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Abstract:  
 In this research, Haar wavelets method has been utilized to approximate a numerical solution for 

Linear state space systems. The solution technique is used Haar wavelet functions and Haar wavelet 

operational matrix with the operation  vec to transform the state space system into a system of linear 

algebraic equations which can be resolved by MATLAB over an interval from 0 to  . The exactness of the 

state variables can be enhanced by increasing the Haar wavelet resolution. The method has been applied for 

different examples and the simulation results have been illustrated in graphics and compared with the exact 

solution. 
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Introduction:  
A state space is a mathematical model of a 

physical system, with involving a set of state 

variables interrelated by first order differential 

equations with zero initial conditions 
1
. In this 

paper, the Haar wavelet basis function and Haar 

wavelet operational matrix are interested to 

approximate a system of differential equations. As 

of late, Haar wavelets have been related to signal 

and image processing in communication and 

physics research and have been proved to be 

excellent mathematical tools 
2
. Compared with other 

wavelet functions, Haar wavelet has a few 

advantages. Haar wavelet is the oldest and the 

simplest wavelet function and it is an orthogonal 

function 
3
. Also, its bases have compact support, 

which means that the Haar wavelet vanishes outside 

of a limited interval and enable us to display 

functions with sharp spikes or edges, better than 

other bases. The respected properties of Haar 

functions in numerical calculation include the 

sparse representation for piecewise constant 

function, quick conversion, and the possibility of 

implementing a quick algorithm in matrix 
4
. 

Nonetheless, the advantage remains when a large 

matrix is involved, whereby great computer 

stowage space and a vast number of mathematical 

operations are required 
5
.  

Operational matrix technique has received 

considerable attention from numerous researchers 

for solving dynamical system analysis 
6
, system 

identification 
7
, numerical computation of integral 

and differential equations 
8
, and solving systems of 

PDEs 
9
. In addition, Hsiao and Wang 

10
 introduced 

the application of Haar wavelets to solve optimal 

control for linear time-varying systems. Based on 

Haar wavelet method, Prabakaran et. al 
11

 used Haar 

wavelet series method to get discrete solutions for a 

state space system of differential equations. 

Abuhamdia and Taheri 
12

 presented survey a wide-

ranging of research on utilizing wavelets in the 

analysis and design of dynamic systems, and the 

main focus of this survey is electromechanical and 

mechanical systems furthermore to their controls. 

Karimi et. al 
13

 solved second-order linear systems 

with respect to a quadratic cost function using Haar 

wavelet. Abdul Khader and Monica 
14

 used Haar 

wavelet method to solve fractional of partial 

differential equations. Ali and Baleanu 
15

 solved 

system of unsteady gas-flow of four dimensional by 

alter the possibility of an algorithm based on 
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collocation points and four dimensions Haar 

wavelet method. 

In this study, Haar wavelet operational matrix of 

integration and Haar wavelet collocation points with 

the operation  vec for one dimension on the interval 

  , 0  were used. The paper is organized as 

follows: The problem statement has been described 

in the second section. The formulates of the Haar 

wavelet method and Haar operational matrix are 

presented in the third part of this paper. In the 

fourth section, the proposed strategy to approximate 

the linear state space system by using Haar 

operational matrix, and Haar wavelet collocation 

points are presented. Numerical examples and 

discussions are shown at the end of this paper. 

Problem statement 
The linear state-space system can be defined as

20, 

22
: 

B (t)  A (t)  xx  , , x )( 00 x  … (1) 

Where x(t)  1n
R  is a vector of state space, A is

11 nn  the system matrix, B  is the constant vector 

11   n and 0)0( xx  is the initial condition vector 

of size 11 n . 

