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Abstract: 
Energy savings are very common in IoT sensor networks because IoT sensor nodes operate with their 

own limited battery. The data transmission in the IoT sensor nodes is very costly and consume much of the 
energy while the energy usage for data processing is considerably lower. There are several energy-saving 
strategies and principles, mainly dedicated to reducing the transmission of data. Therefore, with minimizing 
data transfers in IoT sensor networks, can conserve a considerable amount of energy. In this research, a 
Compression-Based Data Reduction (CBDR) technique was suggested which works in the level of IoT 
sensor nodes. The CBDR includes two stages of compression, a lossy SAX Quantization stage which reduces 
the dynamic range of the sensor data readings, after which a lossless LZW compression to compress the loss 
quantization output. Quantizing the sensor node data readings down to the alphabet size of SAX results in 
lowering, to the advantage of the best compression sizes, which contributes to greater compression from the 
LZW end of things. Also, another improvement was suggested to the CBDR technique which is to add a 
Dynamic Transmission (DT-CBDR) to decrease both the total number of data sent to the gateway and the 
processing required. OMNeT++ simulator along with real sensory data gathered at Intel Lab is used to show 
the performance of the proposed technique. The simulation experiments illustrate that the proposed CBDR 
technique provides better performance than the other techniques in the literature. 

 

Key words: Data Compression, IoT, LZW, SAX Quantization, Sensor Networks. 

 

Introduction 
Currently, the Internet migrates from linking 

people to linking things, moving to the modern 
Internet of Things (IoT) concept. The modern 
concept brings objects or things into the Web and 
produces new business and applications. Such 
things, from interior wearable devices to exterior 
environmental sensors, become new sources, 
produce data on the Internet, and together make the 
entities on the Internet more conscious of the real 
world (1,2). In IoT one of the most important 
contributors is wireless sensor networks (WSNs). 
WSN includes a large number of dispersed sensors 
interconnected wirelessly for environmental and 
physical surveillance applications. As an IoT 
branch, wireless sensor networks (WSNs) have been 
commonly used in a number of smart technologies 
and services, like smart building, smart home, smart 
cities, smart industrial automation, smart transport, 
smart grids, and smart healthcare (3). In general, the 
sensing devices contain restricted-energy resources 
(power of battery), storage and processing 
capability, range of radio communication and 

reliability, etc., and still, their deployment should be 
covering a wide range area (4). 

In WSN-based IoT, energy-saving is essential 
since sensor nodes are working by their restricted 
battery and if a vast number of sensors are spread 
over wide space or spread in a harsh or hostile area 
such as in the deep sea or around the volcanoes 
when the battery expires, it could be uncomfortable 
or very hard to exchange or recharge it (4,5). At IoT 
sensor nodes, energy is disposed in too many ways 
like receiving and transmitting the data, data 
processing, sensing, etc., Among all these, 
transferring the data is very costly in terms of power 
exhausting, while the consumption in data 
processing is considered to be much fewer (6,7). 
Transferring a single bit of data almost consumes 
energy equal to that required to process a thousand 
operations in a regular sensor node. For that reason, 
how to decrease the power exhausting of IoT sensor 
nodes became a critical problem for increasing the 
duration of life of the IoT network to attain the 
application demands. There are too many techniques 
and concepts concentrated for saving the power, 
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specially focalize to decrease the transmission of 
data (2). 

Like that solution is appropriate in applications 
that do not need data in real-time and specifically 
useful when sensor nodes need to send regularly 
their data readings to the gateway (GW) for a very 
long time. To decrease the quantity of transmitted 
data, need to compress them inside the network. 
Relying on the recoverability of data, the data 
compression schemes can be categorized into three 
categories: unrecoverable, loss, and lossless (8). 

lossless compression means that after 
accomplishing the decompression operation, can get 
quite the same data as those before accomplishing 
the compression operation. A loss compression 
means that some (usually minor) features of data 
may be lost because of compression operation. 
Finally, an unrecoverable compression refers to the 
irreversible compression operation. In other 
meaning, the decompression operation is not 
existing. For instance, a set of numbers can be 
compressed by using their average value but every 
one of the original numbers cannot be obtained from 
this average value (8). Therefore, considerable 
energy can be saved by decreasing the number of 
data transmissions (i.e. compressing data) in IoT 
sensor networks. For that reason, this research target 
to evolve a lightweight algorithm of data 
compression. 

The contributions made by this research are as 

follows: 

1. A new Compression-Based Data Reduction 

(CBDR) technique is proposed to compress the 

IoT sensor data readings in an effective way that 

saving the power, decreases the volume of 

transmitted data, and maintain the accuracy of 

the received data readings at the gateway thus 

extend the IoT network lifetime. CBDR has 

composed of two stages of compression: a lossy 

SAX Quantization stage that decreases the 

dynamic range of the sensor data readings and 

greatly increases the amount of reoccurring data 

patters, the next stage is a lossless LZW 

compression to compress the lossy quantization 

output. 

2. This research presents an efficient data 

transmission approach for IoT sensor networks 

based on data correlation that could help to 

prolong IoT network lifetime. 

3. CBDR technique is evaluated by using extensive 

simulation experiments provided by the 

OMNeT++ network simulator. CBDR is 

compared with two algorithms in the related 

works: PFF algorithm suggested by Bahi et al. 

(2014) (9) and ATP protocol suggested by Harb 

et al. (2015) that proposed in (10). 

The remainder of this research is arranged as 
follows. The next part provides related works. Part 

III gives a detailed description of our proposed 
technique. Section IV inspect the results of 
experiments, Finally, this paper is ended in section 
V with conclusions. 

 

Related Works 
The main aim of this review is to thoroughly 

examine published works of literature on prolonging 
the lifetime of IoT sensor networks using data 
compression approaches. There are many 
techniques and concepts devoted to save energy and 
extend the lifetime of IoT sensor networks, mainly 
focused to reduce data transmissions, like predictive 
monitoring, clustering, aggregation, routing 
scheduling, data compression, radio optimization, 
and battery repletion (11,12,13,14,15,16,17). Please 
observe that several algorithms of data compression 
have been used in WSNs. 

