n}$ , denote  $\ddot{A}^T$  is transpose of  $\ddot{A}$ . In general, write  $\dot{N}^{m\times n}$  for an  $\Re$ -module  $\dot{N}$ , the collection of all matrices  $m \times n$  where all elements in  $\dot{N}$ . Suppose that  $\dot{M}$  a right Banach Algebra-module and let  $\dot{N}$  be a left  $\mathcal{R}$ -module. Let  $\dot{x} \in \dot{M}^{l \times m}, \dot{s} \in \mathfrak{R}^{m \times n}$  and  $\dot{y} \in$  $\dot{M}^{\eta \times k}$ , with multiplication,  $\dot{x}\dot{s}$  (resp.  $\dot{s}\dot{y}$ ) is good defined element in  $\dot{M}^{l\times m}$  (resp.  $\dot{N}^{n\times k}$ ). "If  $X\subseteq \dot{M}^{l\times m}$ ,  $S \subseteq \Re^{m \times n}$  and  $y \subseteq N^{n \times k}$  are define

P-ISSN: 2078-8665

E-ISSN: 2411-7986

$$\begin{array}{l} \ell_{\dot{\mathrm{M}}^{l\times \mathrm{m}}}(\dot{S}) = \{\dot{\mathrm{w}} \in \dot{\mathrm{M}}^{l\times \mathrm{m}}| \dot{\mathrm{w}}\dot{\mathrm{s}} = 0 \; ; \; \textit{for all } \dot{\mathrm{s}} \in \dot{S} \} \\ r_{\dot{\mathrm{N}}^{\mathrm{n}\times k}}(\dot{S}) = \{\ddot{\mathrm{v}} \in \dot{\mathrm{N}}^{\mathrm{n}\times k}| \dot{\mathrm{s}}\ddot{\mathrm{v}} = 0 \; ; \; \textit{for all } \dot{\mathrm{s}} \in \dot{S} \} \\ \ell_{\Re^{\mathrm{m}\times \mathrm{n}}}(Y) = \{\dot{\mathrm{s}} \in \Re^{\mathrm{m}\times \mathrm{n}}| \dot{\mathrm{s}}\dot{\mathrm{w}} = 0 \; ; \; \textit{for all } \dot{\mathrm{w}} \in Y \} \\ r_{\Re^{\mathrm{m}\times \mathrm{n}}}(X) = \{\dot{\mathrm{s}} \in \Re^{\mathrm{m}\times \mathrm{n}}| \dot{\mathrm{x}}\dot{\mathrm{s}} = 0 \; ; \; \textit{for all } \dot{\mathrm{w}} \in X \} \\ \text{Write } \dot{\mathcal{N}}^{l=} \dot{\mathcal{N}}^{l\times \mathrm{n}}, \; \dot{\mathcal{N}}_{\eta} = \mathcal{N}^{\mathrm{n}\times l}(3) \; . \; \text{In our work for fixed} \\ \text{positive integers n,m} \; \text{the concept of } (\mathrm{m,n})\text{-full} \\ \text{stability Banach Algebra modules relative to an ideal have been introduced.} \end{array}$$

# (m,η)-Strongly-Fully-Stable-Banach-Algebra Modules Related to ideal

A left B-algebra-module X is  $\eta$ -generated where  $\eta \in N$  if there is exist  $\dot{x}_1, ..., \dot{x}_n \in X$  such that for all  $\dot{x} \in X$  can be represented  $\dot{x} = \sum_{k=1} \dot{a}_k.\dot{x}_k$  for some  $\dot{a}_1, ..., \dot{a}_n$  in algebra. A module which is 1-generated is called a cyclic module (4) .A right module over  $\Re$ ,  $\dot{M}$  is called strongly fully  $(\mathfrak{M}, \mathfrak{N})$ -stable relative to an ideal A of  $R^{\eta \times \mathfrak{M}}$ , if  $\dot{N} \cap \dot{M}^{\mathfrak{M}}$   $\dot{A} \supseteq \theta(\dot{N})$  for all  $\eta$ -generated sub-module of  $\dot{M}^{\mathfrak{M}}$  and  $\dot{\theta} : \dot{N} \rightarrow \dot{M}$   $\Re$ -homomorphism (5)

**Definition 1:** Let  $\c K$  be B- $\c A$ -module,  $\c K$  is called (m,n)-S-F-S-B-A-M-R to ideal  $\c H$  of  $\c A^{m\times n}$ , if for everym —generated sub-module $\c J$  of  $\c K^n$  and for each multiplier  $\c \theta: \c J \to \c K^n$  which satisfies  $\c \theta(\c J) \subseteq \c J \cap \c K^n$  H for two fixed positive integers  $\c n,m$ .

