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Abstract:

In this research, Haar wavelets method has been utilized to approximate a numerical solution for
Linear state space systems. The solution technique is used Haar wavelet functions and Haar wavelet
operational matrix with the operation VeC to transform the state space system into a system of linear
algebraic equations which can be resolved by MATLAB over an interval from 0 to y . The exactness of the
state variables can be enhanced by increasing the Haar wavelet resolution. The method has been applied for
different examples and the simulation results have been illustrated in graphics and compared with the exact

solution.
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Introduction:

A state space is a mathematical model of a
physical system, with involving a set of state
variables interrelated by first order differential
equations with zero initial conditions '. In this
paper, the Haar wavelet basis function and Haar
wavelet operational matrix are interested to
approximate a system of differential equations. As
of late, Haar wavelets have been related to signal
and image processing in communication and
physics research and have been proved to be
excellent mathematical tools *. Compared with other
wavelet functions, Haar wavelet has a few
advantages. Haar wavelet is the oldest and the
simplest wavelet function and it is an orthogonal
function 3. Also, its bases have compact support,
which means that the Haar wavelet vanishes outside
of a limited interval and enable us to display
functions with sharp spikes or edges, better than
other bases. The respected properties of Haar
functions in numerical calculation include the
sparse representation for piecewise constant
function, quick conversion, and the possibility of
implementing a quick algorithm in matrix *.
Nonetheless, the advantage remains when a large
matrix is involved, whereby great computer
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stowage space and a vast number of mathematical
operations are required °.

Operational matrix technique has received
considerable attention from numerous researchers
for solving dynamical system analysis °, system
identification ’, numerical computation of integral
and differential equations ®, and solving systems of
PDEs °. In addition, Hsiao and Wang *° introduced
the application of Haar wavelets to solve optimal
control for linear time-varying systems. Based on
Haar wavelet method, Prabakaran et. al ** used Haar
wavelet series method to get discrete solutions for a
state space system of differential equations.
Abuhamdia and Taheri * presented survey a wide-
ranging of research on utilizing wavelets in the
analysis and design of dynamic systems, and the
main focus of this survey is electromechanical and
mechanical systems furthermore to their controls.
Karimi et. al ** solved second-order linear systems
with respect to a quadratic cost function using Haar
wavelet. Abdul Khader and Monica ** used Haar
wavelet method to solve fractional of partial
differential equations. Ali and Baleanu ** solved
system of unsteady gas-flow of four dimensional by
alter the possibility of an algorithm based on
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collocation points and four dimensions Haar
wavelet method.

In this study, Haar wavelet operational matrix of
integration and Haar wavelet collocation points with
the operation vec for one dimension on the interval
[0,7/) were used. The paper is organized as
follows: The problem statement has been described
in the second section. The formulates of the Haar
wavelet method and Haar operational matrix are
presented in the third part of this paper. In the
fourth section, the proposed strategy to approximate
the linear state space system by using Haar
operational matrix, and Haar wavelet collocation
points are presented. Numerical examples and
discussions are shown at the end of this paper.
Problem statement

The linear state-space system can be defined as®*

22.

x®)=Ax@®)+B ,x(0)=X%X,, ...(1)
Where x(t) € R™ is a vector of state space, A is
N, x N;the system matrix, B is the constant vector
n, xland X(0) = X, is the initial condition vector

of size n; x1.
Haar wavelets

Haar wavelets h,(x) are the orthogonal set of

square waves on the interval [;/1,7/2). These
wavelets are defined as:

e e
1, 7 <X <%(}/1+ 75 ),

hy(x) =1 -1, %(7/1+7/2)S X<y, -3
0, otherwise.