Although a lot of former results assess 
compression techniques, few have been assessed 
from the sensors network viewpoint. In IoT sensor 
nodes, the concentration should be on energy and 
other needs of resources rather than merely the 
compression ratio (2). 

The algorithm of compression performed on 
sensor nodes must have a high compression ratio to 
decrease both the transmitted bits number and the 
percentage of power consumption. A lot of 
compression techniques that aware of resources 
have been developed and used to decrease data in 
WSNs (18). To compress local climate data, a lossy 
temporal compression algorithm called 
“Lightweight Temporal Compression (LTC)” has 
been proposed in (19). The researchers explained 
that the LTC is convenient for devices with low 
energy, it implements compression in a similar way 
to the “Lempel-Ziv-Welch (LZW)” and wavelet 
compression, low CPU consumption and needs a 
little storage space. 

To improve data compression in WBSN, in 
(20), the researchers suggested the simple delta 
encoding algorithm, called ”Differential Pulse Code 
Modulation (DPCM)”. The results cleared that the 
delta encoding performs better than the ”Huffman 
encoding” in terms of reducing the amount of data, 
the complexity of computational, and reduce energy 
consumption. A technique referred to as 
LiftingWise has been suggested in (21). The 
LiftingWise technique is an adjusted version of the 
original Discrete Wavelet Transform (DWT) Lifting 
Scheme (LS) algorithm and it can be used on a set 
of data with varying lengths while the original LS is 
used on a signal Sn with length 2n. This method has 
been utilized to process the data spread from objects 
disseminated in a monitoring environment. It was 
compared with two other simple compression 
techniques suitable for utilization in WSNs: The 
Offset compression and Marcelloni compression 
(22). The results have revealed the efficiency of this 
method in decreasing bits’ number of the collected 
data by considering the finite resources of sensor 
nodes.  
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After the aforementioned analysis, it found that 
presently used data compression methods have not 
yet established both temporal and spatial similarities 
inside and between nodes and that the accuracy of 
the recovered data is so weak that it did not satisfy 
the implementation requirements. Also, it found that 
certain suggested methods of compression are 
highly complex for the IoT sensors and not 
necessary. It was found that the physical world 
assumes the gradient distribution; thus, the data 
obtained by neighboring nodes are roughly 
equivalent, in keeping with the temperature 
experiment presented in this article. Therefore, the 
temporal similarity that occurs between data can be 
exploited to minimize that data. In this article, a 
Compression-Based Data Reduction (CBDR) 
technique has been proposed. It works in the level 
of IoT sensor nodes to decrease both the total 
number of data transmitted to the gateway and the 
computation time is required. 

 

Description of Proposed CBDR 
This section is intended to present the design of 

the proposed technique. In this research, a 
Compression-Based Data Reduction (CBDR) 
technique was suggested which works at the IoT 
sensor nodes level to compress their readings in an 
efficient way to minimize the amount of data 
transmitted, save the power, thus prolong the 
lifetime of IoT network while maintaining received 
data readings accuracy at the gateway. CBDR 
includes two stages of compression, a lossy SAX 
Quantization stage that reduces the dynamic range 
of the sensor data readings and increases the amount 
of reoccurring data patterns, followed by a lossless 
LZW compression to compress lossy quantization 
output. Quantizing the data readings of sensor nodes 
down to only the alphabet size of SAX results in a 
lowering at the benefit of best compression 
volumes, which lead to producing the best 
compression from the LZW end of things. Fig. 1 
shows the proposed compression system flowchart. 
A few terms used in this research are listed in Table 
1. 

 

Table 1. A few terms used in this research. 

Parameter Description 

𝑆𝐴𝑀𝑃𝑅𝑎𝑡𝑒 

R 

𝛼 

𝑎 

𝛿 

𝐸𝑇ℎ𝑟 

The Sampling Rate 

Data Readings Series 𝑅𝑖 = [𝑦𝑖1,
𝑦𝑖2, … , 𝑦𝑖𝑇] 
The Alphabet 

Alphabet symbols number (e.g. if a = 4 

then alphabet = [a,b,c,d]) 

Correlation Threshold 

Energy Threshold 

 
Figure 1. Flowchart of proposed CBDR method. 

 

Data Collection 
The main objective of IoT is to make human life 

easier and simpler. The implementation of IoT is 
often concerned with data collection and 
communication of information. In the IoT context, 
the data is often collected from sensors. Based on 
application requirements, in WSN-based IoT, the 
collection of data may be event-driven (like forest 
fire, oil and gas leaks detection) or time-driven (like 
habitat monitoring, logging temperature and 
humidity in the plants for precision agriculture) 
(5,11,12). This research takes into account the time-
driven data collection model which is called 
Periodic. 

During periodic data collection, sensor node 𝑖 
captures a new reading 𝑦𝑖𝑠  for every slot of time 𝑠. 

After that, the node 𝑖 shapes a new vector (i.e. time 

series vector) of captured readings  𝑅𝑖 = [𝑦𝑖1,
𝑦𝑖2, … , 𝑦𝑖𝑇] at each period 𝜌, while 𝑇 is the number 

of overall readings in every period 𝜌, and transmit it 

to the suitable GW. 

Figure 2 displays a periodic data collection 

example in which every sensor node capture one 

reading of data every 10 minutes, e.g. 𝑠 = 10 

minutes, and transmit the set of collected data that 

include 6 reads, e.g. T = 6, to GW at end of every 

hour. 