In (1) "Let  $\dot{M}$  be nonempty subset of a left B- $\dot{A}$ -module  $\ddot{M}$ , the annihilater  $ann_{\dot{A}}(\dot{M})$  of B-A-module  $\dot{M}$  is  $\{\dot{a} \in \dot{A} ; \dot{a}.\dot{x} = 0 \text{ for all } \dot{x} \in \dot{M}\} = ann_{\dot{A}}(\dot{M})$ .

### **Notation 1:**

Suppose that X be a B-algebra-module

$$\begin{aligned} 1) \ &\mathring{\mathbf{N}}_{\dot{\mathbf{x}}_{1},\dot{\mathbf{x}}_{2},\cdots,\dot{\mathbf{x}}_{\eta}} = \{ \bigoplus \mathring{\mathbf{n}}_{\dot{\mathbf{x}}_{i}} \middle| \mathring{\mathbf{n}} \in \mathring{\mathbf{N}}, \ \dot{\mathbf{x}}_{i} \in \mathring{\mathbf{X}}, i = \\ 1,2,\cdots,\eta \} \\ &\mathring{\mathbf{M}}_{\mathring{\mathbf{y}}_{1},\mathring{\mathbf{y}}_{2},\cdots,\mathring{\mathbf{y}}_{\eta}} = \{ \bigoplus \mathring{\mathbf{m}}_{\mathring{\mathbf{y}}_{i}} \middle| \ \mathring{\mathbf{m}} \in \mathring{\mathbf{M}}, \ \ \mathring{\mathbf{y}}_{i} \in \mathring{\mathbf{X}}, i \\ &= 1,2,\cdots,\eta \} \\ 2) \ &\ell_{\mathring{\mathbf{A}}^{\mathfrak{m}\times\eta}} \ &\mathring{\mathbf{N}}_{\dot{\mathbf{x}}_{1},\dot{\mathbf{x}}_{2},\cdots,\dot{\mathbf{x}}_{\eta}} = \{ \mathring{a} \in \mathring{\mathbf{A}}^{\mathfrak{m}\times\eta}, \ \mathring{a}. \ ( \bigoplus \mathring{\mathbf{n}}_{\dot{\mathbf{x}}_{i}} ) = \\ 0, \ & \forall \mathring{\mathbf{n}}_{\dot{\mathbf{x}}_{i}} \in \mathring{\mathbf{N}}_{\dot{\mathbf{x}}_{1},\mathring{\mathbf{x}}_{2},\cdots,\mathring{\mathbf{x}}_{\eta}} \} \\ &\ell_{\mathring{\mathbf{A}}^{\mathfrak{m}\times\eta}} \mathring{\mathbf{M}}_{\mathring{\mathbf{y}}_{1},\mathring{\mathbf{y}}_{2},\cdots,\mathring{\mathbf{y}}_{\eta}} = \{ \mathring{a} \in \mathring{\mathbf{A}}^{\mathfrak{m}\times\eta}, \ \mathring{a}. \ ( \bigoplus \mathring{\mathbf{m}}_{\mathring{\mathbf{y}}_{i}} ) \\ &= 0, \ \forall m_{\mathring{\mathbf{y}}_{i}} \in \mathring{\mathbf{M}}_{\mathring{\mathbf{y}}_{1},\mathring{\mathbf{y}}_{2},\cdots,\mathring{\mathbf{y}}_{\eta}} \} \end{aligned}$$

**Proposition 1:** A B- A-module X is  $(\mathfrak{m},\mathfrak{n})$ -S-F-S-B-A-M-R to ideal , if and only if for any two  $\mathfrak{m}$ -element sub-sets  $\{ N_{\dot{x}_1}, N_{\dot{x}_1,\dot{x}_2}, \cdots, N_{\dot{x}_1,\dot{x}_2}, \cdots, \hat{\lambda}_{\dot{x}_1,\dot{x}_2}, \cdots, \hat{\lambda}_{\dot{x}_1,\dot{x}_2}, \cdots, \hat{\lambda}_{\dot{x}_1} \}$  and  $\{ M_{\dot{y}_1}, M_{\dot{y}_1,\dot{y}_2}, \cdots, M_{\dot{y}_1,\dot{y}_2}, \cdots, \hat{y}_{\dot{\eta}} \}$  of  $X^{\mathfrak{n}}$ , if  $\beta_j \notin \sum_{i=1}^n \alpha_i A \cap X^{\mathfrak{m}} H$ , for each  $j=1,\ldots,\mathfrak{m}$ ,  $i=1,\ldots,\mathfrak{m}$ ,  $\alpha_i \in \{ N_{\dot{x}_1}, N_{\dot{x}_1,\dot{x}_2}, \cdots, N_{\dot{x}_1,\dot{x}_2}, \cdots, \hat{x}_{\dot{\eta}} \}$  and  $\beta_j \in \{ M_{\dot{y}_1}, M_{\dot{y}_1,\dot{y}_2}, \cdots, M_{\dot{y}_1,\dot{y}_2}, \cdots, \hat{y}_{\dot{\eta}} \}$  implies  $\mathcal{T}_{A\mathfrak{n}}(\{ N_{\dot{x}_1}, N_{\dot{x}_1,\dot{x}_2}, \cdots, N_{\dot{x}_1,\dot{x}_2}, \cdots, \hat{y}_{\dot{\eta}} \})$ .