Where other wavelets can be determined through
enlarging and translating the mother wavelet h, (X);
hi(X) = h (29 x— k), wherei= 21+ k, i, ]
belong to N {0}, ] =0,1,2,...,l0g,(m-1) and
0< k< 2! which fulfills

27 (72-7),
0,

72 i=1

[hi (x) by (x)dx = N G
n =1

Any analytic function g(x) € L2 ([y, 72]) can be
written to a finite of Haar sequence:

MOESCTTORINO
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Where g(x) is a piecewise constants, which can be
written in a compacted form:

g(X)=dnh,(X) ...(6)

where, h(x) =[hy(x) hy(X) ... h, , (X)]" is
vector of the Haar function, m is the Haar wavelt
resolution and d, =[dy dy d,...dpny]" is the
coefficient vector which can be determined from

2 Taonogax D

(r2=7)n
Where, the points of Haar collocation X;= yi+

% (2s-1),s=1,23,... m-1"° sothe Haar
m

function vector h _(X) can be represented into

matrix shape H_, where the elements are donated

by

(Hm )i,s = hi (Xs)'---(8)

For example, the matrix of Haar wavelet of fourth-
order H, can be expressed into matrix shape in the
interval of [0,1) with the collocation points from
Eqn. (8) as follows:

m?

() m§>m§)m§)
hE hG KD R | o
" o
M? m§>m§)m§
mé)mé)mé)mg)
1 1 1 1
Ho- 1 1 -1 — 10
S R R | 0 0'“'()
0 0 1 -1

When the Haar wavelet matrix is defined as in Egn.
(8), then the coefficient d; in equations. (6) and
(7) can be readily obtained as

di =g, Hi, ...(11)

where

On = [g(xl) g(XZ) g(X3) g(xm)] --(12)
In the specific domain of [ 0, v), h(x) can be
extended in a Haar series by integration as *":

[h. ()dx= P h (x), ..(13)
0

where P is an mxm the operational matrix of
integration, which is acquired recursively by (16):
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-1 2m I:)m/2 '7Hm/2:| - |: 7/:| Thus
Pn = { Pi=1 =1...(14) T T
oam| -yHL, O, 2 x(t)= d"Ph(t)+x, 67 h(t), ... (19)

Numerical Solution for State Space Systems  Wwhere X, is Ny x1 column vector of the initial
using Haar Wavelet Method . . _J}( tLT
The numerical solution to a linear state space system witﬁ?ﬂﬂlgpggnm%n!ssis)f@lm 18§ afé(,)?anx&épro%@na solution to fre

by utilizing equation (5) as follow: and @ = [1, 00 ---,0 ] T isan mx1 vector.
. m-l Egns. (17), and (19) can then be expressed by using
= i h =12, -, N, ... e -
%, (1) Eod"" (0, @=L2 "y, ..(15) the properties of the operation VeC, where
whered q,d,,, do, -+, Ay, vec (ACB) = (A®B ") vec(C) *, as follows:
=123, -, n, are unknown parameters for the x(t) = (1, ®hT(t)) vec(d)...(20)
state variables, x(t) =((1, ®hT(®) PT)vec(d) + (1, ®hT(t)) vec(x, 6T)
Equation (15) can be indicated in matrix shape as
following -+-(21)
wing: . .
%, dy dy o dys s (0 V\;r;eie I, denote ny;xn; and identity matrix,. In
X dyy Ay o Oy h(t) |...(16 adaition
52 = 320 321 52 ' 15() ( ) Vec(d):[dlo dy - dnlo dy d21"'dn11 o Oy dme1"‘dnlm71]T
i, dyo o Gons | | Pa® is the vector of unknown Haar wavelet coefficients

- - - T -
This equation can be rewritten into compact form as with dimensionnmx1, and vec(x, &) is an

: nmx1lvector of known coefficients that can be
x(t)=d"h(t) ...(17) framed as
T = e e e T
where d 7 is unknown coefficients in matrix form Vec (%, )'[X°1O 000 x0000 - x30000 ]
My XM for Haar wavelet functions; and h_(t) 1S t_he Given the notation above, substituting the equations
V(:J,C'[Ot‘ _of known Haar wavelet function with (17) and (19) into equation (1) with expanding B
dimension of mx1, where h(t) = [hy(t) h(t)  interms of Haar approximation functions, obtain

hy(t)... h, (t)]7 and T is the transpose.