As a result, one of the essential design points 

that should be taken into consideration correlated 

Start 

Parameters Initialization 

𝑆𝐴𝑀𝑃𝑅𝑎𝑡𝑒, 𝐸𝑇ℎ𝑟, 𝛼 

Is 

Remaining Power>𝐸𝑇ℎ𝑟? No 

Yes 

Data Collection 

𝑹=data readings capture at 𝑆𝐴𝑀𝑃𝑅𝑎𝑡𝑒 

Exclude sensor from 

this Period 

Data Normalization 

𝑹𝑵𝒐𝒓=Normalize (R) 

Quantization 

𝑹𝑸𝒖=SAX Quantization (𝑹𝑵𝒐𝒓, 𝜶) 

 

Compression 

𝑹𝑪𝒐𝒎𝒑=LZW (𝑅𝑄𝑢 , 𝛼) 

Encoding 

𝑹𝑬𝒏𝒄=Entropy Encoding (𝑅𝐶𝑜𝑚𝑝) 

𝐺𝑊 ← 𝑅𝐸𝑛𝑐 
Send to Gateway 

Update residual power 

End 
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with the periodic collecting model of data is the 

conditions of surveillance cases that are dynamic 

can speed up or slow down. So, it is a potential IoT 

sensor node that takes identical (or very similar) 

readings many times, specifically when 𝑠 is very 

short, which enables the IoT sensor node to transfers 

lots of repeated data to the GW at every period (23). 

 

 
Figure 2. Illustrative example of Periodic data 

collection. 

 

SAX Quantization 

To make the LZW algorithm works on the 
collected data readings provided by IoT sensor 
nodes (which represent an ideal paradigm of a time-
series data), some type of time series preprocessing 
is needed. It is desired to convert time series, which 
represent data readings from several IoT sensor 
nodes, for some appropriate formats for further 
analysis. To handle time series, propose to utilize 
two techniques of their representation: a symbolic 
representation and a normalization. 

Normalization is known as the conversion 
process of time series in which making mean value 
equal to zero and a standard deviation one, this 
conversion is an essential part of the data readings 
preprocessing (24). 

Throughout the broad field of research of time 
series, particularly on data mining and data 
management, several methods have been suggested 

which could be used to create an abstract 
representation of time series (25). It involves 
transforms from Fourier, wavelets, piecewise, and 
symbolic representations. Each of these methods 
guides to representations of the time series or 
abstractions that become generally smaller than the 
original time series. Since they could not be used to 
reconstruct the data completely, they are considered 
lossy compression methods (25). 

There are several reasons why symbolic 
representation is used in a wide range, in addition to 
simplicity, readability and the efficiency of time 
series representation, it is possible to utilize 
algorithms from other fields such as text processing, 
retrieval of information or bioinformatics. One of 
the most successful symbolic representation 
techniques is Symbolic Aggregate approXimation 
(SAX) which proposed by Bondu et al. (26). SAX 
includes two parts: piecewise aggregate 
approximation (PAA) transformation and the 
transformation of the numerical data to symbols set. 
In this research, the concern with the second part of 
SAX only. 

Symbolic representation of IoT sensor nodes 

data readings can be obtained from normalized one 

using the SAX algorithm. To perform this 

conversion, the SAX quantization utilizes (N − 1) 

breakpoints that division area under the Gaussian 

distribution into a equal proportional areas. 

Breakpoints are known as a list of sorted values B = 

β1,...,βa−1. The area under an N(0,1) Gaussian curve 

from βi to βi+1 = 1/a, where β0 and βa indicate to −∞ 

and ∞ respectively. The breakpoints are in a 

statistical table by searching for them. For example, 

Table 2 displays a lookup table of the breakpoints 

for a range of values from (3 to 10) (26). 

 

Table 2. A breakpoint lookup table for a range of values (e.g. a: 3 to 10). 

 𝜶 3 4 5 6 7 8 9 10 

𝜷𝒊 𝜷𝟏 -0.43 -0.67 -0.84 -0.97 -1.07 -1.15 -1.22 -1.28 

 𝜷𝟐 0.43 0 -0.25 -0.43 -0.57 -0.67 -0.76 -0.84 

 𝜷𝟑  0.67 0.25 0 -0.18 -0.32 -0.43 -0.52 

 𝜷𝟒   0.84 0.43 0.18 0 -0.14 -0.25 

 𝜷𝟓    0.97 0.57 0.32 0.14 0 

 𝜷𝟔     1.07 0.67 0.43 0.25 

 𝜷𝟕      1.15 0.76 0.52 

 𝜷𝟖       1.22 0.84 

 𝜷𝟗        1.28 

 

When the breakpoints are determined, the 

normalized data set can be quantized as follow. 

Each normalized value less than the smallest 

breakpoint will be turned into ”a” symbol, while the 

normalized values that are equal to or larger than 

the smallest breakpoint and less than the second 

smallest breakpoint are turned into ”b” symbol, etc. 

Let alphai refers to the ith alphabet value (i.e., alpha1 

= a and alpha2 = b, etc.). As a result, the transition 

from a normalized representation 𝑅𝑁𝑜𝑟 to a symbol 

𝑅𝑄𝑢 is determined as in Equation 1. 

𝑅𝑄𝑢𝑖 = 𝑎𝑙𝑝ℎ𝑎𝑖       𝑖𝑖𝑓    𝛽𝑗−1  ≤ 𝑅𝑁𝑜𝑟𝑖 < 𝛽𝑗               (1) 

Examples of original, normalized, and symbolic 

representation of IoT sensor data are shown in Table 

3. 

 

 



Open Access     Baghdad Science Journal                                P-ISSN: 2078-8665 

Published Online First: December 2020                                                            E-ISSN: 2411-7986 

 

188 

Table 3. Example of original, normalized and symbolic representation of IoT sensor readings. 

Time 1 2 3 4 5 6 7 8 9 10 

IoT sensor data 

readings 

1
9

.9
8
8

4
 

1
9

.3
0
2

4
 

1
9

.1
7
5

 1
9

.1
6
5

2
 

1
9

.1
1
6

2
 

1
9

.0
6
7

2
 

1
9

.0
1
8

2
 

1
8

.9
7
9

 1
8

.9
6
9

2
 

1
8

.9
2
0

2
 

Normalized data 

readings 
4

.7
1

9
6

8
 

1
.1

2
9
0

0
 

0
.4

6
2
1

5
 

0
.4

1
0
8

6
 

0
.1

5
4
3

8
 

-0
.1

0
2

0
 

-0
.3

5
8

5
 

-0
.5

6
3

7
 

-0
.6

1
5

0
 -0

.8
7

1
5

2
 

Symbolic 

representation 
J I G G F E D C C B 

 
Our goal of using SAX is to reduce the range of 

data and limit the number of alphabets used in the 
algorithm to increase the patterns of repeated 
symbols to give good results in the second stage of 
the proposed method. Algorithm 1 shows the SAX 
quantization method. 