**Proof:** Presume that X is (m,η)-S-F-S-B-A-M-R to ideal and there exist two m- element subsets { N<sub>x1</sub>, N<sub>x1,x2</sub>, ..., N<sub>x1,x2</sub>,...,x<sub>η</sub>} and {M<sub>y1</sub>, M<sub>y1,y2</sub>, ..., M<sub>y1,y2</sub>,...,y<sub>η</sub>} of M<sub>η</sub> such that if M<sub>y1</sub> ∉  $\sum_{i=1}^{n} A\alpha_i \cap X^mH$ , for each j=1, ..., m and  $\mathcal{M}_{Aη}(\{N_{x1}, N_{x1,x2}, ..., N_{x1,x2}, .$ 

where  $r = (r_1, \ldots,$  $r_n$ and hence  $\mathbf{r}^{\mathrm{T}} \in \mathscr{T} \dot{\mathbf{A}}_{\eta} \{ \overset{\mathsf{N}}{\mathbf{N}}_{\dot{\mathbf{X}}_{1}}, \overset{\mathsf{N}}{\mathbf{N}}_{\dot{\mathbf{X}}_{1}, \dot{\mathbf{X}}_{2}}, \cdots, \overset{\mathsf{N}}{\mathbf{N}}_{\dot{\mathbf{X}}_{1}, \dot{\mathbf{X}}_{2}, \cdots, \dot{\mathbf{X}}_{n}} \}.$ assumption  $rK_{\hat{v}_{i}} = 0$  where j = 1, ...,m, when  $\sum_{i=1}^{n} r_i \acute{\mathbf{M}}_{\grave{\mathbf{v}}_i} = 0$ . Thus f is well defined. Clearly that f is multiplier.  $(m,\eta)$ - strongly-fully-stable of X implies that there is  $t = (t_1,...,t_n) \in A^n$  such that  $f(\sum_{\substack{n=1\\n}}^{n}r_{i}N_{\hat{x}_{i}}) = \sum_{k=1}^{n}t_{k}(\sum_{i=1}^{n}r_{i}N_{\hat{x}_{i}}) + b$  $\sum_{k=1}^{n} \sum_{i=1}^{n} (t_k r_i) \mathring{\mathbb{N}}_{\dot{\mathbf{x}}_i} + b \text{for} \qquad \text{each} \sum_{i=1}^{n} r_i \mathring{\mathbb{N}}_{\dot{\mathbf{x}}_i} \in$  $\sum_{i=1}^{n} N_{x_i} \dot{A}$  and  $b \in X^m I$ . Let  $r_i = (0, ..., 0, 1, 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ...,$ 0)  $\in A^n$ , have 1 in the position i-th and otherwise put 0.  $\dot{\mathbf{M}}_{\dot{\mathbf{y}}_i} = \mathbf{f}(\dot{\mathbf{N}}_{\dot{\mathbf{x}}_i}) = \sum_{k=1}^{n} t_k \dot{\mathbf{N}}_{\dot{\mathbf{x}}_i} + b \in \sum_{i=1}^{n} \dot{\mathbf{N}}_{\dot{\mathbf{x}}_i} \dot{\mathbf{A}} \cap$ X<sup>m</sup>H,this is contradiction. Conversely suppose that there exists m-generated B-A-sub-module of  $X^n$  and  $\mu: \sum_{i=1}^{\eta} \dot{N}_{\dot{x}_i} \dot{A} \rightarrow X^{\eta} \text{such}$ multiplier  $\mu(\sum_{i=1}^n \dot{N}_{x_i} \dot{A}) \not\subset \sum_{i=1}^n \dot{N}_{x_i} \dot{A} \cap X^m \dot{H}$ . Therefore there exists an element  $\beta(=\sum_{i=1}^{n} r_i N_{\dot{x}_i}) \in \sum_{i=1}^{n} N_{\dot{x}_i} Asuch$ that  $\mu(M_{\hat{y}}) \notin \sum_{i=1}^{n} N_{\hat{x}_{i}} A \cap X^{m} H.Take M_{\hat{y}_{i}} = M_{\hat{y}},$ when j is 1, ..., m, hence own m-element subset  $\{\mu(M_{\grave{v}}), ..., \mu(M_{\grave{v}})\}$ , such that  $\mu(M_{\grave{v}}) \notin \sum_{i=1}^{n} N_{\grave{x}_{i}} A \cap$  $X^mH$ ,  $j = 1, \dots, m$ . Let  $\eta = (t_1, \dots, t_n)$  $t_n$ )  $\in \mathscr{T}_{An}(\{\ N_{\dot{x}_1},\ N_{\dot{x}_1,\dot{x}_2},\cdots,\ N_{\dot{x}_1,\dot{x}_2,\cdots,\dot{x}_n}\})$ , then  $\eta\alpha_j=0$ , i.e $\sum_{i=1}^{n} t_i a_{ij} = 0$ , for each j = 1, ..., m,  $N_{x_i} = (a_{1j}, a_{2j}, a_{2j}$ ...,  $a_{nj}$ ) and  $\{\mu(M_y), ..., \mu(M_y)\}\ \eta = \sum_{k=1}^{n} t_k \mu(M_y) =$  $\sum_{k=1}^{n} t_{k} \mu(\sum_{i=1}^{n} r_{i} N_{\dot{x}_{i}}) = \sum_{k=1}^{n} \mu(\sum_{i=1}^{n} t_{k} r_{i} N_{\dot{x}_{i}}) = 0$ 

