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Abstract:

This paper considers and proposes new estimators that depend on the sample and on prior
information in the case that they either are equally or are not equally important in the model. The prior
information is described as linear stochastic restrictions. We study the properties and the performances of
these estimators compared to other common estimators using the mean squared error as a criterion for the
goodness of fit. A numerical example and a simulation study are proposed to explain the performance of the
estimators.
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Introduction:

The linear regression model is given as the Variances of parameter estimates may be
follows: unreasonably large, parameter estimates may not be
Y=XB+¢ ...(1) significant and a parameter estimate may have a

where Y is an n x 1 column of observations that  Sign different from what is expected.
explain_the dependent variable, X is an n X p Thus, the detection of multicollinearity has
matrix of observations on p independent variables, [0 Pe made to reduce the effect on the estimation.

Bisap x 1 column of unknown parameters and e The . measures most a_pplled to  detect
= —  multicollinearity are the Variance Inflator Factor

is an n x 1 column of residuals, with an expected (VIF) and the Condition Number (CN) and the
value equal to 2610 and a variance — covariance  researchers are still working for this subject (2).
matrix equal to o1y, _ ) To reduce the effect of this problem, the
When all the assumptions of the linear model in (1) pjased estimation technique has been developed.
have been satisfied, the ordinary least squares  Therefore, many new biased estimators have been
estimator, denoted (OLS), will be the best linear proposed, such as the RR estimator (3). From the
unbiased estimgtor for (1) and is given as follows: theory that the combination of two different
p=5TXY, .. estimators might inherit the advantages of both
where S = X'X. The OLS estimator is not always be estimators, Liu (4) combined the Stein estimator
a good estimator when the multicollinearity is  with the RR estimator and proposed the Liu
present; consequently, the goodness of the OLS  estimator (LE) as follows:
estimator will be missed. Neter, (1) said that in the Bp(d)=(S+D1 (X’Y + d[?) )
process of f|tt|_ng regression merI, _when one where 0 < d < 1. Fela O. and Selahattin k. (5)
independent variable is nearly combination of other discussed the oredictive performan fthe Li
independent variables and this will affect parameter . prediclive periormance ol ‘the LI
estimates. Multicollinearity may cause serious estimator comparing it with ordmz_iry least Squares,
principal components and Ridge regression

difficulties. estimators. Also Sivarajah and Pushpakanthie (6)

e e e o v " proposeed & newbiasd estimatr namely mrlfied
E-mail:eps.mustafa.ismaeel @uoanbar.edu.ig almost unbiased Liu estimator by combining almost
*ORC|D ID:0000-0002-1684-7682 unbiased Liu estimator (AULE) and ridge estimator
(RE) in a linear regression model when
multicollinearity is present among the independent

variables.
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In addition to the sample information, some
exact or stochastic restrictions may be available for
the unknown parameter of the model under
consideration, then this will help to overcome the
multicollinearity problem. Therefore, suppose that we
have some prior information about £ in the form of
stochastic linear restrictions as follows:

h=Hp +e~(0,0%V), ... (4
where h is a j X 1 matrix that may be interpreted as
a random vector with E(h) =HB, H is a jxp

known matrix and V is assumed to be a known and
positive definite (pd). Additionally, it is assumed
that € is stochastically independent of e.

Theil and Goldberger (7,8) introduced the mixed
estimation technique by unifying the sample and the
prior information in equation (4) in a common
model. These authors introduced what they called
the ordinary mixed estimator (OME) as follows:

Bm =S +HVH) (XY +HV™h) ... (5
To improve the performance of OME estimator, Hu
Yang and Jianwen Xu (9) introduced what they called
the stochastic restricted Liu estimator by combining
the OME and LE as follows:

Bsrus(d) = B(d) + STH'(V + H ST H) ™ (h —
HB(D) ... (6)

Nilgiin Yildiz (10) provided a new alternative
estimator, the stochastic restricted Liu-type
estimator, which is obtained by combining the OME
and Liu-type estimator in the following way:
Psrure(k, d) = S (S —dD(S + H'V T H) M (X'Y +

H'V=h) ... (7)

When the sample information given by (1)
and the prior information presented by (4) are
assigned as not equally important, Schffrin and
Toutenburg (11) introduced the weighted mixed
estimator (WME) as follows:

By = (S+wH'VIH)(X'Y + wH'V™1h), ...(8)
where w is a nonstochastic scalar weight, with 0 <
w < 1.