By integrating equation (17) with respect to t
besides applying equation (13), x(t)is found,
which is represented into terms of Haar operational
matrix and the Haar wavelet functions as

d” h(t)=A{d" Ph(t)+x, 6" h(t)}+B6" h(t),
...(22)
Simplifying equation (22) and by utilizing
Kronecker  product  properties  such  as
(A®CB) = (A®C)(A®B) * have

X(t) = }dTh(t) dt +x, ...(18)
0

(1, ®hT (1) vec (d)— (I, ®hT (1)) (A®PT) vec (d)

— (I, ®hT ()vec (Ax,07)+ (I, ®h (D)vec(BOT) ...(23)

Then both sides of equation (23) are multiplied with Equation (25) is a system of determined linear

1 - - -
the matrix inverse [| , ®hT (t)T to remove the  €quation with n;m unknown variables and (n,m)
equations that can solve for the unknown vector

T .
term of (I, ®h" (1)) Thus, obtain vec(d) such in MATLAB . As soon as, the result
vec(d) - (A®PT) vec (d) =vec(Ax,0") +vec(BAT)  to the unknown parameters are got, these

.. (24) parameters to equation (19) are replaced to identify
Now, equation (24) is transformed into a standard  the solution X(t) as follows:
system of linear equations as follows x(t)= (1, ®hT(t)P") vec(d)+ (I, ®hT(t)) vex(x, O")
) ) ) ...(26)
[Inlm ~(A®P")| [vec(d)]=|vec(Ax,6") + vec(86") |  Numerical Examples
...(25) In this section, four examples of free linear

dynamic systems are solved using the method

86
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illustrated above. The present method was applied

to display the simplicity, -effectiveness, and
exactness of the proposed numerical method.
Example 1:

Consider the following free state space system 22,

(M7 [-3  4|[x®] [2]
L 2 -1)xm] 2]

Where the initial condition and the exact solution

% (0)|_[4 and
0

X, (0) |
} respectively.

of the state space model are [
{ 4et +2e7 —2

|:X1(t)}
X, (1) 4et —e St 2

By applying the Haar wavelet collocation points
method described in the previous section; that is,

directly transform the free state space system into
the set of linear algebraic equations with Nn;m

equations and N;Munknown variables that can

resolve for the unknown vector vec(d) utilizing
inv() MATLAB solver, the numerical solution to
this example is obtained by approximating the state
space variables based on the Harr wavelet series of
unknown parameters. The numerical results are
found for this example as shows in Table 1, which
are very close to the exact values to m =16. Also,
the Fig. 1 shows that even a coarse Haar wavelet
resolution of m=32 already yields an accurate
result.

Table 1. Comparison between the exact and numerical solution in Example 1 using Haar wavelets
method for m=16

Exact Approximate Error Exact Approximate Error
t Solution Solution \Exact — Xl‘ Solution Solution \Exact - Xz‘
X (t) X (t) X, (1) X, (t)

0.0625 3.7212 3.7905 0.0693 1.5264 1.5048 0.0216
0.1875 3.6081 3.6337 0.0256 2.4333 2.4365 0.0031
0.3125 3.8866 3.8984 0.0118 3.2577 3.2712 0.0135
0.4375 4.4197 4.4300 0.0103 4.0831 4.1015 0.0184
0.5625 5.1403 5.1539 0.0135 4.9602 4.9818 0.0216
0.6875 6.0192 6.0378 0.0185 5.9228 5.9476 0.0248
0.8125 7.0486 7.0729 0.0243 6.9969 7.0256 0.0287
0.9375 8.2328 8.2634 0.0306 8.2051 8.2387 0.0335
1.0625 9.5842 9.6218 0.0375 9.5695 9.6088 0.0394
1.1875 11.1208 11.1661 0.0453 11.1129 11.1593 0.0465
1.3125 12.8646 12.9188 0.0542 12.8604 12.9153 0.0549
1.4375 14.8421 14.9065 0.0644 14.8399 14.9047 0.0648
1.5625 17.0837 17.1600 0.0763 17.0825 17.1590 0.0765
1.6875 19.6242 19.7143 0.0900 19.6236 19.7138 0.0902
1.8125 22.5032 22.6093 0.1061 22.5029 22.6090 0.1062
1.9375 25.7656 25.8904 0.1248 25.7654 25.8903 0.1248