P-ISSN: 2078-8665

E-ISSN: 2411-7986

$$\begin{split} & \mathscr{T}_{\text{A}\eta}(\{\ \c N_{\dot{x}_1},\ \c N_{\dot{x}_1,\dot{x}_2},\cdots,\ \c N_{\dot{x}_1,\dot{x}_2,\cdots,\dot{x}_\eta}\}) \subseteq \ \mathscr{T}_{\text{A}\eta}(\{\mu(\acute{M}_{\dot{y}}),\\ \ldots,\ \mu(\acute{M}_{\dot{y}})\}), \ \text{hence} \end{split}$$

 $\mathscr{V}_{A\eta}(\{\ \ \ \mathring{N}_{\dot{x}_1},\ \ \ \mathring{N}_{\dot{x}_1,\dot{x}_2},\cdots,\ \ \ \mathring{N}_{\dot{x}_1,\dot{x}_2,\cdots,\dot{x}_{\eta}}\})\subseteq \mathscr{V}_{A\eta}(\{\mu(\mathring{M}_{\dot{y}_1}),\ \dots,\ \mu(\mathring{M}_{\dot{y}_1,\dot{y}_2,\cdots,\dot{y}_{\eta}})\})$  this is a contradiction. Hence X is  $(\mathfrak{m},\mathfrak{n})$ -S-F-S-B-A-M-R to ideal H of  $\mathring{A}^{\mathfrak{m}^{\times\eta}}$ .

**Corollary 1 :**If X is  $(m,\eta)$ -S-F-S-B-A-M-R to ideal H of  $A^{m\times\eta}$ , therefore any two m-element sub-sets  $\{\ \dot{N}_{\dot{x}_1},\ \dot{N}_{\dot{x}_1,\dot{x}_2},\cdots,\ \dot{N}_{\dot{x}_1,\dot{x}_2},\cdots,\dot{x}_\eta\}$  and  $\{\dot{M}_{\dot{y}_1},\dot{M}_{\dot{y}_1,\dot{y}_2},\cdots,\dot{M}_{\dot{y}_1,\dot{y}_2},\cdots,\dot{y}_n\}$  of  $X^\eta$ ,

 $r_{A\eta}(\{\ \begin{subarray}{c} \begin{subarra$ 

 $\subseteq \mathscr{V}_{A\eta}(\{\mathring{M}_{\mathring{y}_{1}},\mathring{M}_{\mathring{y}_{1},\mathring{y}_{2}},\cdots,\mathring{M}_{\mathring{y}_{1},\mathring{y}_{2}},\dots,\mathring{y}_{\eta}}\}) \quad \text{implies} \quad \text{that} \\ \mathring{N}_{\mathring{x}_{1}}\mathring{A} + \mathring{N}_{\mathring{x}_{1},\mathring{x}_{2}}\mathring{A} + \dots + \mathring{N}_{\mathring{x}_{1},\mathring{x}_{2}},\dots,\mathring{x}_{\eta}}\mathring{A} \cap \mathring{X}^{m}\mathring{H} =$ 

 $\acute{M}_{\grave{y}_{1}} \dot{A} + \acute{M}_{\grave{y}_{1}, \grave{y}_{2}} \dot{A} + \acute{M}_{\grave{y}_{1}, \grave{y}_{2}, \cdots, \grave{y}_{\eta}} \dot{A} \cap \ \c X^m H.$ 

**Proof:** The proof is clear

In (2), A B- $\dot{A}$ - module  $\ddot{X}$  is called to holds Baer criterion (B-C) if all submodule of  $\ddot{X}$  holds Baer criterion, this mean that for every sub-module  $\dot{N}$  in  $\ddot{X}$  and algebra— multiplier :  $\dot{N} \rightarrow \ddot{X}$ , so  $\exists \mathring{a} \in \dot{A}$  s.t  $\theta(n) = \mathring{a}n \quad \forall n \in \dot{N}$ ".

