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Abstract: 
In this paper, a theoretical study of the energy spectra and the heat capacity of one electron quantum 

dot with Gaussian Confinement in an external magnetic field are presented. Using the exact diagonalization 

technique, the Hamiltonian of the Gaussian Quantum Dot (GQD) including the electron spin is solved. All 

the elements in the energy matrix are found in closed form. The eigenenergies of the electron were displayed 

as a function of magnetic field, Gaussian confinement potential depth and quantum dot size. Explanations to 

the behavior of the quantum dot heat capacity curve, as a function of external applied magnetic field and 

temperature, are presented. 
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Introduction: 
In the last years, the study of low 

dimensional systems, especially quantum dot (QD) 

has gotten a great interest because of their unique 

physical properties and great device applications 

like lasers, single electron transistors, quantum dot 

solar cells, and quantum computers (1-6). 

Application of a magnetic field normal to the plane 

of the quantum dot leads to an additional 

contribution to the system spectra and correlation 

effects of the interactive electrons in a QD.  

Various studies solved the QD-Hamiltonian 

with parabolic harmonic confinement potential by 

using several techniques. The variational technique 

was used to study the quantum dot system (7-10). 

The general closed-form for parabolic QD solution 

was obtained by Kandemir (11-12). Elsaid solved 

the quantum dot Hamiltonian for two interacting 

electrons using 1/N method (13-14). In Reference 

(15), the authors used the multi-parameter 

variational method to find the energy spectra for 

two interacting electrons in QD. Many authors have 

investigated the energy spectra for low dimensional 

system taking into consideration the effect of 

external field (16-19). 

Gaussian potential is an effective potential 

in many branches of theoretical physics. Gaussian 

QD has been investigated approximately for one 

particle problem by different authors (20-28). The 

variational and numerical diagonalization 

techniques have been applied to study the QD 

Hamiltonian, and investigate the electronic 

structure, magnetic and thermodynamic properties 

of a single (29-31) and coupled quantum dots (32-

34). 

This work aims to study the energy spectra 

and thermal properties of an electron confined in a 

quantum dot with Gaussian potential under the 

effects of an external magnetic field. The effects of 

different QD radii (R), potential depth (V0), the 

external magnetic field, and temperature (T), the 

average thermal energy of the electron in a 

Gaussian quantum dot (GQD) have been 

investigated. Moreover, the heat capacity behavior 

of the (GQD), as a function of a uniform external 

magnetic field and temperature has been explained. 

The rest of paper is organized as follows: The 

Hamiltonian theory and computational procedures 

of single electron confined in GQD have been 

given. Next, the authors exhibit how to calculate the 

heat capacity using the average energy expression. 

The final part will be dedicated to the numerical 

results and conclusion. 
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Theory  

There are three main parts in the theory: The two-

dimension Hamiltonian, the numerical 

diagonalization method and the heat capacity. 

The quantum dot Hamiltonian 

The Hamiltonian of one electron confined in QD in 

presence of Gaussian confinement potential and 

uniform external magnetic field is set as (35),  

𝐻̂ =
1

2𝑚∗
(𝑃⃗ −

|𝑒|

𝑐
𝐴 )

2
− 𝑉0𝑒

−(𝜌2/2𝑅2)                                                                                                                

1 

Where P⃗⃗  is the momentum , ρ ⃗⃗ the position vector of 

an electron, 𝑚∗ is the effective mass of the electron, 

A⃗⃗  is the vector potential related to the external 

magnetic field B⃗⃗ along z-direction and, V0 is the 

confining potential depth which is taken as 

Gaussian potential,  

The Hamiltonian can be expressed as,  

 Ĥ = −
ℏ2

2𝑚∗
𝛻𝜌
2 + 𝑉(ρ) +

1

2
𝑚∗𝜔𝑐

2ρ2 +
1

2
ℏ𝜔𝑐(𝐿̂𝑧 + 𝑔

∗𝑆𝑧̂)                                                                             

2 

where L̂z is the z-component of the electron angular 

momentum, 𝜔𝑐 is the cyclotron frequency given by 

𝜔𝑐 = 𝑒𝐵/𝑚
∗, B is the magnetic field strength, R is 

the radius of the quantum dot,V0 is the confining 

potential depth and the effective Lande g- factor for 

GaAs denotes by g* (g*= -0.44). 

Exact diagonalization technique 

The presence of the Gaussian potential term in the 

system Hamiltonian makes the analytical solution 

not possible. Therefore, the exact diagonalization 

technique has been used to obtaining Hamiltonian 

solution. The bases are taken to be Fock-Darwin 

states (36), set as, |𝑛𝑚𝑧 >. 

|𝑛𝑚𝑧 > = 
α

√π
(

n!