Weibing Zuo (12) proposed a new weighted

stochastic restricted Liu estimator (WSLE) as
follows:

Busie@ = (F7'S +wH'VT'H) ' (X'Y +
wH'V™1h)  ...(9)

Additionally, Hu Yang et al. (13) introduced a
weighted mixed Liu estimator as follows:

Buw(d) = (S +wH'V*H) ™ (Fy X'Y + wH'V ' h)
...(10)

Nilgun Yildiz (14) introduced the weighted mixed
Liu-type estimator (WMLTE) based on the weighted
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mixed and Liu-type estimator (LTE) in linear

regression model as follows:
B (w,k,d) = irs(k,d) + 57t H'(V +

HSH) (ﬁ — Hpurs(k, d)), .(11)

Where Byrp(k,d) = (S+kI)™* (X'Y —df) is the
Liu- type estimator.

Additionally, Nimet Ozbay and Selahattin Kagiranlar
(15) introduced a new two-parameter-weighted mixed
estimator (TPWME) by unifying the weighted mixed
estimator in (7) and the two-parameter estimator
(TPE) of Ozkale and Kagiranlar (16) as follows:

Buw(k,d) = Bk, d) + St H'(V + HS,;lH’)_1 (h -

HB(k, ), ... (12)
where Bk, d) = Si;* (X'Y + kdp).
We want to mention here, that there are many authors
who are working in biased estimation methods in
regression models with prior information or without,
see, for example Ozkale (17), Huang and Yang (18) ,
Kristofer M., Kibria G. B.M. and Shukur G. (19) and
Ozbay and Kagiranlar (20).
As it can be observed, all the estimators in (5) to (10)
are still dealing with the S~ matrix. Therefore, if
there is severe multicollinearity, then the estimators
will be obtained but with high variance.

For this reason, the goal of this paper is to
propose new types of stochastic-restricted Liu
estimators in the case of the prior and the sample
information being either equally important or not
which does not deal with S~ only.

This paper is organized as follows. In
Section 2, the statistical model and the new
weighted and non-weighted mixed Liu estimators
are introduced. Then, in Section 3, the superiority of
the proposed estimator compared with some related
estimators is given, and we list some lemmas
needed for the theoretical discussions. Finally, a
numerical example and a simulation study are
provided to illustrate some of the theoretical results
in Section 5.

The Proposed Estimators

Case of the prior and sample information are
equally important

By augmenting model (1) with df = I8 + €, we get

(d%) =) B+ (é) ¢ ~(0,021) or
Y'=X"B+e (13)
By using the mixed estimation method suggested by

Thiel and Goldberger (7), the estimation (13) subject
to (4), gives the following:

(2)=CDe+(5) -aa
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In another form, (14) can be rewritten as follows:
y=XB+¢, (15)
where E(&) =10,V (&)= o2V = 0% ()
Model (15) combines the prior information in (5) and
the sample information in (13). Since V is positive
definite (pd),V will be positive definite; therefore,
there exists a non-singular symmetric matrix W, such
that ¥ = W'W (21). By premultiplying both sides of
(15) by W1, we get the following:
Y'" =X"B+¢€",.. (16)
where Y =W, X" =W~1X,ande” =W™1€.
From (16), the variance of €’ will be equal to o2I
(i.e., V(€' )= a2I). This means that the errors €' are
uncorrelated and that (16) represents the classic linear
model. Therefore, by fitting model (16) using the
least square method, we obtain the new proposed
estimator as follows:
B(d) =S +1+HVH)™ (XY +df +
H'V7lh) ...(17)

