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Abstract:

In this article, the partially ordered relation is constructed in geodesic spaces by betweeness property,

A monotone sequence is generated in the domain of monotone inward mapping,

a monotone inward

contraction mapping is a monotone Caristi inward mapping is proved, the general fixed points for such
mapping is discussed and A mutlivalued version of these results is also introduced.
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Introduction:

Banach fixed point theorem assures the
existence and uniqueness of a fixed point for
contraction mapping T: M — M in complete metric
spaces. In fact, it has many generalization and
extention, these extention have been done in many
directions. For instance, linear spaces (Banach and
Hilbert spaces) or nonlinear spaces (geodesic metric
spaces, hyperbolic and CAT(0) spaces). Also
generalization includes many types of mappings,
namely: weakly contraction mapping, nonexpansive
mapping, locally nonexpansive mapping, ect.

In the inward case, when mapping can take
values out of its domain, that is, mapping is called
non-self mappings, Banach contraction theorem
cannot work in this issue Caritsi showed" when
domain of mapping T:N — M,N € M is closed
and convex subset of Banach space and T:N — M
is weakly inward mapping with Lipcshitz constant
less than one, thenT: Y — X has a fixed pointin N.
This was a very characterized work of caritsi that
T (v) is no longer be restricted to stay in N.

A mapping T: N — M is said to be inward if for
every v € N the image T (v) belongs to the set
IN(v) = {u € X: (1 —/‘DU +Au,A>1

The set Iy, is called inward set of N at v and the
mapping T:N — Mis called inward mapping if
T (v) belongs to Iy, also is called weakly inward
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mapping if T(v) belongs to Iy, closure of Iy, for
eachv EN.

If T:N — M is an inward mapping then for each
v € N with v # T(v) then there exist u € N and
v #u which between v and T(v)such that
d(v,u) +d(u,T(v) = d(v,T(v), the last idea is
used to define monotone Caritsi mapping.
Moreover, the idea of betweenness in geodesic
spaces is used to define the partially ordered
relation on geodesic metric spaces.

Lim? extended these results to case of
multivalued mappings, some results extended to
geodesic spaces in multivalued case see®, the
weakly contractive case was discussed in®.
Recently, the fixed point theory for monotone was
initiated by Reurings and Ran®, the main result
discovered was an extension of the Banach’s fixed
point to metric spaces endowed with a partial
ordered, since many mathematicians got interested
into the study of monotone Lipschitzain mappings®.

Banach’s proof depends on constructing a
Cauchy sequence by iteration v,., = T(v,) was
called Picard's iteration and proves it converges to
the fixed point, while Caristi* introduced the lower
semi-continuous function

Y: M — [0, ) such that d(v, T(v)) < Y(v) —
Y(T W)
Which confirms that the values of function y are
real and bounded below by zero. Moreover its
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infimum stands for the fixed point of mapping
T"M — M.

But the weakness of both theorems was
their acting restricted only on self mapping
T:M — M . Caristi introduced the metrically
inward concept to guarantee the existence of fixed
point for non-self mapping .T:N — M,where
N < M, this condition is weaker than Kirk-Assad’
condition that required T maps dNto N (9N is
boundary points of N). In addition, The significant
characterization of this theorem found the fixed
point for contraction mapping without using
iteration to get fixed point.

After that, the inwardness concept extended
to multivalued mapping by Hong-Kun®for more
results on inwardness see for instance **.

Finally, The direction of monotone
Lipschitzain mapping was started by Reurings and
Ran''and the idea to define partially ordered
relation on metric space. and use monotone
Lipschitzain mapping to generate bounded
monotone sequence converging to the fixed point
was developed by® 4,

In this article, a partially ordered relation is
defined on geodesic spaces to enable us to find the
minimum value for Caritsi mapping which will be
the fixed point. Moreover, the existence of fixed
points of inward and monotone mappings is
investigated. In particular, monotone Caristi
inward mappings are introduced, which are more
general than monotone inward contractions.  In
partially ordered metric space framework, a
monotone Caristi inward mapping that has a fixed
point is proved. A multivalued version of this result
is also discussed in geodesic spaces.