**Definition 2 :**A B- algebra- module X is called hold Baer-(m,n)-criterion relates (B-(m,n)-C-R) to an ideal H if each sub-module of X satisfies B-(m,n)-C-R) to an ideal H, this mean that, for every M-generated sub-module L of  $X^n$  and A-

multiplier $\theta\colon L \longrightarrow \mbox{\it X}^{\mbox{\it $\eta$}}$  ,there is a in A such that  $\theta(l)=\mbox{\it a} l\in \mbox{\it $X^{\mbox{\it $\eta$}}$}$  H for all  $l\in L$ .

**Proposition 2 :** If X satisfies B-(m,1)-C-R to ideal and  $\mathcal{V}_A(L \cap \dot{M}) = \mathcal{V}_A(L) + \mathcal{V}_A(\dot{M})$  for each m-generated sub-modules of  $X^n$ , then X satisfies B-(m,n)-C-R to an ideal.

**Proof :** Let  $P = A\dot{x}_1 + A\dot{x}_2 + ... + A\dot{x}_m$  be m-generated sub-module of  $X^n$ ,  $f: P \to X^n$  multiplier. Now, by induction on m. Clearly that X holds B-(m,n)-C-R to an ideal, if m = 1. Suppose that X satisfies B-(m,n)-C-R to an ideal for each k-generated sub-module of  $X_n$ , for n- $1 \ge k$ . Write  $L = A\dot{x}_1$ ,  $M = A\dot{x}_2 + ... + A\dot{x}_m$ , therefore for each  $w_1 \in L$  and  $w_2 \in M$  of  $w_1 \in L$  and  $w_2 \in M$  function  $w_2 \in M$  function  $w_3 \in M$  function  $w_4 \in$ 

**Proposition 3:** Suppose that X is a B-A- module. Get X holds B-(m,n) – C-R to an ideal if and only if  $\ell_X^n r_{An}(N_{\dot{x}_1}A + N_{\dot{x}_1,\dot{x}_2}A + \ldots + N_{\dot{x}_1,\dot{x}_2}\ldots N_{\dot{x}_n}A) \subseteq N_{\dot{x}_1}A + N_{\dot{x}_1,\dot{x}_2}A + \ldots + N_{\dot{x}_1,\dot{x}_2}\ldots N_{\dot{x}_n}A \cap X^mH$  for any n-elements subset  $\{N_{\dot{x}_1}, N_{\dot{x}_1,\dot{x}_2}, \cdots, N_{\dot{x}_1,\dot{x}_2}, \cdots, N_{\dot{x}_1,\dot{x}_2}, \cdots, N_{\dot{x}_n}\}$  of  $X^n$ .