The following fact gives another form of ,,,(d) in
@an.
Lemma 1 (21): Suppose that the square matrices
E:nXnand C:nXxXn are not singular, and let
B:p Xnand D:n X p be any two matrices. Then,

(E+ BCD)'=E~' — E~'B(C"'+DE~'B)'DE!
If E= S+1, B=H', C =V~tand D =H, then by
Lemma 1, we can rewrite (17) as follows:

Em(d) =
B(d)+ STYDH'(V+HS Y (DH") Y(h—H

B(d)), ... (18)
where S™1(I) = (S + I)~t. We call this estimator
the stochastic restricted Liu-type estimator
(SRLTE).
Case of the prior and sample information are
not equally important
As mentioned in section (2-1), the proposed
estimator is as follows:

Bowm(d) = (S +1+wHV IH)!
(X'Y +df +wH'V~th)
=(ST' ) -wS Y DOH'(V +
wHS Y (DH)T*HS™(D)(G4X'Y + wH'V~1h)
=S7YDG4X'Y + wSTY(DH'(V +
wHS Y (DH") " (h — HST*(1)G4X'Y)
=B(d) +wS Y (DH'(V +

wHS™1(D)H')™ (ﬁ - Hg(d)), . (19)

where Gg = (I +dS™1). It is called the weighted-
mixed Liu-type estimator (WMLTE).
In fact, éwm(d) is a general estimator, which

includes the OLS, LE and SRLTE estimators as
special cases. This estimator is as follows.
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If w=0 and d=1, then
EOm(l) = E
If w=0 or H=0,,, then
Bom(d) = Pum(d) = Bz (d)
If w=1, then
Bim(d) = i (d)
The properties of the proposed estimators

The properties of the proposed estimator in
(19) will be obtained, and then the estimator is
generalized using the proposed estimator in (17), by
setting w=1.

It is well known that the performance of any
estimator S* for B depends on its properties.
Therefore, it is necessary to study the properties of
the proposed estimator as well as those of other
estimators.

The expected value and the variance -
covariance matrices of the WME and WSLE
estimators are given as follows:

EBuwm) =B, ...(20)
Cov (éwm ) = g2A*(S+wiH'V™IH) A%,... (21)
where A* = (S + wH'V~1H)~1, Furthermore,

E (Busie(d)) = p + 4*(Fy —1)SB (22)
Cov (Busie(d)) = 024" (Fy SFy +w?H'V " H)A'
...(23)

Additionally, the expected value and the

variance - covariance matrix of the WMLTE are as
follows:

E (éwm (d)) = B+(d—1)AB ..(24)

Cov (,éwm (d)) = 02A(S +dS™ '+ w?H'VH)A
... (25)

where A = (S+1+wH'V-1H)™1,

If we are dealing with the biased
estimators, the mean squared error matrix is the best
criterion that can provide good information about the
performance of an estimator. This matrix can
describe the variance — covariance matrix and the

biased vector of an estimator simultaneously as
follows:

MSE(B*) = Cov (") +Biased(B") Biased(B*)’
Therefore,
MSE (Bum ) = 0?A*(S+w?H'V "' H) A" ...(26)
MSE (éwm (d)) =

0?A(S +dS '+ w?H'V-IH)A + B, B,/,
where B, =(d—1)AB.

MSE (Busie(d)) = 024" (Fy SFy +
w2H'V™IH)A* + B,B), ... (28)

.. @7
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where B, = A"(F; —)SB.
Superiority of the Proposed Estimator
In this section, the superiority of éwm (d) will be

studied to the other estimators by using the mean

squared error matrix. Before that, to clarify the

discussion, a definition and some lemmas are

listed.

Definition: (22):

Let A:n x nand B: n x n be any two matrices.