(n+|mz|)!
)
1

2(αρ)|mz|𝑚 Ln 
|mz|(α2ρ2)e

−1

2
α2ρ2eimzϕχ(σ)                                                               

3 

With α = √
ω m∗ 

ħ
, n and 𝑚𝑧 are the radial quantum 

number and the azimuthal quantum number, 

respectively, where χ(σ) is the spin operator Ŝz 

eigenstate and , Ln 
|mz| is the known associated 

Laguerre polynomial. 

The Hamiltonian can be written as  Ĥ= Ĥ0 +Ĥ1 

where, 

𝐻̂0 = −
ℏ2

2𝑚∗
𝛻𝜌
2 +

1

2
𝑚∗𝜔2ρ2 +

1

2
ℏ𝜔𝑐(𝐿̂𝑧 + 𝑔

∗𝑆𝑧̂)                                                                                            

4 

𝐻̂1 = −
1

2
𝑚∗𝜔0

2𝜌2 − 𝑉0𝑒
−(𝜌2/2𝑅2)                                                                                                                     

5 

and 2 is the effective frequency, defined as 

𝜔2 = 𝜔0
2 +

1

4
𝜔𝑐
2 , 

where Ĥ0 represents the harmonic oscillator 

Hamiltonian with renowned eigenstates | 𝑛 𝑚𝑧⟩ and 

energies  

𝐸𝑛 = (2𝑛 + |𝑚𝑧|  + 1) ħ𝜔 +
1

2
 ℏ 𝜔𝐶  (𝑚𝑧  +

 𝑔∗𝑆𝑧 ).                                                                                 
6 

one can use these bases | 𝑛 𝑚𝑧⟩ to write the matrix 

elements of the Hamiltonian Ĥ, as,        

〈ń m𝑧Ĥn mz〉 = 〈ń m𝑧 Ĥ0n mz〉

+ 〈ń m𝑧 H1̂n mz〉  = 

 (2𝑛 + |𝑚𝑧|  + 1) ħ𝜔 +
1

2
 ℏ 𝜔𝐶  (𝑚𝑧  +  𝑔

∗𝑆𝑧 )

+   

      〈ń m𝑧 − 𝑉0𝑒
−(𝜌2/2𝑅2)n mz〉 + 〈ń m𝑧 −

 
1

2
𝑚∗𝜔0

2𝜌2n mz〉                                                                     

7 

Using Laguerre’s relation below, the matrix element 

which represents the Gaussian confinement 

potential 〈n′ mz  − 𝑉0𝑒
−(𝜌2/2𝑅2)| n mz〉can be 

evaluated in a closed form, using the relation (35),  

 

∫ e−pttα −1Lm
λ (bt)Ln

β(at)dt
∞

0
=

 Γ(α)p−α(β+1)n (λ+1)m

m!n! 
∑

(−m)j(α)j

(λ+1)j j!
(
a

p
)
j
∑

(j+α)k(−n)k

k! (β+1)k
(
b

p
)
k

n
k=0

m
j=0     

                8 

Where (𝑎)𝑗  is the Pochhammer function, this 

analytical form of above integration seriously 

decreases the computing time required in the 

diagonalization process and improves the integral 

accuracy compared with the numerical integration. 

The matrix element for the Gaussian potential can 

be expressed as, 

 

⟨𝑛𝑚|−𝑉0𝑒
−(𝜌2/2𝑅2) − 

1

2
𝑚∗𝜔0

2𝜌2|𝑛′𝑚′⟩ =  −𝑉0 𝑁𝑛𝑚𝑁𝑛′𝑚′

Γ(|𝑚|+1)(|𝑚|+1)𝑛(|𝑚|+1)𝑛′×(
1

𝑅2(
ωc
2

4
+ω0

2).5
+1)−|𝑚|−1

𝑛!𝑛′!
×

 ∑ (

 
 1

𝑅2(
ωc
2

4
+ω0

2)

.5+1

)

 
 

−𝑗

(−𝑛)𝑗(|𝑚|+1)𝑗×∑
(

  
 1

𝑅2(
ωc
2

4
+ω0
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.5
+1
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−𝑘
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(|𝑚|+1)𝑗𝑗!

𝑛
𝑗=0                            9 



Open Access     Baghdad Science Journal                                P-ISSN: 2078-8665 

Published Online First: January 2021                                                            E-ISSN: 2411-7986 

 

411 

Using the standard procedure for the 

diagonalization process; the eigenenergies of the 

QD-system Hamiltonian can be obtained from the 

condition:  | 𝐻 − 𝐸𝑛 𝐼 | = 𝑧𝑒𝑟𝑜  
Statistical energy and Heat capacity. 