Also, algorithm is introduced analogs to ®°
to generate monotone sequence in the domain of
monotone  Caristi  weakly inward mapping;
furthermore, the image of this sequence under
lower semi-continuous is monotone decreasing real
sequence bounded below by zero and it has
infimum value. The cornerstone of our study that
proves the point which is the lower semi-continuous
get its infimum becomes a fixed point.
Preliminaries

In this section, a brief discussion on
geodesic metric spaces is introduced.

Geodesic space™®*® is a metric space. such
that for any pair of distinct points v and u there
exists a curve a:[0,£] — M connecting v to u
suchthat a(0) =v,a(f) =uand d(u,v) =4, a
is an isometry such that
Vty, t; € [0, €] then d(a(ty), a(ty)) = |ty — t,|

the image of a is denoted by segment [v,u] and
is called geodesic segment connecting v to u. For
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each t € [0,#] assigns a unique point a(t) €
[v,u]ldenoted by v, and written as v, =
(1 -t)vdtuthen d(v,vy) = td(v,u)

Notice, notation @ doesn’t refer to addition but
referes to that, v, lies in convex geodesic segment
[u, vland v,u refers to the endpoints of [u, v]. v, is
distinct from vand u, also v, lies between v and u,
and it was written by € [v,u] , and v,satisfying
this property d(v, v;) + d(vg, u) = d(v,u).
Menger”® called this property by
betweenness and he showed this property represents
a corner stone for definition of geodesic metric
spaces, many authors called this property by
(Menger convexity).
In next definition,  Menger convexity is used to
define the order relation < on geodesic segment
[u, v]in geodesic metric space, by definition of
geodesic metrics space there exists a mapping
a:[0,¢] — M connecting v to u, the isometry of a
implies for every t; < t, hen a(ty), a(ty) € [u,v]
and this implies d(v,a(ty)) < d(v, a(ty)).the
partially ordered relation < is suggested such that if
d(w,a(ty)) <d(w,a(ty) thenv<v, <v, <u
,ingeneral vz € [u,v]thenv < z < w.
Def.(1). Let (M,d) be geodesic metric space, for
each couple of points v and u define a partially
ordered relation on (M, d) such that Vz € [u,v] ,
thenv<z<u.
Def.(2). Let (M, d) be a geodesic metric space. (vn)

(vy)sequence in M , (vy)is called monotonically
increasing (respectively monotonically decreasing)
sequence if () < vy, VR EN)
(resp. (Vpy1) SV, VR EN) and it is called
monotone if it either increasing or decreasing.
Def.(3)° Let (M,d)be geodesic metric space. A
subset N © M is said to be < —closed if for any
convergent monotone(vy,,) in N, its limit belongs to
N.

Def.(4)° Let (M,d) be geodesic metric space. A
subset N € M is called < —complete if for each
monotone Cauchy sequence(v,,) inN, its limit point

belongs to N.

Def.(5)° Let (M,d)be geodesic metric space. A
function Y: M — [0, ) is called
< —lower semi — continuous (< —lIsc) if for

every sequence (v,)converges to v in M then,
Y() lim,,,, inf(v,) is gotten.

Next  an example of < —complete subset in
geodesic metric space is given.

Example(6). Let M = R? with the usual Euclidean
metric. It is geodesic space because every two
points can be joining by a line segment. Define the
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partially ordered relation < on M as (u,v) <
(r,s),ifandonlyif ,u =randv <s.

Let N = {(u,v) € R%:u € [0,1) and v € [0,1]}
The sequence (u,, v,) is convergent in N, because
for each u € [0,1) such that (u,, = u,¥n € N) and
(v,)is a monotone increasing sequence, SO it
bounded above by 1 because v, € [0,1] and it
implies (v, — 1). Then the sequence (up,v,) —
(u,1) and N < —complete , clearly, that N it is
not closed inM.