Then, the roots A; = A%(4)of the equation

|A—AB| =0 are called the eigenvalues of A in

the metric B.

It is clear from the above definition that the roots

of A2(A) are the usual eigenvalues of the matrix
1 1

B 2AB 2.
Lemma 2 (22):
Let B be a positive definite matrix and A be a
positive semi definite matrix denoted by
A= diag(A? (A)), which is the diagonal matrix of
the eigenvalues of A in the metric B. Then, there
exists a nonsingular matrix Q, such that B=Q'Q
and A=Q'AQ".
Lemma 3 (21):
Let B, and B, be two estimators, and let D=
Cov(B;) - Cov(B,) be a positive definite matrix.
Then, A(By,B,) = MSE(By) — MSE(B,)is a
positive definite if and only if

d, (D+ddy)d, < 1.
Lemma 4 (23)
Let M and N be two n x n matrices, such that M is
a positive definite and N is a non-negative definite.
Then, M-N is a positive definite if and only if
L(NM™Y) < 1.
Superiority of B, (d) compared to S,

Let D, = Cov (ﬁwm ) — Cov (me (d))

= 02A*(S + w2R'V™IR) A* — 62A(S + dS™ +
w2H'V-IH)A.
By lemma 2, let Q be a nonsingular matrix, such
that
02A*(A+ w2R'VTIR) A* = Q'Q and 6 2A(S +
dS~1 4+ w2H'V-H)A = Q'AQ.
Therefore, D; = Q'Q — Q'AQ = Q'(I — A)Q.
Letx'Dix =x'Q"U—-AN)Qx =y'(I - Ny

=y (1 — Q7AW A (52 (5 4 dS1 +

WZH’V—lﬂ)A)) v,

where y = Qx.

It is clear that x' D, x is p.d. if and only if
o?A*(A+w?HIV™1H) A* —

A; (c2AS +dS™ 1 +

w2H'V-1H)A) < 1.
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Therefore, by lemma 3, the following result can be
stated.

Theorem 1: a2A(S +
dS~1 + w?H'V-IH)A) < 1 for some i, then

A = MSE (é’wm) — MSE (é’wm (d)) is a positive
definite if and only if B'; D;"'B; < 1.
Superiority of B, (d) compared to B,s.(d)
To compare these estimators, we similarly
consider the difference MSE (éwsle (d)) -

MSE (éwm (d)) as follows:

MSE (Busie(d)) — MSE (/_?W,n (d)) = 02D, +
B,B; — BBy,
where D, = 62A*(F4q SFq +w2H'V™'H)A" —
62A(S+dS™t+ w?H'V IH)A.
According to lemma 4, D, is a positive definite if
and only if
A1 (c?A(S +dS™t
+w2H'V T H)A(c?A*(F4 SFq
+w?H'VIH)A)™) < 1.
Now, the following result can be stated.

Theorem 2:
If

21 (c?A(S+dS™t +

w2R'V™IR)A(c?A"(F4 SFq +

w2R'VTIR)A*)™!) < 1, thenthe weighted-mixed
Liu-type estimator By, (d) is superior to the
Weighted-stochastic-r_estricted Liu-type estimator
Bwsie(d) in the mean squared error matrix if and

only if

02 A*(A+W2HIVLIH) A*
If A7 4 4

B, (D +B',B,) 1B, < 1.