" for Haar wavelet resolutions m=2° and t=2

obtained from Example 1
% Qe 25:x1(t)appr0xwmate
o |7 Z Ve ] Example 2:
"7 o Consider the following problem of homogeneous
5 I ] dynamic system equation *°.

X0, %0

10

0 r r r r r r r r r

1.4 16 18 2

Figure 1. State space variables X, (t) and X, (t)
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Where the initial condition and the exact solution

of the free state space model are x(0) = [8} and
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|:X1 (1) }
X, (1)

9|1
e
4|1

13 s, |3
4| -1 2
respectively.

The numerical and exact solutions for state space
variables obtained using Haar wavelet collocation
points method for various resolution m =4, 8,16,
and 32 are illustrated in Figs. 2 and 3. These figures
clearly show that the Haar wavelets functions come
closer to the exact solutions as the resolution of
Haar wavelet functions increases.

3

25

-
]
Lo
15
=

0.5

0

c r c c c c
0.8 1 12 14 16 18 2
t

r c r
0 02 04 0.6

Figure 2. State space variable and exact solution

to X(t) for Haar wavelet resolutions
m=4,8,16,32 and t=2 obtained from
Example 2.
1.8
1.6
1.4
1.2
—_ 1;
ST [
e (P m=22
06k Il I
.1: """ m=24
o4r rd— N m=25
02 ;;F‘F_:E:'_ Exact
00 0.r2 0.r4 0.r6 O.rB Z;. 1.r2 l.r4 l.r6 1.r8 2

t

Figure 3. State space variable and exact solution

to X,(t) for Haar wavelet resolutions
m=4,8,16,32 and t=2 obtained from
Example 2
Example 3:

Consider the problem as the following %.

x®] [0 1 x®
M| -1 0] %

88

Where the initial condition x(0) = [g}

Figures 4 and 5 present the graphical
representations of the numerical solution for
different  resolutions of Haar  wavelets

approximations functions for m =4, 8,16, for state

variables X;(t)and X, (t). These figures clearly
show that the Haar wavelets approximation
functions converges to the lowest error as the
resolution of Haar wavelet functions increases.

X, ()

r r c r c c r r r
0 1 2 3 4 5 6 7 8 9

Figure 4. State space variable X,(t) for Haar
wavelet resolutions m=8,16,32,64 and t=10
obtained from Example 3.

X,

i r r r r r r r
0 1 2 3 4 5 6 7 8 9

Figure 5. State space variable X,(t) for Haar
wavelet resolutions m=8,16,32,64 and t =10
obtained from Example 3.

Example 4:
Consider the problem as the following %.

X (1) 0 1| x.(t)
-2 X, (1)

el

Where the initial condition x(0) = [2}
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The numerical results for state space variables
X (t)and X,(t) with different values of Haar
wavelet resolutions of m=8,16,32,and 64 that
are obtained from Example 4 are illustrated in Fig.
6.

These figures clearly show that the Haar
wavelets approximation functions converges to the
correct solutions as the resolution of Haar wavelet
functions increases.

X, 0 . %,0

Figure 6. State space variables X, (t),X,(t) for
Haar wavelet resolutions m=8,16,32,64 and
t =10 obtained from Example 4.

Conclusion:
The proposed approach employs the free state
space variables over an interval from 0 to » using

Haar wavelet functions and Haar wavelet
operational matrix with the operation vec() to

transform the state space system into a system of
linear algebraic equations which can be readily
resolved via MATLAB. The proposed method is
simple and it has been tested for free linear state
space system in two-dimensional state space. As
shown in all figures, the exactness of the state
variables can be enhanced by increasing the Haar
wavelet resolution.
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