 
Algorithm 1: SAX Quantization 

   Input: 

   

Output: 

R (IoT Sensor data readings with T measures); 

a (Alphabet Length); α (Alphabetic); β 

(Breakpoints) 

𝑹𝑸𝒖 (set of symbols) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

𝒇𝒐𝒓 𝑖 ← 1 𝒕𝒐 𝑇 𝒅𝒐 

       𝑅𝑁𝑜𝑟(𝑖) ← 𝑅(𝑖) − 𝜇 𝜎⁄                   // 𝝁:mean of 

data readings; 𝝈: standard deviation of data readings 

end 

𝒇𝒐𝒓 𝑖 ← 1 𝒕𝒐 𝑇 𝒅𝒐 

    𝒇𝒐𝒓 𝑗 ← 1 𝒕𝒐 𝑎 𝒅𝒐 

         𝒊𝒇(𝛽𝑖 ≤ 𝑅𝑁𝑜𝑟 < 𝛽𝑖+1)𝒕𝒉𝒆𝒏 

              𝑅𝑄𝑢 ← 𝑅𝑄𝑢 ∪ 𝛼𝑖                       //convert data 

readings to symbols and add them to the set 

         𝒆𝒏𝒅 

   𝒆𝒏𝒅 

𝒆𝒏𝒅 

𝒓𝒆𝒕𝒖𝒓𝒏 𝑅𝑄𝑢 

 

LZW Compression 
IoT sensor nodes generate a mountain of data. 

In IoT, the data is like gold. The collected data by 
the IoT sensor nodes must be processed for the 
analyses and decision-making. As it is what enables 
IoT based solutions to deliver new services and 
opportunities. Since data transmission in IoT sensor 
nodes consumes a large amount of energy, so it is 
very costly. Therefore, in this research, the main 
focus is on reducing the data transmission through 
compressing data using the LZW algorithm for 
energy conservation and prolong the lifetime of the 
network as long as possible. 

The Lempel-Ziv-Welch (LZW) algorithm (8,27) 
is one of the most popular lossless compression 
algorithms, in which the dictionary is created 
dynamically to encode new strings based upon 
strings previously encountered. Where an initiated 
dictionary contains the strings of a single character 
corresponding for all potential input characters. For 
instance, when using the “American standard code 
for information interchange (ASCII)”, the dictionary 

will include 256 initial entries. The LZW algorithm 
then searches each character of the incoming stream 
of data until a substring that was not in the 
dictionary can be found. When it detected such a 
string, the longest identical substring index in the 
dictionary sends to the output stream of data, while 
adding the new string into the dictionary with the 
next of obtainable code. Then, the LZW algorithm 
continues of checking the input stream of data, it 
starts with the last character of the preceding string 
(8,27). 

The LZW algorithm is simple in terms of 
computation and has no overhead transmission. This 
is because the sender (IoT sensor node) and the 
recipient (GW) get the same preliminary dictionary 
entries and all-new dictionary entries can be 
extracted from existing dictionary entries and the 
input stream of data, as the result, the receiver can 
construct the complete dictionary on the fly when 
compressed data is received. 

Even though the above observation, a few 
deficiencies or limitations related to the encoding of 
LZW was faced: 

1. The LZW algorithm is only appropriate for text 

files. Therefore, to solve this limitation, this 

research proposes to use normalization and SAX 

quantization to convert the IoT sensor data 

readings from real numbers to symbols. 

2. All single characters must be placed in the 

dictionary at the beginning, although it does not 

participate in the encoding and decoding process, 

as a result, the LZW algorithm suffers from 

space redundancy. Therefore, this research 
handles this problem by initializing the 

dictionary to only the characters set in the 

alphabet of SAX. Because when convert the IoT 

sensor data readings using the alphabet of SAX 

(for example, alphabet=10 characters), the range 

of data readings will be from ‘A’ to ‘J’. Hence, 

just want to include the characters’ set of SAX 

alphabet in the dictionary and this will minimize 

the dictionary size to suit with restricted sensor 

nodes of IoT. 

These minor modifications to the LZW method 

proposed in this research called SAX-based LZW. 
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Algorithm 2 describes the process of compressing 

data readings using SAX-based LZW. 

 
Algorithm 2: SAX-based LZW Compression 

   Input: 

   Output: 
𝑹𝑸𝒖:(set of symbols); a:(Alphabet Length); 

α:(Alphabetic) 

𝑪𝑷𝑹 (Compressed set) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

𝐷𝑖𝑐 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝐷𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 (𝛼)                // create the 

Dictionary 

𝑋 ← 𝑓𝑖𝑟𝑠𝑡 𝑠𝑦𝑚𝑏𝑜𝑙 𝑜𝑓 (𝑅𝑄𝑢) 

𝒘𝒉𝒊𝒍𝒆 ! 𝑒𝑛𝑑𝑜𝑓 (𝑅𝑄𝑢) 𝒅𝒐 

       𝑌 ← 𝑛𝑒𝑥𝑡 𝑠𝑦𝑚𝑏𝑜𝑙 𝑜𝑓 (𝑅𝑄𝑢) 

       𝒊𝒇 (𝑋 + 𝑌) 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝐷𝑖𝑐 𝒕𝒉𝒆𝒏 

              𝑋 ← 𝑋 + 𝑌 

          𝒆𝒍𝒔𝒆 

              𝐶𝑃𝑅 ← 𝐶𝑃𝑅 ∪ 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑋 𝑖𝑛 𝐷𝑖𝑐 

              𝐷𝑖𝑐 ← 𝑋 + 𝑌 

         𝒆𝒏𝒅 

     𝒆𝒏𝒅 

𝒆𝒏𝒅 

𝒓𝒆𝒕𝒖𝒓𝒏 𝐶𝑃𝑅 

 

Finally, after the data is compressed using 
LZW, its output, which are indexes of locations in 
the dictionary, will be encoded and sent to the next 
level (GW). 