Optimal biased parameter d for By, (d)
The least mean squared error of éwm (d) can be

obtained by finding the optimal value of the biased
parameter d. Therefore, we have to find the d that
achieves the desired performance.
Model (1) can be written in the canonical form as
follows:

Y=Za+teg
where Z=XP,a=Pfand P is apxp
orthogonal matrix, such that P'X'XP = A. A is a
p Xp diagonal matrix and its elements
A1, Az, ..., Ay are the eigenvalues of Z'Z, such that
A > >>1 and PHV'HP=TI=
diag{vl, ., vp}.
Therefore, the MSE of the proposed estimator is as
follows:
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MSE (me (d)) =o2(A+1+wlh) (A +
dAr+wihD)(A+ 1 +wlh)™t
+(d—-D*(A+1+wlh) taa’(AN+1T+wl)™L
To find the optimal value of the biased parameter d
that minimizes MSE (me (d)), let w be fixed,

minimize the trace of the MSE (me (d)) as a
function and calculate the derivative with respect
to d as follows:

mse = tr{MSE (me (d))}

~ Zp: o?(A; +dA + wP) + (d — 1)%a?

(/‘{i +1+ WUL')Z

i=1
Thus,

dmse zp: a2 4 2(d—1) o

od (/L' + 1+ in)z
=
After some simplifications, the optimal d will be
given as follows:
2%F a?

d=1- — .. (29)

The optimal value of d in (26) depends on two
unknown parameters, a2 and a?. Therefore, these

parameters are replaced with their unbiased

estimators 62 and @ to get the following (see

(24)):
: 2R A

d=1-30 (30)

Numerical Example and Simulation Study

=0

-1
a2 ¥ A

In this section, the performance of the new
estimator is explained compared to the other
estimators (WME and WSLE) using the scalar mean
squared error (mse). We use the dataset on Portland
Cement originally attributed to Woods et al. (25),
which several researchers used in their studies,
including Hu Yang and Jianwen Xu (9), Hu Yang et
al. (26). Our computations were all performed using
Matlab R2010b.

The following stochastic linear restriction is
considered to improve estimator:
h = HpB +e, H=(1, 1,1,0) and e~(0, 6% .5) (see

(27)).

e The performance of WMLTE with respect to

W.

From Tables 1,2,3 for different values of w, in
most cases (when d < 0.35), the WMLTE is better
than the other estimators, which can be observed in
Figures 1-5.

¢ The performance of WMLTE with respect to d
The minimum mse value for the WMLTE is when
d=0.01, but this is not the case for the WML and
WSLE. Furthermore, when d=0.99, the mse of
WMLTE is its maximum value, and the other
estimators are superior. These results are clear by
looking at Tables 1-3. Therefore, we can say that
there is a relation between the performance of the
WMLTE and d, where if d increases, then the mse of
WMLTE will decrease and vice versa. Figures
,2,3,4,5 show the performance of the WMLTE with
respect to d for different values of w.

Table 1. The scalar mean squared error for the WME, WMLTE and WSLE when w=0.05 and w=0.1

w=0.1 w=0.05
mse (WSLE) mse (WMLTE) mse (WME) d mse (WSLE) mse (WMLTE) mse (WME) d

1.077 0.254 0.7489 0.01 0.8271 0.2585 0.805 0.01
0.9216 0.313 0.7489 0.09 0.7089 0.317 0.805 0.09
0.8199 0.3593 0.7489 0.15 0.6337 0.363 0.805 0.15
0.7449 0.3992 0.7489 0.2 0.5798 0.4026 0.805 0.2
0.6666 0.4488 0.7489 0.26 0.5257 0.4519 0.805 0.26
0.6215 0.4828 0.7489 0.3 0.496 0.4858 0.805 0.3
0.573 0.5264 0.7489 0.35 0.4661 0.5292 0.805 0.35
0.5407 0.5622 0.7489 0.39 0.448 0.5648 0.805 0.39
0.5082 0.608 0.7489 0.44 0.4325 0.6105 0.805 0.44
0.4808 0.6647 0.7489 0.5 0.4244 0.667 0.805 0.5
0.4663 0.7231 0.7489 0.56 0.4279 0.7253 0.805 0.56
0.4644 0.7832 0.7489 0.62 0.4428 0.7854 0.805 0.62
0.4727 0.8347 0.7489 0.67 0.4641 0.8368 0.805 0.67
0.4942 0.8981 0.7489 0.73 0.5002 0.9002 0.805 0.73
0.5285 0.9633 0.7489 0.79 0.5478 0.9654 0.805 0.79
0.5584 1.0077 0.7489 0.83 0.5859 1.0098 0.805 0.83
0.6038 1.0644 0.7489 0.88 0.6408 1.0665 0.805 0.88
0.6465 1.1106 0.7489 0.92 0.6904 1.1128 0.805 0.92
0.7349 1.1933 0.7489 0.99 0.7896 1.1957 0.805 0.99