Haar wavelets  

Haar wavelets  )(xhi  are the orthogonal set of 

square waves on the interval  2, 1 . These 

wavelets are defined as: 



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
. elsewhere                  , 

,                   ,  
)(

1

0

1 2
0

 x
xh     …(2) 

)(xh1  = 






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2

1
             , 1  
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



x

x

  …(3)  

Where other wavelets can be determined through 

enlarging and translating the mother wavelet )(xh1 ;

)(xhi  = )   ( kxh j 21 , where i =
j2 +  k ,  i , j  

belong to N {0}, )(log  1,1,2,0,=
2

mj   and  

0   𝑘 
j2  which fulfills 


2

1

)()(




dxxhxh li   = 









li

lij

 

           

0,

=,)(2 12 
…(4) 

Any analytic function  g(x)  
2L ([1, 2]) can be 

written to a finite of Haar sequence:  

)(=)(
1

0=

xhdxg ii

m

i
m 



  

    … (5) 

Where )(xg  is a piecewise constants, which can be 

written in a compacted form: 

)(=)( xxg mm h d
T

   …(6) 

where,  )(xmh  = [ )(0 xh )(1 xh     )(1 xhm  
T]  is 

vector of the Haar function, m is the Haar wavelt 

resolution and md  = [d0  d1  d2 . . . dm-1 
T]  is the 

coefficient vector which can be determined from 
16

  




2

1

)()(
2

=
12




dxxhxgd i

j

i   
)(

    …(7) 

Where, the points of Haar collocation sx = 1+ 

  
m2

12  
(2s  1) , s = 1,2,3,  m 1 

16
, so the Haar 

function vector )(xmh  can be represented into 

matrix shape ,mH  where the elements are donated 

by  

).(=)( , sisim xh   H …(8) 

For example, the matrix of Haar wavelet of fourth-

order 4H  can be expressed into matrix shape in the 

interval of )1,0[   with the collocation points from 

Eqn. (8) as follows: 
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0011
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4 . …  (10) 

When the Haar wavelet matrix is defined as in Eqn. 

(8), then the coefficient 
T

dm  in equations. (6) and 

(7) can be readily obtained as 
-1T

H   d mmm g  ,  …(11) 

where 

                                    mm xgxgxgxgg 321 …(12) 

In the specific domain of  [ 0 , ), )(xhi  can be 

extended in a Haar series by  integration as  
17

: 

 
x

mmm xdxx
0

,)()(  h P h    ... (13) 

where mP  is an mm  the operational matrix of 

integration, which is acquired recursively by  (16):  
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Pm  =  
          H - 

H  -       P 

//

/
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2


 …(14) 

Numerical Solution for State Space Systems 

using Haar Wavelet Method   

The numerical solution to a linear state space system with initial conditions is following as, an approximate solution to free linear state space systems equation (1) was characterized. The Haar wavelet is utilized as a basis to parameterizing the state variables )(tx . At first, the differential state vector )t(x  is expanded into terms of Haar wavelet basis function 

by utilizing equation (5) as follow: 

(t) (t) i

m

i
i hdx 





1

0
 , ,  ,  , , 1n21 …(15) 

where 1210 mdddd    ,    ,  , ,  , 

1  ,    , , , n321  are unknown parameters for the 

state variables, 

Equation (15) can be indicated in matrix shape as 

following:  
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…(16) 

This equation can be rewritten into compact form as 

: 

h(t)d(t)
Tx  …(17) 

where 
T

d  is unknown coefficients in matrix form 

mn 1   for Haar wavelet functions; and h(t)  is the 

vector of  known Haar wavelet function with 

dimension of 1m , where )(th  = [ )(0 th )(1 th

)(2 th    )(1 thm  
T]  and T  is the transpose.  

By integrating equation (17) with respect to t  
besides applying equation (13), (t) x is found, 

which is represented into terms of  Haar operational 

matrix and the Haar wavelet functions as  

0
0

x   dt h(t)d(t)
t

T x        …(18) 

Thus 

h(t)  xh(t) Pd  (t)
TT 0x ,   … (19) 

where 0x
 

is 11 n  column vector of the initial 

conditions that is  T 
      x

100302010 nxxxx  , 

and   T
    ,     ,  ,  , 0001   is an 1m  vector. 

Eqns. (17), and (19) can then be expressed by using 

the properties of the operation vec , where 

(C)  )B(A)B(AC 
T vecvec   

18
, as follows: 

)d(  )(t)hI(  (t)
T vecx n  …(20) 

) x(  )(t)hI()d(  )P )(t)hI( ( (t)
TTTT 0vecvecx nn 

…(21) 

where nI  denote 11 nn   and identity matrix,. In 

addition 

  T
                                 )d( 112111211102010 111  mnmmnn dddddddddvec 

is the vector of unknown Haar wavelet coefficients 

with dimension 1nm , and )( 0

T
 x vec  is an 

11 mn vector of known coefficients that can be 

framed as

  TT
                                       ) x(  000000000000 0302010 xxxvec 

. 