Since lossless compression and lossy 
compression are suitable for different situations, it is 
possible to combine the two kinds of algorithms 
without disturbing each other, e.g., using a lossy 
compression algorithm as a filter, in our case to 
greatly increase the amount of reoccurring data 
patterns, followed by applying lossless compression 
to further decrease the amount of data that needs to 
be transmitted. Figure 3 shows the basic concept of 
implementing such a series of compression. 

 

 
 
 

 

Figure 3. Basic concept of combing compression algorithms. 

 

Dynamic Transmission 
For most systems of real physical, the 

gradient distribution is followed by nature world 
physical parameters, which leads the sensing data 
readings for successive periods identical or with a 
constant difference roughly. It is responsible for the 
existence of a high proportion of temporal 
redundancies (28) that can always be called 
correlation. To save the power of the entire IoT 
network and also decreasing the number of packets 
sent to the GW, these redundancies in data need to 
be eliminated. Literature used the cosine similarity, 
Euclidean distance, edit distance, Jaccard’s 
similarity, and generalized edit distance of the data 
to explore the correlation among sensor data 
readings. These methods are used to discover the 
similarity among data (13). 

For the sake of minimizing the amount of sent 
data readings to the GW as much as possible, the 
dynamic transmission stage in the CBDR technique 
was proposed for more optimization, called (DT-
CBDR) as illustrated in Algorithm 3. 

The main responsibility of DT is to distinguish 
pairs of sets whose similarities are higher than a 

certain threshold. The DT compares between two 
data sets (the current and the new sets of data) for 
consecutive periods utilizing correlation function, 
and send data to the GW. If the two data sets are 
similar, the DT sends a notification packet only to 
inform the GW. Otherwise, it forwards all the new 
data readings to the GW (after processing them 
using the CBDR technique). 

Figure 4 offers the behavior of DT manner. 

Impose 𝑣 and 𝑣̂ are two collected data sets for 

successive periods  

where 𝑣 = [𝑣1, 𝑣2, … , 𝑣𝜌] is a set of data 

previously collected, and 𝑣̂ = [𝑣̂1, 𝑣̂2, … , 𝑣̂𝜌]is a new 

data set, and ρ is the number of data readings in 

total. The correlation decision process of 𝑣 and 𝑣̂ 

works as follows:  
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Algorithm 3: Dynamic Transmission CBDR 

   Input: 

 

   Output: 

𝑹:(IoT Sensor data readings with T 

measures); a:(Alphabet Length); 

α:(Alphabetic); β (Break points); ID (Sensor 

Identification) 

𝑪𝑷𝑹 (Compressed set) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

𝑃𝑒𝑟𝑖𝑜𝑑𝐼𝑑𝑥 ← 1                                                               
// Index of Period  

𝒘𝒉𝒊𝒍𝒆 (𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙_ 𝑝𝑜𝑤𝑒𝑟) > 𝐸𝑇ℎ𝑟) 𝒅𝒐 

       𝑉̂ ← 𝐺𝑎𝑡ℎ𝑒𝑟 𝑑𝑎𝑡𝑎 𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠 𝑎𝑡 𝑆𝐴𝑀𝑃𝑅𝑎𝑡𝑒 

       𝒊𝒇 (𝑃𝑒𝑟𝑖𝑜𝑑𝐼𝑑𝑥 = 1) 𝒕𝒉𝒆𝒏 

              𝑉 ← 𝑆𝑡𝑜𝑟𝑒 𝑖𝑛 𝑚𝑒𝑚𝑜𝑟𝑦 (𝑉̂) 
               𝑉̂𝑆𝐴𝑋 ← 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 1(𝑉̂, 𝑎, 𝛼, 𝛽) 
               𝐶𝑃𝑅 ← 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 2( 𝑉̂𝑆𝐴𝑋, 𝑎, 𝛼) 
               𝑆𝑒𝑛𝑑 − 𝑡𝑜 − 𝐺𝑊(𝐶𝑃𝑅, 𝐼𝐷) 
               𝑈𝑝𝑑𝑎𝑡𝑒 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙_ 𝑝𝑜𝑤𝑒𝑟  
              𝑃𝑒𝑟𝑖𝑜𝑑𝐼𝑑𝑥 ++ 

              𝒆𝒍𝒔𝒆𝒊𝒇 (𝐶𝑂𝑅𝐹(𝑉, 𝑉̂)) ≥ 𝛿 𝒕𝒉𝒆𝒏 

                    𝑆𝑒𝑛𝑑 − 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑁𝑜𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛
− 𝐺𝑊(𝐼𝐷) 

                    𝑈𝑝𝑑𝑎𝑡𝑒 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙_ 𝑝𝑜𝑤𝑒𝑟 

                    𝑃𝑒𝑟𝑖𝑜𝑑𝐼𝑑𝑥 ++ 

                    𝒆𝒍𝒔𝒆 

                           𝑉 ← ∅ 

                           𝑉 ← 𝑆𝑡𝑜𝑟𝑒 𝑖𝑛 𝑚𝑒𝑚𝑜𝑟𝑦 (𝑉̂) 
                           𝑉̂𝑆𝐴𝑋 ← 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 1(𝑉̂, 𝑎, 𝛼, 𝛽) 
                          𝐶𝑃𝑅 ← 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 2( 𝑉̂𝑆𝐴𝑋, 𝑎, 𝛼) 
                          𝑆𝑒𝑛𝑑 − 𝑡𝑜 − 𝐺𝑊(𝐶𝑃𝑅, 𝐼𝐷) 
                          𝑈𝑝𝑑𝑎𝑡𝑒 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙_ 𝑝𝑜𝑤𝑒𝑟  
                          𝑃𝑒𝑟𝑖𝑜𝑑𝐼𝑑𝑥 ++ 

                  𝒆𝒏𝒅 

            𝒆𝒏𝒅 

      𝒆𝒏𝒅 

𝒆𝒏𝒅 

𝒓𝒆𝒕𝒖𝒓𝒏 𝐶𝑃𝑅 

 

1- Compute the difference between 𝑣 and 𝑣̂, 

which here is the Euclidean distance. It 

measures the dissimilarity between each 

data pair in the data set and is computed by 

Equation 2.  