365



Open Access Baghdad Science Journal P-1SSN: 2078-8665
2020, 17(1) Supplement (March):361-370 E-ISSN: 2411-7986

Table 2. The scalar mean squared error for the WME, WMLTE and WSLE when w=0.35 and w=0.75

w=0.75 w=0.35
mse(WSLE) mse (WMLTE) mse (WME) d mse (WSLE)  mse (WMLTE) mse (WME) d
1.5166 0.2365 0.716 0.01 1.4124 0.2426 0.7181 0.01
1.2966 0.2975 0.716 0.09 1.2076 0.3029 0.7181 0.09
1.1496 0.3451 0.716 0.15 1.0712 0.35 0.7181 0.15
1.0387 0.3861 0.716 0.2 0.9688 0.3906 0.7181 0.2
0.9198 0.4368 0.716 0.26 0.8593 0.4409 0.7181 0.26
0.8491 0.4714 0.716 0.3 0.7945 0.4753 0.7181 0.3
0.7703 0.5158 0.716 0.35 0.7227 0.5194 0.7181 0.35
0.7149 0.5521 0.716 0.39 0.6726 0.5556 0.7181 0.39
0.6553 0.5986 0.716 0.44 0.6192 0.6018 0.7181 0.44
0.5978 0.6558 0.716 0.5 0.5686 0.6588 0.7181 0.5
0.5557 0.7147 0.716 0.56 0.5326 0.7175 0.7181 0.56
0.5289 0.7752 0.716 0.62 0.5114 0.7779 0.7181 0.62
0.5184 0.8268 0.716 0.67 0.5049 0.8295 0.7181 0.67
0.5197 0.8903 0.716 0.73 0.5106 0.8929 0.7181 0.73
0.5365 0.9555 0.716 0.79 0.531 0.9581 0.7181 0.79
0.5562 0.9998 0.716 0.83 0.5528 1.0025 0.7181 0.83
0.5904 1.0563 0.716 0.88 0.5891 1.059 0.7181 0.88
0.6254 1.1023 0.716 0.92 0.6256 1.105 0.7181 0.92
0.7032 1.1845 0.716 0.99 0.7052 1.1875 0.7181 0.99

Table 3. The scalar mean squared error for the WME, WMLTE and WSLE when w=0.95

w=0.95
mse(WSLE) mse(WMLTE) mse(WME) d
1.5376 0.2351 0.7159 0.01
1.3145 0.2963 0.7159 0.09
1.1654 0.344 0.7159 0.15
1.0529 0.3851 0.7159 0.2
0.9321 0.4358 0.7159 0.26
0.8601 0.4706 0.7159 0.3
0.7799 0.515 0.7159 0.35
0.7235 0.5514 0.7159 0.39
0.6626 0.5979 0.7159 0.44
0.6038 0.6551 0.7159 0.5
0.5605 0.714 0.7159 0.56

The scaler mean squares error for WME WMLTE and WSLE for diferent d when w=0.05
T T T T T T T Pad

1L 4 i

',
",
h,

W
!
w
!