**Proof :** Assume that B-(m,n)-C-R to an ideal holds for m-generated sub-module

of  $X^{\eta}$ , let  $N_{\dot{x}_i} = (k_{i1}; \ k_{i2}, ..., k_{im})$ , for each  $i=1, \ ..., \ \eta$  $\{ \check{\mathsf{M}}_{\check{\mathsf{V}}_1}, \check{\mathsf{M}}_{\check{\mathsf{V}}_1, \check{\mathsf{V}}_2}, \cdots, \check{\mathsf{M}}_{\check{\mathsf{V}}_1, \check{\mathsf{V}}_2, \cdots, \check{\mathsf{V}}_n} \} \in$  $\ell_{\chi}^{\eta} r_{A\eta}(\ \c N_{\dot{x}_1}\dot{A} + \c N_{\dot{x}_1,\dot{x}_2}\dot{A} + \ldots + \c N_{\dot{x}_1,\dot{x}_2},\ldots,\dot{x}_{\eta}}\dot{A}),\ \acute{M}_{\dot{y}_i} = (a_{1i},$  $a_{2i}$ , ...,  $a_{ni}$ ). Define  $\mu: N_{\dot{x}_1} \dot{A} + N_{\dot{x}_1,\dot{x}_2} \dot{A}$  $+\ldots + N_{\dot{x}_1,\dot{x}_2,\cdots,\dot{x}_n}A \rightarrow X^n by$  $\mu(\sum_{i=1}^{n} N_{x_i} a_i)$  $\textstyle \sum_{i=1}^{\mathfrak{n}} \check{\mathsf{M}}_{\check{\mathsf{y}}_{i}} \, a_{i}. \text{If } \check{\sum}_{i=1}^{\mathfrak{n}} \, \check{\mathsf{N}}_{\check{\mathsf{x}}_{i}} a_{i}, \, \text{then} \textstyle \sum_{i=1}^{\mathfrak{n}} k_{ij} \, a_{i} = 0 \text{ where }$ j = 1, ..., m, therefore  $L_{x_i} r = 0$  and  $r = (r_1, ..., r_n)$  $r \in r_{A_{\eta}}(N_{\dot{x}_1}A$  $+\ldots+N_{\dot{x}_1,\dot{x}_2,\ldots,\dot{x}_n}\dot{A}$ ). By assumption  $rN_{\dot{x}_i}=0$ ,  $i=1,\ldots,$  $\eta$  so  $\sum_{i=1}^{\eta} \hat{M}_{v_i} a_i = 0$ . Therefore f is well defined and  $\mu$  is an multiplier it is an easy. By assumption exist t  $\in \text{Asuch that } \mu(\sum_{i=1}^{\mathfrak{q}} \mathring{N}_{\dot{x}_{i}} a_{i}) = \mathsf{t}(\sum_{i=1}^{\mathfrak{q}} \acute{M}_{\dot{y}_{i}} a_{i}) = \sum_{i=1}^{\mathfrak{q}} \acute{M}_{\dot{y}_{i}} (\mathsf{t} a_{i}) \text{ for each } \sum_{i=1}^{\mathfrak{q}} \mathring{N}_{\dot{x}_{i}} a_{i} \in \sum_{i=1}^{\mathfrak{q}} \mathring{N}_{\dot{x}_{i}} \dot{A}. \text{ Let}$  $r_i {=}~(0,~...,0,~1,~0,~...,~0) \in \Breve{A}^{\eta},$  in the i-the position is 1 and 0 otherwise. $M_{y_i} = \mu(\sum_{i=1}^n N_{\dot{x}_i}) = \sum_{i=1}^n N_{\dot{x}_i} t \in$  $\sum_{i=1}^{n} \dot{N}_{\dot{x}_i} \dot{A}$  which is contradiction. This implies that  $\ell_{\mathbf{X}}^{\mathsf{n}} r_{\mathsf{A} \mathsf{q}} ( \stackrel{\mathsf{N}}{\mathsf{N}}_{\dot{\mathbf{X}}_{1}} \stackrel{\mathsf{A}}{\mathsf{A}} + \stackrel{\mathsf{N}}{\mathsf{N}}_{\dot{\mathbf{X}}_{1}, \dot{\mathbf{X}}_{2}} \stackrel{\mathsf{A}}{\mathsf{A}} + \ldots + \stackrel{\mathsf{N}}{\mathsf{N}}_{\dot{\mathbf{X}}_{1}, \dot{\mathbf{X}}_{2}, \cdots, \dot{\mathbf{X}}_{\mathbf{q}}} \stackrel{\mathsf{A}}{\mathsf{A}}) \subseteq \stackrel{\mathsf{N}}{\mathsf{N}}_{\dot{\mathbf{X}}_{1}} \stackrel{\mathsf{A}}{\mathsf{A}}$  $+ \ \ \mathring{N}_{\dot{x}_1,\dot{x}_2} \dot{A} + \ldots + \ \ \mathring{N}_{\dot{x}_1,\dot{x}_2,\cdots,\dot{x}_{\eta}} \dot{A} \ \cap \ \ \mathring{X}^m \ \ H. \ \ Conversely,$ 

 $\begin{array}{lll} \ell_{X}^{\ n} r_{A\eta}(\ \c N_{\dot{x}_{1}}\c A \ + \ \c N_{\dot{x}_{1},\dot{x}_{2}}\c A \ + \ldots + \ \c N_{\dot{x}_{1},\dot{x}_{2},\ldots,\dot{x}_{\eta}}\c A) &\subseteq \ \c N_{\dot{x}_{1}}\c A \\ + \ \c N_{\dot{x}_{1},\dot{x}_{2}}\c A \ \ + \ldots + \ \c N_{\dot{x}_{1},\dot{x}_{2},\ldots,\dot{x}_{\eta}}\c A \ \cap \ \c X^{m}\c H, for each \end{array}$ 

P-ISSN: 2078-8665

E-ISSN: 2411-7986

**Corollary 2**:Let X be a B-A- module. X is (m,n)-S-F-S-B-A-M-R to an ideal if and only if  $\ell_{X}^{n}r_{An}(\ N_{\dot{x}_{1}}A+N_{\dot{x}_{1},\dot{x}_{2}}A+\dots+N_{\dot{x}_{1},\dot{x}_{2},\dots,\dot{x}_{n}}A)=N_{\dot{x}_{1}}A+N_{\dot{x}_{1},\dot{x}_{2}}A+\dots+N_{\dot{x}_{1},\dot{x}_{2},\dots,\dot{x}_{n}}A\cap X^{m}H$  for n-element subset  $\{\ N_{\dot{x}_{1}},\ N_{\dot{x}_{1},\dot{x}_{2}},\dots,\ N_{\dot{x}_{1},\dot{x}_{2},\dots,\dot{x}_{n}}\}$  of  $X^{n}$ .

Following (1) "suppose that A is a unital B-A and assume  $\alpha > 1$ . Algebra-module X is said Quasi  $\alpha$ -injective (Q- $\alpha$ -inj), if algebra-module homomorphism  $\varphi : N \longrightarrow X$  s.t  $\| \varphi \| \le 1$  and there is algebra-module homomorphism  $\theta : X \longrightarrow X$ , s.t  $\theta$  o  $i = \varphi$  and  $\| \theta \| \le \alpha$ , i is an isometry from submodule N of X. Call X is -inj, if it is Q- $\alpha$ - inj for some  $\alpha$ ".