𝐸𝑈𝐶𝐷𝑖𝑠 = ∑ √(𝑣𝑖 − 𝑣̂𝑖)
2𝜌

𝑖=1                   (2) 

2- Calculate the correlation percentage 

between 𝑣 and 𝑣̂ using Equation 3. 

𝐶𝑂𝑅𝐹 = (
1

1+𝐸𝑈𝐶𝐷𝑖𝑠
) × 100                                                                   

(3) 

3- If 𝐶𝑂𝑅𝐹 greater than threshold 𝛿, then say 

𝑣 and 𝑣̂ are correlative. 

4- Otherwise, 𝑣 and 𝑣̂ are not correlative. 

 

Simulation Results and Discussion: 
Here, the evaluation of the performance and the 

results of the simulation are displayed as graphs and 
discussion for the proposed CBDR technique 
presented in section 3. The goal is twofold: firstly, 
to assess CBDR performance via real sensory data 
using different performance metrics. Proposed 
CBDR is disseminated in every sensor node, which 
is dependent on the use of the Intel Berkeley 
Research Lab dataset. These sensed weather data 
(like temperature, humidity, and light) are collected 
periodically every 31 seconds. In our simulations, 
the sensor nodes utilize a log file that includes 2.3 
million readings collected formerly by 47 Mica2Dot 
sensor nodes in the Lab as shown in Fig. 5. This 
research only uses one measure of measurements of 
sensor nodes: temperature.  

Some performance metrics are used in the 
experimental simulations (Table 4), to evaluate 
CBDR technique efficiency like remaining data 
after compression, percentage of sent data to GW, 
compression ratio, energy consumption, lossy 
compression vs loss of information, and lifetime. 
Secondly, to compare the proposed CBDR with 
competitive methods belong to the same field. 
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Figure 4. The behavior of DT-CBDR technique. 

 

Table 4. The settings of parameters. 
Parameter Value 

Network Size 47 sensors 

SAMPRate 20, 50, and 100 data readings 

𝛿 0.03, 0.05, 0.07 (threshold of correlation) 

α 5 and 10 

Eelec 50 nJ/bit 

βamp 100 pJ/bit/m2 

 
Figure 5. Deployment of Sensors in Intel Berkeley Lab. 
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Compression 
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Remaining Data After Compression 

Through the compression process, every 

node will perform a search in its dictionary for the 

longest substring in temperature readings series 

collected in every period and allocates for each 

matched substring the index in that dictionary. 

Therefore, the result of the compression in this stage 

relies on the alphabet size α that is chosen, the 

changes in the conditions that have monitored, and 

the number of temperature readings collected in 

period T. In these simulations α is changed from 5 

to 10 characters, δ from 0.03 to 0.07 and T from 20 

to 100 readings. 

The remaining data readings or compressed data 

are shown in Fig. 6, in every period with and 

without compression/aggregation and dynamic 

transmission at each sensor. The obtained results 

from CBDR and DT-CBDR technique explain that, 

in every period, every node decreases the amount of 

data collected by at least 39% and up to 79%, while 

ATP decreases the amount of data collected by at 

least 68% and up to 87% after 

compression/aggregation, whereas PFF sends all 

data collected, for example, 100%, if not applied it. 

So, CBDR, DT-CBDR, and ATP can get rid of 

redundant data readings efficiently in every period 

and minimize the total number of data sent to the 

GW. 

Also, it is possible to note that in the 

compression stage, when T or δ increases and α 

decreases, the data redundancy increases. Because 

the compression algorithm will be able to find more 

repetitive patterns to be removed in each period. 

  
Figure 6. Remaining data after compression. 

 

The Percentage of Sent Data to GW 

The communication cost in IoT sensor 

networks is directly affected by the process of 

reducing the number of data readings (data 

compression). Thus, reducing the radio on-time of 

the transceivers (communication compression) is 

the result of reducing the number of packets. Figure 

7 explains the percentage of sent data readings by a 

sensor node with the use of 

compression/aggregation and dynamic transmission 

and without. In these simulations, α is varying 

between 5 and 10 characters, δ between 0.03 and 

0.07, and T between 20 and 100 data readings. 

From Fig. 7 it is easy to observe that the 

percentage of sent data readings by IoT sensor node 

decreases when α decreases or T increases. The 

reason behind this is that the more reoccurring data 

patterns are, the more compression ratio results, and 

hence the fewer data readings transmitted that 

conserve the energy of the sensors. The gained 

results indicate that CBDR can decrease up to 74% 

of the sent data readings using compression only. 

Additionally, it’s clear that when the dynamic 

transmission applied, the percentage of sent data 

readings by IoT sensor node decreases when α 

decreases or T and δ increases. The obtained results 

show that DT-CBDR and ATP can reduce up to 

80% and 17% respectively the sent data readings, 

while the percentage of sent data is equal to 100% 

without applying the compression/dynamic 

transmission such as the case of PFF. 

In other words, the DT-CBDR method helps the 

IoT network reach a better lifetime through 

reducing the percentage of sent data readings but in 

the cost of fewer data readings integrity or fidelity. 

For all the values of α, δ and T tested, CBDR and 

DT-CBDR always outperform the ATP and PFF 

protocols in the percentage of sent data readings. 
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Figure 7. The percentage of sent data readings by a sensor node to GW. 

 

The Compression Ratio 

The CBDR technique compresses a specific 

set of temperature data readings and the logical way 

to measure the quality of our proposed algorithm is 

by measuring the percentage of the number of bits 

need to represent temperature data readings before 

compression (Raw Readings) to the number of bits 

needed to represent the temperature data readings 

after compression (Compressed Readings). This 

ratio is called the compression ratio COMRatio as 

denoted in Equation 4. 