The computed spectra of the system have been used 

as essential Input for calculating the statistical 

average energy as: 

〈E (𝑅, V , 𝐵, 𝑇)〉 =
∑ Eαe

−Eα kBT⁄N
α=1

∑ e−Eα kBT⁄N
α=1

 .                                                                                                      

10 

Then, by taking the temperature derivative of 

< 𝐸 > one can find the heat capacity,  

𝐶𝑣 (𝑅, V , 𝐵, 𝑇 ) =  
∂〈E(R, V0 ,B,T)〉

∂T
                                                                                                     

11 

 

Results and Discussion: 
The numerical results for the energy, and 

heat capacity for GaAs Gaussian quantum dot are 

presented. Furthermore, the behavior of the 

sketched heat capacity, as function of magnetic field 

and temperature, are explained. The material 

parameters for GaAs medium taken to be m∗ 
=0.067m0., effective Rydberg R∗ =5.83meV and 

Bohr radius a∗ =9.8nm are used as energy and 

length, respectively. a single electron GQD 

presented in a uniform external magnetic field is 

studied. The energy spectra, En, are essential input 

data to calculate the heat capacity. Figures were 

used to clarify the results. 

QD Energy Spectra 

The ground state energy for the QD is calculated as 

a function of the quantum radii (R) at constant 

potential depth (V0), as displayed in Fig.1, the 

figure shows that  as the quantum dot radius 

increases ,the electron ground state energy 

significantly reduces due to the reduction in the 

electron confinement energy. 

 

 
Figure 1. The computed ground state energy of 

an electron in a quantum dot as a function of the 

quantum radius, R, at B=0 and V0=36.7meV  

 

Figure 2 shows the ground state and a few excited 

states energies of the Gaussian QD as a function of 

the magnetic field B. The figure shows the effects 

of the Zeeman splitting and the spin on each level. 

As the magnetic field increase, the spin and Zeeman 

terms show considerable energy contribution 

effects.  

 
Figure 2. The calculated energies of a single 

electron GQD versus the magnetic field at R=10 

nm and V0 = 36.7 meV. The black (Red) curve 

for S=1/2 (−1/2) and the dashed line when the 

spin has been ignored. 

 

Figure 3 describes the statistical energy 〈E〉 as a 

function of the magnetic field of the GQD, 

considering the effect of the electron spin term. The 

figure shows that at low temperature T=5 mK the 

energy goes down as B increases, since the 

contribution of the thermal energy is small at low 

temperatures, whereas the spin term (cg*Ŝz) is 

significant and its negative energy contribution 

reduces the statistical energy, this behavior 

continues up to B≈4 T, then the energy begins to 

increase as the magnetic field raises. As the 

temperature increases, from 5 mK to 10 and 20 K, 

the curve of the ground state shows a considerable 

enhancement due to the considerable increment in 

the contribution of the thermal energy. 

 
Figure 3. The statistical energy against the 

magnetic field B at V0=36.7meV, R=10nm, 

g*=−0.44, T = 5 mK, 10, and 20 K from bottom 

to top. 
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Figure 4 shows the potential depth V0 effect on the 

behavior of 〈𝐸〉 at several temperature values. The 

figure shows a large change in the behaviors of the 

energy curves as result of raising of V0 from: 

36.7meV to 100meV. The Gaussian potential term ( 

−𝑉0𝑒
−𝜌2/2𝑅2  ) increases greatly the electron ground 

state energy because of the larger Gaussian energy 

confinement. 

 

 
Figure 4. The statistical energy <E> against the 

magnetic field B at V0 =100 meV, R=10 nm, g*= 

−0.44 and T = 5 mK, 10, 20, and 30 K . 

 

Figure 5 shows the dependence of the 

convergence of the GQD energy spectra on the 

temperature by plotting 〈𝐸〉 versus the temperature 

at constant B=2T, R=10nm and V0=36.7 meV and 

different numbers of bases (n) used in the statistical 

energy summation. It is evident from the figure that 

quite high number of bases are needed to achieve 

the stability in our numerical results when the 

temperature increases, because at higher 

temperature, the occupation probability of the 

higher excited states increases, meaning that there is 

a valuable contribution to higher energy levels in 

the statistical energy. Therefore, the number of 

bases must be increased to ensure that higher energy 

levels are involved in the statistical energy. To 

obtain a very good numerical stability calculation, 

the number of bases have been increased to over 90, 

at high temperature, as shown. 