Figure 1. The mean squared error of the WME, WMLTE and WSLE for w=0.05
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The mse for WME, WMLTE and WSLE for diffrent d when w=0.1
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Figure 2. The mean squares error of the WME, WMLTE and WSLE for w=0.1
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Figure 3. The mean squared error of the WME, WMLTE and WSLE for w=0.35
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Figure 4. The mean squared error of the WME, WMLTE and WSLE for w=0.75
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The mse for WME WMLTE and WSLE for diffrent d when w=0.95
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Figure 5. The mean squared error of the WME, WMLTE and WSLE for w=0.95

For further explanation regarding the
behaviour of the new estimator, a Monte Carlo
simulation experiment was performed. Following
Kibria and Banik (24) and Hua Huang et al. (18) to
achieve various degrees of collinearity, the
explanatory variables are generated by using the
following equation.

1
xij = (1 —pz)fzij +pZi5' i=12..,n ]
=1,..,p
where z;; are independent standard normal pseudo-
random numbers, p=4 is the number of the
explanatory variables, n=100 and 500, and p is
specified so that the correlation between any two
explanatory variables is given by p? The

observations of the dependent variable are then
generated by the following:
Vi = P1Xix + PoXiz + BaXiz + Paxis + €, 1
=12,..,n

where ¢; are independent normal pseudorandom
numbers, with a mean of zero and a variance a2. In
this study, we choose B = (By,B82 83 Bs) =
(1,2,3,4)", 0>=1 and p=0.85,0.95and 0.99.
The experiment is replicated 2000 times by
generating new error terms. The MSE for the
estimators is calculated as follows: pB* =

1 $'2000( p* 2 * i i
~oos 2=t (Bij — Bi)", where B; is the estimator of

the ith parameter in the jth replication and g; is the
true parameter value.

Table 4. The estimated MSE for the WME, WMLTE and WSLE when n=100

p =0.85 p=0.95 p=0.99
w WME WSLE WMLTE WME WSLE WMLTE WME WSLE WMLTE
0.05 0.21117 0.21169 0.21032 0.23003 0.23089 0.22515 0.2522 0.25474 0.24033
0.1 0.21283 0.21334 0.20963 0.23378 0.23464 0.22468 0.25458 0.25746 0.2398
0.35 0.2183 0.2188 0.20906 0.23932 0.24028 0.22524 0.25664 0.2599 0.24057
0.75 0.22133 0.22184 0.21024 0.24113 0.24213 0.22737 0.25713 0.26048 0.243
0.95 0.22205 0.22257 0.21083 0.24149 0.24251 0.22821 0.25722 0.26059 0.24392

Table 5. The estimated MSE for the WME, WMLTE and WSLE when n=500

p=0.85 p =0.95 p=0.99
w WME WSLE WMLTE WME WSLE WMLTE WME WSLE WMLTE
0.05 0.21485 0.21495 0.21256 0.2308 0.231 0.22385 0.2453 0.24619 0.23033
0.1 0.21725 0.21735 0.21209 0.23481 0.23502 0.2235 0.24752 0.24849 0.23012
0.35 0.22353 0.22363 0.21226 0.24036 0.24058 0.22445 0.24942 0.25046 0.23157
0.75 0.2266 0.2267 0.21393 0.24208 0.24232 0.22683 0.24987 0.25092 0.23424
0.95 0.2273 0.22741 0.21465 0.24243 0.24267 0.22773 0.24995 0.25101 0.2352

Table 4 and Table 5 show that the WMLTE
estimator is better than the other estimators for
different values of correlation and for both cases
(n=100 and n=500). This result supports the goal of

this article for finding or improving an estimator
that is more accurate compared to other estimators.
It is clear that the new estimator is meaningful in
practice.
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Conclusion:

In this paper, a new version of the
weighted-mixed Liu-type estimator is introduced
for the vector of parameters in a linear regression
model by unifying the sample and the prior
information in the case that they either are equally
or are not equally important. Furthermore, the new
estimator is superior to the weighted-mixed
estimator and the weighted-stochastic-restricted
Liu-type estimator in the mean squared error matrix
under certain conditions. The optimal value of the
biased parameter for the proposed estimator are
obtained. Finally, a numerical example and a
simulation study are given for the comparison of the
new estimator with other estimators in this study.
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