Given the notation above, substituting the equations 

(17) and (19) into equation (1) with expanding B  

in terms of Haar approximation functions, obtain  

 

  h(t) B  h(t)  x h(t) P d A h(t) d TT

0

TT   , 

…(22) 

Simplifying equation (22) and by utilizing 

Kronecker product properties such as

B)C)(A(A)C(A  B  
18

, have 

 

 

)B()(t)hI()Ax( )(t)hI(                                          

)d(  )PA( (t))h  I((d)  (t))hI(

TT

0

T

11

11

 vecvec

vecvec

T

n

T

n

T

n

T

n




        …(23) 

 

Then both sides of equation (23) are multiplied with 

the matrix inverse   1

1


 (t)hI

T
n  to remove the 

term of (t))hI(
T

n 
1

. Thus, obtain 

)B()Ax( (d)  )PA()d( TT

0

T  vecvecvecvec 

... (24) 

Now, equation (24) is transformed into a standard 

system of linear equations as follows 

                         

     . )B(     )Ax(  )d(  )PA(I TT

01
 vecvecvecT

mn 

 ...(25) 

Equation (25) is a system of determined linear 

equation with mn1  unknown variables and )( mn1  

equations that can solve for the unknown vector 

d)(vec  such in MATLAB 
19

. As soon as, the result 

to the unknown parameters are got, these 

parameters to equation (19) are replaced to identify 

the solution )(tx  as follows: 

) (x  )(t)hI((d)  )P (t)hI(  (t) T

0

TTT

11
vexvecx nn 

…(26) 

Numerical Examples 

In this section, four examples of free linear 

dynamic systems are solved using the method 
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illustrated above. The present method was applied 

to display the simplicity, effectiveness, and 

exactness of the proposed numerical method. 

Example 1: 

Consider the following free state space system 
20 , 21

. 

      
)t(

)t(
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 respectively. 

By applying the Haar wavelet collocation points 

method described in the previous section; that is,  

directly transform the free state space system into 

the set of linear algebraic equations with mn1

equations and mn1 unknown variables that can 

resolve for the unknown vector (d)vec  utilizing 

inv() MATLAB solver, the numerical solution to 

this example is obtained by approximating the state 

space variables based on the Harr wavelet series of 

unknown parameters. The numerical results are 

found for this example as shows in Table 1, which 

are very close to the exact values to 16m . Also, 

the Fig. 1 shows that even a coarse Haar wavelet 

resolution of 32m  already yields an accurate 

result. 

 

Tab1e 1. Comparison between the exact and numerical solution in Example 1 using Haar wavelets 

method for 16m  

 

t  

Exact 

Solution 

)t(1x  

Approximate 

Solution 

)t(1x  

Error 

1xExact   

Exact 

Solution 

)t(2x  

Approximate 

Solution 

)t(2x  

Error 

2xExact   

0.0625 3.7212 3.7905 0.0693 1.5264 1.5048 0.0216 

0.1875 3.6081 3.6337 0.0256 2.4333 2.4365 0.0031 

0.3125 3.8866 3.8984 0.0118 3.2577 3.2712 0.0135 

0.4375 4.4197 4.4300 0.0103 4.0831 4.1015 0.0184 

0.5625 5.1403 5.1539 0.0135 4.9602 4.9818 0.0216 

0.6875 6.0192 6.0378 0.0185 5.9228 5.9476 0.0248 

0.8125 7.0486 7.0729 0.0243 6.9969 7.0256 0.0287 

0.9375 8.2328 8.2634 0.0306 8.2051 8.2387 0.0335 

1.0625 9.5842 9.6218 0.0375 9.5695 9.6088 0.0394 

1.1875 11.1208 11.1661 0.0453 11.1129 11.1593 0.0465 

1.3125 12.8646 12.9188 0.0542 12.8604 12.9153 0.0549 

1.4375 14.8421 14.9065 0.0644 14.8399 14.9047 0.0648 

1.5625 17.0837 17.1600 0.0763 17.0825 17.1590 0.0765 

1.6875 19.6242 19.7143 0.0900 19.6236 19.7138 0.0902 

1.8125 22.5032 22.6093 0.1061 22.5029 22.6090 0.1062 

1.9375 25.7656 25.8904 0.1248 25.7654 25.8903 0.1248 

                                

 Figure 1. State space variables )t(1x  and )t(2x  

for Haar wavelet resolutions 
52 m  and 2t  

obtained from Example 1 

 

 

Examp1e 2: 

Consider the following problem of homogeneous 

dynamic system equation 
20
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respectively. 