Def.(7)° Let (M,d) be geodesic metric space. and
¢+#NCSM. A mapping T:N — M is called
monotone if u < vimplies T(u) < T(v).
Def.(8)Let (M,d) be geodesic metric space. and
¢=NcM. A mapping T: N — Mis said to be
monotone Caristi inward if Tis monotone and
Yu € N such that T(u) #u and the geodesic
segment [u, T(u) connecting u and T(u) 3v € N
such that v € [u,T(u) NN and a < —Isc Y:N —
[0, ), d(u,v) < P (u) —P(v).

Def.(9)° Let (M,d) be geodesic metric space. and
¢ +#N < M. A mapping T:N — M is said to be
monotone contraction mapping, that is, there exists
k € (0,1) ; such that for any u,v € N withu < v
then T(w) < T(v) and d(T(w), T(v) < kd(u,v).

Remark(10): Let (M,d) be metric space. and
T:N — Mbe a continuous mapping. Let ¥: N —
[0, ) be a mapping defined as ¥(u) = d(u, T (u)
then ¥ is continuous and so it is lower semi-
continuous  .Furthermore, that monotone
contraction mapping is considered as a suitable
example of monotone Caristi’s inward mapping.
Proof: To prove that, the mapping ¥ is continuous.
Let a sequence (v,) be a convergent sequence to a
limit point ve N ,(i,e,v, — v), that Y(v,) —
Y (v) must explained .

Now,

v (v,) —w (V)| =]d(v,, T(v,)) —d (v, T (V)|
<ld(v,,v)) +d (v, T(v,)) —d (v, T(V))|
<|d (v, V)| +|d (v, T (v,)) —d (v, T (V)|

D
It follows From triangle inequality |d(v, T(v,)) —

d(v,T(v))| < |d(T(v,),T(v))| and equation (1)
becomes

jd (v, V)| +[d (v, T (v,)) —d (v, T (v))| <[d (v, V)| = [d (T (v,), T (V)]

But d(v,,v) - 0, and leads
Y(v,) = Y(v)so the mapping
1 is continuous.

Next a lemma shows that the monotone

contraction mapping is an example of monotone
Caristi’s inward mapping.

Lemma(11). Let(M,d) be geodesic metric space.
and NS M and let T:N — M be monotone
contraction mapping, then T: N — Mis monotone
Caristi’s inward mapping.

Proof:

T:N — Mis monotone contraction mapping, that is,
3k € (0,1) such that for each
u,veEN and usv Implies
T(w) < T(v)and d(T(w), T(v) < kd(u,v)

|d (v,,, V)| = k[d (T (v,), T (V)]

Let v € N, then there exists a geodesic segment
[v,T(v)] joining v and T(v), such that v is
comparable with T(v) also v<T(v), then
d(T(v), T?(v) < kd(v, T(v))

Hence

d(v,Tw)) — k(v,TW)) < d(v,T(w)) — d(T(W), T?(v)
(1 -k)dwTw) < kd(v,T(v)) — d(T(®), T*(v))

Define 1h: N — [0,00) by Y (v) = —d(v,T(v))

Notice, mapping A is contraction so it is continuous

and it implies that 1 is continuous (lower semi-
continuous) and

1
A(v, 7)) < (1) (@), 7)) = d(T ), T2 () = $() = YT @)

Def.(12). Let (M, d) be geodesic metric space. and
N < —closed subset of M and T:N — Mbe a
mapping. It is called < —continuous if for any
monotone sequence (v,) converges to wvin N

implies the sequence of images T (v,,) converges to
T(w) A(v) in M (lim,_ T(v,) = T(v)).

Main results

Before discussing the main results, the definition of
inward subset is extended into geodesic sense.
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Let (M, d)be a geodesic space, N subset of M and
v € N, the inward subset of v with respect to N as
Iywy={z€M:(v,zZ] NN # @} U {v}.

That means any geodesic segment initiated from v
to z in M contains at least one point from N
exceptv. On another hand that means there exist
te0,1) and v € (v z] such  that
dw,v) +d(ve,z) =d(v,2).

And let (M, d)be a geodesic space, N subset of M |
T:N — Mis called inward mapping if T (v) € Iy,
foreachv € N.

When T is a multivalued function, that is,
T:N - 2M T is called inward mapping if T(v) €
Iyw) foreachv e N .