 

 

 
Figure 5. The average thermal energy < 𝑬 > 

versus T at V0 =36.7 meV, R=10nm, 𝒈∗= −0.44, 

B=2T and n = 10, 30, 50,70,90,110 and 130. 

 

Heat capacity 

The effects of temperature, confining 

potential and magnetic field on the heat capacity of 

single electron in a GaAs Gaussian quantum dot are 

presented. 

Figure 6 exhibits the dependence of 𝐶𝑣  on T 

for fixed values of V0, quantum dot size R and 

selected values of B. For all values of magnetic 

field strengths, the heat capacity approaches to zero 

as T goes to zero, and the curve shows a peak 

behavior as the temperature increases, while at high 

temperature (room temperature) it saturates to the 

classical limit (1𝑘𝐵). For example, at B= 3T the 

heat capacity, 𝐶𝑣 , starts to rise from the beginning 

at low temperatures making a peak (is well-known 

Schottky anomaly, this occurs due to including the 

spin) and then re-rises as the temperature increases, 

finally reaching approximate stability. From the 

figure, one can conclude that the saturation limit 

becomes quite higher as the magnetic field 

increases and it reaches 2𝑘𝐵 . Both behavior-limits 

of the heat capacity curves are explained later. 

 
Figure 6. The heat capacity 𝑪𝒗 versus 

temperature T at V0 =36.7 meV, R=10 nm, 𝒈∗= 

−0.44 and B = 0, 5, 10 and 15T. 

 

Figure 7 shows the effect of the 

confinement depth V0 on 𝐶𝑣–T curve by taking 
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different values of V0 at particular values of the 

quantum dot size R, and the magnetic field strength 

B. From the figure one can distinguish that at low 

temperatures the 𝐶𝑣– T curve behaves qualitatively 

the same way for the three different V0 values to 

reach the same peak (Schottky). The variation in the 

heat capacity behavior starts in the decreasing of the 

𝐶𝑣 after the peak (T=20K). The reason for this 

variation is mainly due to confinement, since the 

difference between the two energy levels ∆𝐸 

increases as the confinement depth enhances, this 

means lower probability of the electron to be 

excited by the small available thermal energy. For 

further temperature increment, the heat capacity 

starts increasing to show a peak behavior before 

reaching the saturation. 

 
Figure 7. The heat capacity versus the 

temperature T at R=10 nm, 𝒈∗= −0.44, B=5T 

andV0 =36.7, 100 and 150 meV. 

 

To explain the difference in the 

aforementioned saturation limits-behavior, shown 

previously by the two plots (figure 6 and 7), we 

compare, in Fig. 8, the Gaussian and parabolic 

confinements types. The parabolic potential model 

can be used to approximate the Gaussian potential 

confinement. This approximation has two 

advantages: first, it gives an analytic energy 

expression which provides all the energy spectra 

including the low-lying state. Second, it makes the 

role of the magnetic confinement energy part easy 

to understand, since the proportional quadratic term 

( 𝜌2 ), due to the magnetic field (as shown in 

equation 2), is a parabolic type, similar to the 

parabolic confinement term.  

In Fig. 8, the low-lying energies of the 

electron have been plotted for both Gaussian and its 

parabolic approximation (using Taylor expansion). 

In general, the two potentials match each other at 

small values of radial distance, r, so the ground state 

energy in both potentials are very close, but for the 

higher states, one can notice the difference between 

the two successive states. The parabolic case has 

larger energy states than the corresponding ones for 

the Gaussian type. For finite range of energy (0 to 

200 meV), the Gaussian confinement provides a 

greater number of bound states with closer 

separation than parabolic confinement. In this case, 

the electron needs less thermal energy to make a 

transition to higher state compared with 

corresponding one in the parabolic approximation 

case. Based on this argument, it is expected to find 

that the heat capacity curves of the two potential 

models match each other only at low temperature 

range. However, at higher temperature range, the 

Gaussian case shows a higher heat capacity limit as 

seen in Fig. 9, where the heat capacity curve has 

been plotted as function of temperature. For high 

confinement strength case, 𝑉0 = 200 𝑚𝑒𝑉, and B= 

15 T, the number of available bound states in the 

Gaussian confinement is enough to ensure the 

convergence in the heat capacity even at high 

temperature like T=400K. The quantum dot system, 

at high temperature and low-magnetic field case ( 

B=3T), is expected to behave as a free two-

dimensional system due to the excess thermal 

energy available as a kinetic energy for the electron 

.The system expected to have heat capacity limit 

(1 𝑘𝐵), with 𝑘𝐵/2 , for each degree of freedom. 