The numerical and exact solutions for state space 

variables obtained using Haar wavelet collocation 

points method for various resolution  ,16 8, ,4m  

and 32 are illustrated in Figs. 2 and 3. These figures 

clearly show that the Haar wavelets functions come 

closer to the exact solutions as the resolution of 

Haar wavelet functions increases. 

 
Figure 2. State space variable and exact solution 

to )t(1x  for Haar wavelet resolutions 

32 16, 8, 4, m  and 2t  obtained from 

Example 2. 

 
Figure 3. State space variable and exact solution 

to )t(2x  for Haar wavelet resolutions 

32 16, 8, 4, m  and 2t  obtained from 

Example 2 

 

Examp1e 3: 

Consider the problem as the following 
22

. 

      
)t(

)t(

0        1-

1         0 

)t(

)t(


























2

1

2

1

x

x

x

x




 

 Where the initial condition 









0

5
)0(x . 

Figures 4 and 5 present the graphical 

representations of the numerical solution for 

different resolutions of Haar wavelets 

approximations functions for  ,16 8, ,4m for state 

variables )t(1x and  )t(2x . These figures clearly 

show that the Haar wavelets approximation 

functions converges to the lowest error as the 

resolution of Haar wavelet functions increases. 

 

Figure 4. State space variable )t(1x  for Haar 

wavelet resolutions 64 32, 16, 8, m  and 10t  

obtained from Example 3. 

 

 

Figure 5. State space variable )t(2x  for Haar 

wavelet resolutions 64 32, 16, 8, m  and 10t  

obtained from Example 3. 
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The numerical results for state space variables 

)t(1x and  )t(2x  with different values of Haar 

wavelet resolutions of 32, ,16 8, m and 64 that 

are obtained from Example 4 are illustrated in Fig. 

6.  

 These figures clearly show that the Haar 

wavelets approximation functions converges to the 

correct solutions as the resolution of Haar wavelet 

functions increases. 

 

Figure 6. State space variables )t(1x , )t(2x  for 

Haar wavelet resolutions 64 32, 16, 8, m  and 

10t  obtained from Example 4. 

 

Conc1usion: 
The proposed approach employs the free state 

space variables over an interval from 0 to   using 

Haar wavelet functions and Haar wavelet 

operational matrix with the operation ) ( vec  to 

transform the state space system into a system of 

linear algebraic equations which can be readily 

resolved via MATLAB. The proposed method is 

simple and it has been tested for free linear state 

space system in two-dimensional state space. As 

shown in all figures, the exactness of the state 

variables can be enhanced by increasing the Haar 

wavelet resolution. 
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 موجات هار ويفلت  طريقة باستخدامحالة ال فضاء لأنظمة العددي الحل
 

وليدة سويدان 
1

علي ويدانسحليمة     
2 

 

1 
 ة , جامعة بغداد, بغداد, العراق.يالزراع علوم الهندسة شعبة العلوم الاساسية , كلية

2 
 قسم الجيوفيزياء, كلية التحسس النائي والجيوفيزياء, جامعة الكرخ للعلوم, بغداد, العراق.

 

 الخلاصة:
 مةأنظ تحويل هي الحل تقنيةوان  .الخطيةالحالة  فضاء لأنظمة تقريبي حل لإيجادالموبجات الشعرية  طريقة استخدام تم البحث, هذا يف

 دقة زيادة طريق عن الحالة متغيرات دقة تعزيز يمكنكما  . إلى 0 من الزمني للفاصل الخطية المعادلات من نظام إلى الخطية الحالة فضاء

 .الدقيق بالحل هاومقارنت البيانية بالرسوم المحاكاة نتائج توضيح وتم مختلفة لأمثلة المقترحة الطريقة تطبيق تم. موجات هار ويفلت

 
 .الحالة نظام ,موجات هار ويفلت ,التجميع نقاط طريقة ,تقريبية حلول: المفتاحية الكلمات

 

 