The most advantage of the inward concept that
construct a sequence in the domain of a mapping
T:N — Mwithout need to using Picard iteration.

In this section, the core of our article depends on the
idea as mentioned in preliminaries section above,
let Mbe < —completeand N € M < —closed. Let
T:N — M be a mapping. a processor is introduced
to construct a sequence in the domain of mapping
T:N — M. Notice, let vy, € Nsuch that v, and
T (vg)are comparable (i.e,vy # T(vy) , then there
exists a geodesic segment [v,, T(vy)] joining v,
and T (vy)so that . Moreover, for each v; € N such
that vy # v; and vy € [vy, T(vy)] then v, <
v1 < T(vp).

Next, choose v, such that is comparable withT (v1)
T(vy)and in the same procedure there exists
v, € [v1,T(v1)] . Also v; < v, < T(vq) continue
in this manner to generate a sequence (v,,) in the

domain ofT: N — M.Next, in the end, the sequence
(v,) is proved converges to a fixed point of
mapping T: N — M.

Finally, the proof of next theorem depends on this
above idea, the image of the sequence under lower
semi-continuous defined in the following theorems
is a monotone decreasing real sequence and it
bounded below by zero. Inwords, it has infimum
value at some point v € N and proves to be a fixed
point.

Theorem(13) Let (M,d) be < —complete
geodesic metric space. and let NS M be <
—colosed LetT:N — M is a monotone

contraction. If there exists v € M comparable to
T(v), that is, v # T(v) then T has a fixed point,
that is, T"(z) converges to T(z) for any ze M
comparable to T (z).

Proof. Since T: N — M is monotone contraction
then it is —continuous, and lety: M — [0, )
defined as is d(v,u) < Y (v) — P (uw), by lemma
(11) y isa< —lIsc.

The existence of u €M must prove, such
thaty (u) = inf,y Y(v) and u is a fixed point for
T.

Let vy in M which is comparable toT (vy), and by
hypothesis assume vy < T(v,) and let

v1=T(vy) then vy <v; and by monotonically
contraction of T then v; = T'(v,) < T(v;)

and v, = T(vy) < T?(vp)

And d(vn'vn+1) < l/J(Un) - lp(vn+1)

Then

m
nzjod(vn,vml) < d(vo,v1)+d(v1, ,v2)+....+d(vm, Xm+1)

Sy(ve) —wv) +wv) —w(v,) +o+wlv ) -wlv, )

< \V(Vo) - W(Vm+1)
Notice that, inf,ey ¥ (v) < Y(v,,) foreachm € N
mell, there for the inequality above become

< Y(vp) < Y(Wpi1) < Y(vp) —inf , Y()

then lim,, o Yin=o d(Vp, Vpy1) < oo that means
the summation is finite.
This implies that (v,) is a convergent Cauchy
sequence (i.e, v, — v) in M because it is complete.
Now to prove the mapping T has a fixed point by
applying the triangle inequality
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d,T(v) < d(v,v,) + d(vy, Tv))
=dw,v,) +d(T" 1 (v), T(v))
<dWw,v,) + kd(v,_1,v)
Because (v, »v) in N then it
d(T(v),v) =0andT(v) =v
Now and to prove its unique, Let r and s be fixed
points with » # s then T(r) =r and T(s) = s and
d(r,s) =d(T(r),T(s)) < kd(r,s)

implies

and this contradicts and it concludes r = s.

Next theorem explains that Caristi theorem is
stronger than Banach contraction theorem;
moreover, the contraction condition can be
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cancelled when the mapping T:N — Mis a
monotone Caristi inward mapping will proved in
next theorem .

Example(14)

Let M =R? with Euclidean and let N =
{(x,0):x € R} . Define a partially ordered relation
on Mas (u,v) < (w,z)if u <w and v < z. Define
a mapping T:N — M as following T((x,0)) =
(kx,0) , to explain Tis monotone , let (u,0) <
(v,0) then it leads u < v, so T((u,0)) = (ku,0)
and T((v,0)) = (kv,0) and it is clear that ku < kv
(ku,0) < (kv,0) also and thatT'(u,0) < (k,0) is
concluded.