Following (1), assume that A is unital B- A and suppose that  $\alpha > 1$ . Algebra—module X is said to be Quasi- $\alpha$ -injective relate to an ideal A of algebra if,

 $\varphi: \dot{N} \longrightarrow X$  is algebra-module homomorphism s.t  $1 \ge \|\varphi\|$ , and there is algebra-module homomorphism  $\theta: X \longrightarrow X$ , s.t  $(\theta \ o \ i)(n) - \varphi(n) \in XH$  and  $\alpha \ge \|\theta\|$  where i is an isometry from submodule  $\dot{N}$  of X to X.

The concepts strongly Quasi-(m,n)-  $\alpha$ -injective -B-A- module related to ideal for some  $\alpha$  is introduced.

**Definition 3**: Suppose that  $\dot{A}$  is a unital B-A and  $1 < \alpha$ .  $\dot{X}$  is said to be strongly Quasi- (m,n)- $\alpha$ -injective relate to an ideal I of  $A^{m \times n}$  if  $\beta$ :  $\dot{N} \rightarrow \dot{X}^n$  is algebra-module homomorphisms such that  $1 \ge ||\beta||$ , there is  $\alpha : \dot{X}^n \longrightarrow \dot{X}^n$  algebra-module homomorphism, such that  $(\alpha \circ i)(n) - \beta(n) \in \dot{X}^m I$  and  $1 \ge ||\theta||$ , i is an isometry from m-generated submodule  $\dot{N}$  in  $\dot{X}$ .  $\dot{X}$  is strongly Quasi-(m,n)-injective relate to an ideal  $\dot{X}$  is strongly  $\dot{X}$  Quasi- $\dot{X}$  quasi- $\dot{X}$  injective relate to ideal for some  $\dot{X}$ .

**Proposition 4 :** If X is (m,n)-S-F-S-B-A-M-R to I ideal of an algebra, then X is strongly Quasi (m,n)-inective B- algebra module relate to an ideal I.

**Proof :** set  $N = \alpha_1 \dot{A} + \ldots + \alpha_n \dot{A}$ , m-generated submodule of  $X^n$ ,  $\alpha_i \in X^n$ , let  $\alpha$  be greater than 1 and f be any algebra-modulehomomorphism from N to  $X^n$  such that  $\|f\| \le 1$ . Since X(m,n)-S-F-S-R to ideal, therefore  $f(\alpha_1 \dot{A} + \ldots + \alpha_n \dot{A}) \subseteq \alpha_1 \dot{A} + \ldots + \alpha_n \dot{A} \cap X^n I$ ,

Open Access
Published Online First: April 2021

thus there is  $\mathbf{t}=(\ t_1,\ \dots,\ t_n\ )\in A_n$  and  $\mathbf{w}\in X^nJI.$  Let  $a_i=(\ 0,\ \dots,\ 1,\ 0,\ \dots,\ 0)$  such that  $f(\sum_{i=1}^n\alpha_i)=\mathbf{t}$   $(\sum_{i=1}^n\alpha_i)+\mathbf{w}.$  Define  $g:X^n\to X$  as  $g\ (\alpha_i)=\mathbf{t}^T\alpha_i,$  clearly g is well defined algebra-module homomorphism. Now  $f(\sum_{i=1}^n\alpha_i)-g(\sum_{i=1}^n\alpha_i)=\mathbf{t}$   $(\sum_{i=1}^n\alpha_i)+\mathbf{w}-\mathbf{t}$   $(\sum_{i=1}^n\alpha_i)=\mathbf{w}\in X^mI$  and since for all  $\mathbf{y}\in\alpha_1A+\dots+\alpha_nA$ ,  $\mathbf{y}=\sum_{i=1}^n\alpha_is_i$  for some  $\mathbf{s}=(s_1,\dots,\ s_n)\in A,\ f(\mathbf{y})-g(\mathbf{y})=f(\sum_{i=1}^n\alpha_is_i)-g(\sum_{i=1}^n\alpha_is_i)=f((\sum_{i=1}^n\alpha_i)s)-g((\sum_{i=1}^n\alpha_i)s)=(\ f(\sum_{i=1}^n\alpha_i)-g(\sum_{i=1}^n\alpha_i)s)\in X^mI,\$  therefore X is strongly quasi (m,n)-banach algebra module relative to ideal.

**Definition 4:** A sub-module  $\dot{N}$  of Banach  $\dot{A}$ -module is called pure- $(\mathfrak{M}, \mathfrak{N})$ - sub-module if  $I\dot{N} = \dot{N} \cap X^{\mathfrak{M}} I \ \forall I$  of  $A^{\mathfrak{M}^{y \times \eta}}$ .

When the sub-module of (m,  $\eta$  )-S-F-S-B-A-M-R to ideal have been partial answer in the next proposition .