𝐶𝑂𝑀𝑅𝑎𝑡𝑖𝑜(%) = 100 × (1 −
𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑅𝑒𝑎𝑑𝑖𝑛𝑔𝑠

𝑅𝑎𝑤𝑅𝑒𝑎𝑑𝑖𝑛𝑔𝑠
)        (4) 

When analyzing the results of the simulation 

experiment, observe that the performance of both 

CBDR and DT-CBDR techniques show an 

interesting phenomenon compared to the ATP and 

PFF. 

From Fig. 8, can see that the compression ratios 

increase when the T or δ increases, and α decreases. 

In most of the cases, CBDR and DT-CBDR 

techniques reach high compression ratios (above 

95%). The ATP protocol reaches a high 

compression ratio of up to 87%. In contrast, the PFF 

compression ratio is 0% without applying any 

compression/aggregation techniques. Better 

compression algorithms have greater compression 

ratios. For all the values of α, δ and T tested, CBDR 

and DT-CBDR always outperform the ATP and 

PFF protocols in the compression ratio. 

  
Figure 8. CBDR and DT-CBDR Compression Ratio. 
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Energy Consumption 

The purpose of this section is to 

demonstrate the ability of our CBDR technique in 

decreasing the energy consumption. The same radio 

model as mentioned in (29) is used to assess the 

energy consumption. It is one of the most used 

models for energy consumption in WSNs as shown 

in Fig. 9. 

In this model, a radio dissipates Eelec = 50 nJ/bit 

to turn on the sender or receiver circuitry and βamp = 

100 pJ/(bit/m2) for the sender amplifier. to find the 

transmission costs of a k−bit message and a distance 

d, equation 5 is used: 

𝐸𝑇𝑋(𝑘, 𝑑) = 𝐸𝑒𝑙𝑒𝑐 × 𝑘 + 𝛽𝑎𝑚𝑝 × 𝑘 × 𝑑2 (5) 

Figure 9. First Order Radio Model. 

 

Figure 10 shows a comparison between our 

techniques CBDR, DT-CBDR and the ATP and 

PFF in terms of the amount of energy consumed 

using different α, δ and T. The results obtained 

show the superiority of our techniques over ATP 

and PFF by reducing (above 90%) of the energy 

consumption in every sensor node for all values of 

α, δ, and T. This is due to the compression 

algorithm and dynamic transmission proposed by 

our techniques, which reduces both the bits number 

needed to represent the data readings and the 

amount of data transmitted to the GW, this 

ultimately contributes to a reduction of the IoT 

sensor node’s energy consumption and increases its 

lifetime. 

  
Figure 10. Energy consumption by IoT sensor nodes. 

 

Lossy Compression vs Loss of Information 

The SAX quantization in our proposed 

CBDR technique leads to represent existing 

readings within a certain range to the same symbol. 

This is considering a lossy compression because the 

data cannot completely reconstruct. In lossy 

compression, the data readings reconstructed at the 

GW different from the original data readings. A 

method should be used to find the difference 

between the original data readings and 

reconstructed data readings and this called the 

distortion (i.e. accuracy), to assess our compression 

algorithm efficiency. Two common measures are 

used to find the difference between the original and 

reconstructed data readings [27]: the Root Mean 

Squared Error (RMSE) as indicated in Equation 6 

and the Percent-Root Mean Square Difference 

(PRD) as denoted in Equation 7. 
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𝑅𝑀𝑆𝐸 = √1

𝑁
∑ (𝑋(𝑖)− 𝑋̂(𝑖))

2𝑁
𝑖=1  (6) 

𝑃𝑅𝐷 = √
∑ (𝑋(𝑖)−𝑋̂(𝑖))

2𝑁
𝑖=1

∑ (𝑋(𝑖))2𝑁
𝑖=1

× 100 (7) 

Where X and 𝑋̂ are the original and reconstructed 

data readings. 

Figure 11 explains the results of data distortion 

(accuracy) comparison between our techniques 

CBDR, DT-CBDR, and the ATP and PFF while 

varying α, δ, and T. 

The results obtained using two techniques ATP 

and PFF illustrate a good performance in terms of 

data accuracy for varying values of parameters 

compared with our techniques. Can see that in DT-

CBDR, in the worst case, the percentage of data 

readings that are not reached to the GW does not 

exceed 5.8% (i.e. α = 5, δ = 0.07 and T = 20). This 

amount is insignificant if compared to the amount 

sent to the user (the user’s decision-making based 

on the data received is not affected by the amount of 

data removed). So, our techniques reduce the 

amount of redundant data transmitted to the GW 

while maintaining an acceptable level of 

information accuracy. 

Tables 5 and 6 illustrate the Percent-Root Mean 

Square Difference (PRD) achieved by our proposed 

technique CBDR and DT-CBDR between the 

original and reconstructed data readings using two 

values of α 5 and 10. 

Based on the results in Fig. 11, Table 5 and 6, it 

can be deduced that the higher α, the less the 

difference between the original and reconstructed 

data readings. The reason is that the greater the 

number of symbols of the alphabet will decrease the 

range of values that convert to the same symbol and 

thus the smaller the difference.  

  
Figure 11. Lossy compression vs loss of information. 

 
 

Table 5. The Percent-Root Mean Square Difference (PRD) for α=5. 
T CBDR DT-CBDR (δ = 0.03) DT-CBDR (δ = 0.05) DT-CBDR (δ = 0.07) 

20 0.021101 0.055133 0.059912 0.063464 

50 0.017217 0.06879 0.035348 0.0369262 

100 0.011048 0.0433611 0.020692 0.02120 
 

Table 6. The Percent-Root Mean Square Difference (PRD) for α=10. 
T CBDR DT-CBDR (δ = 0.03) DT-CBDR (δ = 0.05) DT-CBDR (δ = 0.07) 

20 0.014276 0.0519586 0.0572254 0.061368 

50 0.011331 0.0695307 0.038190 0.033415 

100 0.0077 0.0436385 0.019105 0.019654 

 
Figure 12 displays the reconstruction process 

for 1-period data readings using CBDR with α = 5 

and 10. It is clear that when CBDR with α = 10 the 

restored signal matches more the original signal 

than CBDR with α = 5 reconstructed signals. 