To explain the mapping Ais contraction
d(T(w,0),T(v,0)) = d((ku,0), (kv,0)) =
kd((u,0), (v, 0))

Therefore, Tis a contraction mapping.

Notice, Tis contraction mapping so it is continuous
and could define a < —Isc Y:N — [0.00) by
Y() =d(v,T(v)), it follows form remark(13) is

continuous and it implies 1 is <-Iscand by Caritsi
theorem the mapping A has a fixed point .
Theorem (15). Let (M,d) be geodesic metric
space. Let N be a < —completesubset of M. Let
T:N — Mbe a monotone Caristi inward mapping.
Assume there exists v € Nsuch that vand T'(v) are
comparable. Then T has a fixed point.

Proof. Let v e N and vy # T(vy) such that
without loss to generality vy < T'(v) , it follows
from definition(8) of monotone Caristi inward
mapping, there exists at least one geodesic segment
[vo,T(vg)]  joining  wvgand  T(vy)  such
that[vy, T(vg)]NN =@ and a < —lIsc function
Y:N — [0.00) such that v; € [vy, T (vy)] N N such
that vy # vy and v, < vy < T(vp), but T is Caristi
monotone then d(vy, v;) = Y(vy) — Y (1)

Now if vy # T(vq) and by monotonicity of
T then v; < T(v;) and by hypothesis there exists a
geodesic segment [v1, T(v1)]NN = @

vy € [v, T(wp] NN suchthat v, # vyand v, < v, < T(vy) and d(vy,v3) = P(v) — P(v2)

then inductively sequence (vy,)is defined in N by
the same manner v, € [vy,, T(v,,)] N N such that

but d(v,, v,,1) is a positive value, then Y (v,) =
Y(vpe1) and (Y(vy,)) is decreasing real sequence

Vpi1 % Up and v, < Vg < T(vp) and bounded below by zero and it converges to its
AWy, Vyi1) = Y(W) — Y (Wni1) infimum(bounded below real sequence).
to prove (v,,) is Cauchy sequence
d (vn : vm) <d (vn : vn+1) +d (vn+1, vn+2) +....+d (Vm—l’ vm)

Sy(v)—wv,, ) +vlv ) -, L) +++wlv, )-w(v.)

vv)-w(v,)

<y(v,) = inf w(v)
veN

the last equation  above
inf,ey () <Yy, Ym €N
lirnn—mo Z?f:o d(vn' vn+1) < lp(vo) -

infyey P(v) < oo

then (v,,) is Cauchy sequence and it has limit point
u, (lim,,0 v, =u) and have (v, <u,Vn €N)
and Y is < =lIsc it implies
Y(u) < liminf, 0 ¥ (vy)

because
get

is gotten,
and

Also, the ¥ (u) = liminf,,_, ¥ (v,) must proved
Let m - oo , then get d(v, v, =v(v,) —
liIn‘m—wo lp(vm) < ’J)(Un) - 'L/)(U)
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Now to prove P(u) = inf,ey Y(v)

Let ze N and u<z<T(uw) and inf,eyp(v) <
Y(z) thend(u,z) <YP(u) < Y(2)

But (u,z) >0 , that means ¥ (u) = ¥(z) and
equation 2 leads to
Y(2) <y(u) <liminf,,e P (vy) <P(2)

its contradiction and leads to ¥ (u) = inf,ey Y (v)
To prove T has fixed point y such that T(u) = u
Assume T(u) #u, then I EN and u # #and
u < ¥ < T(u) then by Properties of < —Isc of Y
and d(u,7) > 0,d(w,v) < Y) —yY) this
implies y(?) < ¥ (u) but(w) = infren P(v)
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but then y(u) =Y (@), d(u,v) and (u = v)that
show contradiction and concludes T(u) =u

In the next theorem, the multi-valued
mapping case will be discussed and the core of its
proof depends on the idea of theorem (15) of the
single value above.