However, at high-magnetic field value (B=15T), the 

strong magnetic field is still confining the electron 

as parabolic potential type and with a larger heat 

capacity limit of (2 𝑘𝐵) for a two-dimensional 

system with parabolic confinement. The parabolic 

heterostructure potential term and the magnetic field 

confinement term will add their energy 

contributions to give a heat capacity limit of (2𝑘𝐵) 

for the electron quantum dot system. Figure 9 

shows clearly that the heat capacity curve goes to 

𝑐𝑣 = 1 𝑘𝐵 at B=3 T and 300K and 2 𝑘𝐵, at B=15 T 

and 300K, respectively. The obtained heat capacity 

limit-cases are in agreement with the discussion 

given in Ref [37] where the authors have been used 

the field approximation technique to solve the 

Gaussian confinement potential. 
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Figure 8. the low-lying energies of the system 

under the influence of Gaussian confinement 

compared to parabolic approximation for 

𝑽𝟎 = 𝟐𝟎𝟎 𝒎𝒆𝑽 , and 𝑹 = 𝟏𝟎 𝒏𝒎 , 

 

 Recalling back to the discussion of the 

saturation-limits cases in Fig. 7, where one can see 

that for low confinement 𝑉0 = 36.7 , the heat 

capacity peak value ≈ 2 𝑘𝐵 at T ≈ 100 𝐾, this is 

attributed to the small energy separation in the 

higher states , but as the temperature increases, the 

number of bound states in the Gaussian well is 

limited, so there is a good probability of electron to 

be excited to free electron saturation case. However, 

the presence of the small magnetic field 

confinement (B=5 T) is raising this limit quietly. 

For higher or strong confinement 𝑉0 =
100 and 150 𝑚𝑒𝑉 cases, the above discussion is 

still valid but the heat capacity exhibits the 2D 

parabolic case because the room temperature is not 

sufficient to fully excite the electron. The electron. 

in this case, is still bounded by the Gaussian strong 

potential confinement as a two-dimensional system. 

While 𝐶𝑣 is expected to decrease as the temperature 

increases. The plot in Fig. 6, clearly shows that the 

magnetic field pulls the heat capacity saturation to 

parabolic saturation limit, 2𝑘𝐵 . 

 
Figure 9. The heat capacity 𝑪𝒗 versus the 

temperature T at R=10 nm, g*= −0.44, B=15T 

and V0 = 200 meV. 

  

Conclusion: 
The numerical diagonalization technique 

has been used to solve the QD Hamiltonian and to 

get the energy and the heat capacity (𝐶𝑣) of one 

electron GaAs quantum dot confined by a Gaussian 

potential as a function of the magnetic field (B), 

potential depth (V0), radius (R), and temperature 

(T). In this work, the dependence of the spectra on 

the radius has been investigated as an initial step. 

Furthermore, the statistical energy has been 

computed, taking into consideration the spin effect. 

The QD-energies are presented against the physical 

parameters of the GQD: B, R, V0 and T. Detailed 

explanations to the effects of these parameters on 

the heat capacity curve of the QD have been 

provided. The heat capacity, as a thermodynamic 

quantity, shows a considerable dependence on these 

quantum dot parameters. 
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 أطياف الطاقة و السعة الحرارية لنقطة كمية من زرنخيد الجاليوم موضوعة في مجال مغناطيسي خارجي
 

 أيهم شاعر    محمد السعيد   محمود علي
 

 قسم الفيزياء، كلية العلوم، جامعة النجاح الوطنية، نابلس، الضفة الغربية، فلسطين.

 

 :الخلاصة
 مغناطيسي خارجي منتظم وموضوع في مجالدراسة أطياف الطاقة والسعة الحرارية لإلكترون مفرد محصور في نقطة كمية تم  

اوسية مع الأخذ بعين الاعتبار الحركة كحل دالة هاميلتون لنقطة الكم اللاستخدام طريقة المحاور الدقيقة تم  جاوس كجهد حصر. نموذجباستخدام 

أطياف الطاقة للإلكترون كدالة للمجال  اعتماد . تم عرضتم حسابها بصورة مجموع منتهي جميع عناصر مصفوفة الطاقة .المغزلية للإلكترون

سلوك السعة الحرارية للنقطة الكمية كدالة لدرجة  ، تم دراسةاوسي وحجم النقطة الكمية. بالإضافة إلى ذلكلكالمغناطيسي ، وشدة جهد الحصر ا

 عليها. المؤثرناطيسي الخارجي المغ و المجالالحرارة 

 

 نقطة كمية كاوسية ، أطياف الطاقة ، طريقة الأقطار الدقيقة ، السعة الحرارية  الكلمات المفتاحية :

 