 

Lifetime 

Finally, the influence of the amount of collected 

and sent data readings on the IoT sensor network 

lifetime was studied. In all the methods in this 

comparison, every sensor node began its energy to 2 

mJ. In these simulations, varying α between 5 and 
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10 characters, δ between 0.03 and 0.07, and T 

between 20 and 100 data readings. 
When analyzing the results of the simulation 

experiment, observe that both the performance of 
CBDR and DT-CBDR techniques show interesting 
phenomenon compared to the normal method (i.e. 
without compression). 

From Fig. 13 it is easy to see that the lifetime of 

the IoT network increases when α or T decreases. 

The reason behind this is that the more reoccurring 

data patterns are, the more compression ratio 

results, and hence the fewer data readings 

transmitted that conserve the energy of the sensors. 

Additionally, can see that when the dynamic 

transmission applied, the lifetime of IoT network 

increases when α or T decreases and δ increases due 

to fewer data readings are transmitted hence the less 

energy consumed. In other words, the DT-CBDR 

technique helps the IoT network reach a better 

lifetime but in the cost of fewer data readings 

integrity or fidelity. 

 

 
Figure 12. Displays the reconstruction process for 1 period data readings using CBDR. 

 

  
Figure 13. The lifetime of IoT network. 

 
In this paper, the following limitations was 

encountered: The processor and the memory in the 
sensor node are limited in capabilities, so, high-
complexity compression algorithms did not use. On 
the contrary, a simple algorithm that does not need 
complicated processing and large memory was 
suggested. 

Conclusion and Future Work: 
For a vast amount of data created by IoT sensor 

networks, data compression is very beneficial to 

save energy and provide important information to 

the end-user. In this research, a Compression-Based 

Data Reduction technique devoted to applications of 
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big data in IoT networks, called CBDR, has been 

suggesting which works at the level of IoT sensor 

nodes. The CBDR includes two compression stages, 

a lossy SAX Quantization stage that reduces the 

dynamic range of the sensor data readings, after that 

a lossless LZW compressor to compress the output 

of lossy quantization. Quantizing data readings of 

sensor nodes down to only the alphabet size of SAX 

results in a decrease at the advantage of best sizes of 

compression, which tends to produce better 

compression from the LZW end of things. Also, 

another improvement was suggested to the CBDR 

method which is to add a Dynamic Transmission 

(DT-CBDR) to decrease both the large volume of 

data sent to the gateway and the processing 

required. It was displayed, during simulations of 

real sensor data, that our approaches can be used 

efficiently to reduce the consumption of energy in 

IoT networks and prolonging its lifetime by 

reducing the large volume of sent data readings to 

the GW. The simulation results show CBDR and 

DT-CBDR performance relative to PFF and Harb 

protocols, i.e. a workload decrease of up to 79% and 

80% in the amount of data collected, 74% to 80% in 

the data transmitted,  and 78% in the energy used 

while CBDR and DT-CBDR techniques reach high 

compression ratios (above 95%). 

As future work, will study the possibility of 
proposing a dynamic compression algorithm that 
can convert from lossless to lossy based on certain 
parameters, for example, based on residual energy. 
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 تقنية تقليل البيانات القائمة على الضغط لشبكات أجهزة استشعار إنترنت الأشياء

 

سهى عبد الحسين عبد الزهرة
1

علي كاظم محمد الغرابي  
2

علي كاظم دريس   
2

 

  
1 

 الجامعة، بابل، العراق، كلية المستقبل قسم طب الاسنان
2 

 قسم علوم الحاسوب، كلية العلوم للبنات، جامعة بابل، بابل، العراق

 
 

 :الخلاصة
في شبكات أجهزة استشعار إنترنت الأشياء ، يعد توفير الطاقة أمرًا مهمًا جدًا نظرًا لأن عقد أجهزة استشعار إنترنت الأشياء تعمل 

 قلمكلفاً للغاية في عقد أجهزة استشعار إنترنت الأشياء ويهدر معظم الطاقة ، في حين أن استهلاك الطاقة أ ببطاريتها المحدودة. يعد نقل البيانات

بتوفير الطاقة ، وهي مخصصة في الغالب لتقليل نقل البيانات.  تي تعنىلمعالجة البيانات. هناك العديد من التقنيات والمفاهيم البالنسبة بكثير 

رحنا لذلك ، يمكننا الحفاظ على كمية كبيرة من الطاقة مع تقليل عمليات نقل البيانات في شبكات مستشعر إنترنت الأشياء. في هذا البحث ، اقت

مرحلتين  CBDRد أجهزة استشعار إنترنت الأشياء. يتضمن ( والتي تعمل في مستوى عقCBDRطريقة تقليل البيانات القائمة على الضغط )

بدون خسارة  LZWتقلل النطاق الديناميكي لقراءات بيانات المستشعر ، بعد ذلك ضغط  والتي SAX التكميم باستخدام طريقةللضغط ، مرحلة 

، مع الاستفادة من  تقليل القراءاتإلى  SAXلـ اة قراءات البيانات لعقد المستشعر إلى حجم ابجدي تكميم. يؤدي مخرجات المرحلة الاولىلضغط 

وهو إضافة ناقل حركة  CBDR. نقترح أيضًا تحسيناً آخر لطريقة LZW فيأفضل أحجام الضغط ، مما يؤدي إلى تحقيق ضغط أكبر 

++ جنباً إلى  OMNeTمحاكي ( لتقليل إجمالي عدد البيانات المرسلة إلى البوابة والمعالجة المطلوبة. يتم استخدام DT-CBDRديناميكي )

 CBDRلإظهار أداء الطريقة المقترحة. توضح تجارب المحاكاة أن تقنية  Intel Labجنب مع البيانات الحسية الحقيقية التي تم جمعها في 

 المقترحة تقدم أداء أفضل من التقنيات الأخرى في الأدبيات

 
 الكمي ، شبكات الاستشعار LZW ،SAXإنترنت الأشياء، ضغط البيانات، الكلمات المفتاحية: 

 

 