Def.(16) Let (M, d) be geodesic metric space. and
¢+Nc M. A multivalued mapping T:N -
2Mthen

T is called monotone if T(z) < T(w) when z< w,
that is Vu € T(z), 3v € T(w) such that u < v for
all u,v € N such that . T is called monotone Caristi
inward, if T is monotone and there exists a : N —
[0.0) is < —lIsc, such that for any x € N x & T(x)
and , and for each y € T(x), with x <y there
exists w € N such that w € [x,y] with w # x and
d,w) < P(x) —ypw).

Theorem(17). Let (M,d) be geodesic metric
space. and ¢ NS M be < —complete. T
multivalued mapping T:N - 2™ is monotone
Caristi inward multivalued mapping such that
T(v) # ¢, VvV EN. Let vy € N such that there
exists uyT(vy) it is comparable with v, and
Vo < Up. Then T has a fixed point, that is, v €
T(v)

Proof. The idea of proof depends on the procedure,
that is, for every v € N there exists u € T'(v)such
that v < u, define another mapping f: N — N such
that B (v) = u and satisfies the conditions u €
T(v) and v < u, by this manner, construct a single
value function satisfying condition of the theorem
(15) of single value above. It has a fixed point
such that therefore, it’s a fixed point for the

mapping T.

Let vy € N and T(vy) + 0

Define C;,, = {u € T(vo) and v, < u}
hypothesis C,,, CVO is nonempty.

By

Define B:N - N B(vy) € CvOsuch that and this

hold by the axiom of choice let {U;:i € I,U; #
@oVviel}and let f:1 — U;e U;,, foreachiel,
then f(i) € U;, choose uy € B(vy) such that
Vg < Ug.

if vy # ug then there exists geodesic segment
[vo,ue] joining between v, and u, in N and there
exists v; € [vy, uo] such that vy # v, and

Vo S V1 X U

but T is monotone Caristi inward multivalued
mapping then there exists < —Isc function
y:N—[0.00) such that d(vy, v1) = Y (vy) — Y (vy)
by monotonicity of T then T (v, < T(v4)

96

C,, ={u€T(v)andvy < u} choose u; € C,,
such that B(v;) =u;) and uy <wu; and if
vy # uq and if v, U then there exists geodesic

segment [vy,uq] joining between v, and u, there
exist v, € [vy,uq] such that v; # v, and
VISV S Uy

And d(vy,v2) = P(v1) — P(v2)

by this manner, construct inductively sequence
(v,,) such that

1.(v,) EN

2.C,, ={u€T(vy) and v, < u}

3. choose u,, € Cvn such that u, = f(v,), and

Uy X Uy
4. if v, # u, then there exists geodesic segment
[V, up] joining v, and u,, and v, # v,4; and
Unt1 € [vn ) Un] and  d(vp, Vny1) = P(vn) —
Y(Vnt1)
Now the mapping # is monotone Caristi inward
mapping satisfying the required conditions of
Theorem(15) for single-valued valued above then it
has a fixed point and the existence of a fixed point
of B is equivalent to existence the fixed point of T
(i.e,v € T(v)), because B(v,) € T(v,),Vn €N
notice, the mapping g has a fixed point v
;therefore, v = B(v) e T(v) , and it leads v =€
T(v) therefore T has a fixed point.
Example(18)
Let M = R with usual metric and ordered relation
<, Let [a,b] = N € Mand a multi valued mapping
T:N — CB(M) defined as , whereCB(M) is a
family of closed and bounded subsets in IR,
T(x) =[x —1,x + 1]. Clear that T is monotone,
because for each x,y € [a,b] and x < ythen there
exists a x; ET(x) and y; € T(y) such that
X1 < Yq.
Notice, N is closed and bounded then for each
X € N, thereexists z € T(x) .

Now define (x) = min{d(x,2):z €
T(x)} , it follows form remark(10) that i is
continuous so it < —Isc it easily to see that the
mapping T has infinite fixed points because
X € [x —1,x + 1]and it concludes x € T(x)

Conclusion:

In conclusion, Betweenness property in
geodesic metric space is a powerful tool that
enables us to produce algorithm analogs to Picard
iteration to generate sequence converges to a fixed
point. Furthermore, the same manner is used to find
a fixed point for nonespansive mapping.
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