**Proposition 5:** Let X be a  $(\mathfrak{m}, \mathfrak{n})$ -S-F-S-B-A-M-R to a non-zero ideal I of  $A^{\mathfrak{m}^{\times}\mathfrak{n}}$ , then every  $(\mathfrak{m},\mathfrak{n})$ -pure sub-module is  $(\mathfrak{m},\mathfrak{n})$ -S-F-S-B-A-M-R to an ideal.

**Proof:** Assume that  $\dot{N}$  is pure- $(m,\eta)$ - sub-module of  $\dot{X}$ . For every sub-module L of  $\dot{N}$  and a multiplier f:  $L \to \dot{N}$ , put g=i o f:  $L \to X$ (where i is the inclusion mapping of  $\dot{N}$  to X), then by assumption  $f(L) = g(L) \subseteq X^mI$ , since  $f(L) \subseteq N$ . Hence  $f(L) \subseteq L \cap X^mI \cap \dot{N}$ . Because  $\dot{N}$  is pure  $(m, \eta)$ -sub-module of X then  $\dot{N} \cap X^mI = \dot{N}^mI$ , for all ideal I of  $A^{m \times n}$ , therefore  $f(L) \subseteq L \cap \dot{N}^mI$ . Therefore N is  $(m, \eta)$ -S-F-S-B-A-M-R to I.

# **Conclusion:**

In this work, the concept of  $(\mathfrak{M},\mathfrak{n})$  strong full stability B-Algebra-module related to a non-

zero ideal I of  $A^{m_i \times n_i}$  has been introduced and it is also easy to study its properties by linking it with other concepts. The relationship of (m,n) strong full stability B-Algebra-module related to an ideal that states, if X is (m,n)- strong full stability B-Algebra-module related to an ideal I of an algebra, then X is strongly Quasi (m,n)-inective B- algebra module relate to an ideal I have been proved, and show that every (m,n)-pure sub-module of (m,n) strong full stability B-Algebra-module related to a non-zero ideal I of  $A^{m_i \times n_i}$  is (m,n) strong full stability B-Algebra-module related to a non-zero ideal I of  $A^{m_i \times n_i}$ 

P-ISSN: 2078-8665

E-ISSN: 2411-7986

#### **Authors' declaration:**

- Conflicts of Interest: None.
- Ethical Clearance: The project was approved by the local ethical committee in University of Baghdad.

#### **References:**

- Kadhim, S. N. and Mohammed Ali M. J., On Fully Stable Banach Algebra Modules Relative to an Ideal, Baghdad Sci. J. 2017;14 (4):813-815.
- 2. Mohammed Ali J. M. and Ali M., Fully Stable Banach Algebra Module, Math. Theory and Mod. 2016; 6(1): 136-139,.
- 3. Abbas M. S. and Mohammed Ali J. M, A Note On Fully (*m*,*n*)-Stable Modules, International Electronic J. of A. . 2009; 6: 65-73.
- 4. Brac'i'c J., Local Operators on Banach Modules, University of Ljubljana, Slovenia, Mathematical Proceedings of the Royal Irish Academy. 2004.
- Mohammed Ali M. J., On Fully (m,n)-stable modules relative to an ideal A of R<sup>m×n</sup>, Baghdad Sci. J. 2015; Vol. 12 (2): 400-405.

# ${f A}^{m imes \eta}$ بالنسبة الى مثالي ${f m}, {f m}$ عول مقاسات بناخ الاجبرا تامة الاستقرارية من النمط ${f m}, {f m}$ عاظم محمدعلي محمدعلي محمدعلي ابراهيم محمدعلي محمدعلي محمدعلي محمدعلي المعبد في المعبد في المحمد علي محمد علي المعبد في ال

قسم الرياضيات، كلية العلوم للبنات، جامعة بغداد، بغداد، العراق.

#### لخلاصة:

في هذا البحث تم دراسة مفهوم مقاسات بناخ الاجبرا تام الاستقراية من النمط (m,n) بالنسبة الى مثالي  $A^{m \times n}$  و دراسة بعض خواصه قد تم بر هنت العديد من العلاقات منها يكون المقاس X تام الاستقرارية من النمط  $\{m,n\}$  بالنسبة الى مثالي M اذا وفقط اذا لاي خواصه قد تم بر هنت العديد من العلاقات منها يكون المقاس X تام الاستقرارية من النمط  $\{M_{\hat{y}_1},M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}_2},\cdots,M_{\hat{y}_1,\hat{y}$ 

الكلمات المفتاحية : مقاسات بناخ الاجبرا تامة الاستقراية بالنسبة الى مثالي، مقاسات بناخ الاجبرا جداء مباشر من النمط  $(m, \eta)$  بالنسبة الى مثالى، مقاسات بناخ الاجبرا تام الاستقراية من النمط  $(m, \eta)$  بالنسبة الى مثالى، مقاسات جزئية خالصة من مقاسات بناخ النمط  $(m, \eta)$ .