DOI: http://dx.doi.org/10.21123/bsj.2022.19.1.0043

Impact of Culture Media Composition, Nutrients Stress and Gamma Radiation on Biomass and Lipid of the Green Microalga, *Dictyochloropsis splendida* as a Potential Feedstock for Biodiesel Production

Sanaa Mahmoud Metwally Shanab^{1*} Mervat Aly Mohamed Abo-State² Hamdy Elsayed Ahmed Ali²

¹Department of Botany and Microbiology, Faculty of Science, Cairo University, 12613 Giza, Egypt. ²Department of Radiation Microbiology, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, 11787, Cairo, Egypt.

Corresponding author: <u>sanaashanab@sci.cu.edu.eg</u>, <u>abostatem@yahoo.com</u>, <u>hamdy44044@gmail.com</u> *ORCID ID: <u>https://orcid.org/0000-0002-3254-9618</u>*, <u>https://orcid.org/0000-0002-9027-2717</u>, <u>https://orcid.org/0000-0001-6441-8535</u>

Received 27/6/2020, Accepted 17/1/2021, Published Online First 20/7/2021, Published 1/2/2022

This work is licensed under a <u>Creative Commons Attribution 4.0 International License</u>.

Abstract:

Biodiesel production from microalgae depends on the biomass and lipid production. Both biomass and lipid accumulation is controlled by several factors. The effect of various culture media (BG11, BBM, and Urea), nutrients stress [nitrogen (N), phosphorous (P), magnesium (Mg) and carbonate (CO₃)] and gamma (γ) radiation on the growth and lipid accumulation of *Dictyochloropsis splendida* were investigated. The highest biomass and lipid yield of *D. splendida* were achieved on BG11 medium. Cultivation of *D. splendida* in a medium containing 3000 mg L⁻¹ N, or 160 mg L⁻¹ P, or 113 mg L⁻¹ Mg, or 20 mg L⁻¹ CO₃ led to enhanced growth rate. While under the low concentrations of nutrients caused a marked increase in the lipid content. Cultures exposure to 25 Gy of γ -rays, led to an increase in lipid content up to 18.26 ± 0.81 %. Lipid profile showed the maximum presence of saturated fatty acids (SFAs, 63.33%), and unsaturated fatty acids (UFAs, 37.02%). Fatty acids (FAs) recorded the predominance of C16:0, C18:2, C15:0 and C16:1, which strongly proved *D. splendida* is a promising feedstock for biodiesel production.

Keywords: Biodiesel, Dictyochloropsis splendida, Gamma radiation, Lipid content, Nutrients.

Introduction:

Renewable, sustainable, and eco-friendly biofuels are development fields and attractive research that are much needed because of fossil fuels depletion and environmental pollution. Biodiesel has several advantages such as high biodegradable, absence of any aromatic compounds and 90% reduction in air toxicity may conduct to 95% decrease in the applicable cancer cases and have similar properties of fossil diesel^{1,2}.

Biodiesel can be classified according to their source into 1) biodiesel produced from edible oil (first generation) such as soybeans, rapeseed, and sunflower seeds ³. About 7% of global edible vegetable oil supplies were utilized for biodiesel production in 2007. However, vast use of edible oils may cause food supplies versus fuel issue (food crisis) ^{4, 2} biodiesel produced from waste cooking oil, animal fats and nonedible vegetable oils (second generation) such as jatropha 5 , and 3) third generation biodiesel is produced from microalgae 6 .

The advantages of microalgae over higher plants as a source of biodiesel: 1) synthesize and accumulate large quantities of neutral lipids, 2) Possess a high photosynthetic efficiency and growth rate, 3) Grow on saline/brackish water and nonarable land as well as it can utilize nitrogen (N) and phosphorous (P) of wastewater, 4) Can grow in photobioreactors with higher biomass production. 5) Sequester CO₂ through photosynthesis and so reducing greenhouse gas emission ⁷.

Current research into increasing lipid accumulation in microalgal cells mainly focuses on the optimization of culture conditions, screening microalgae species, and the transformation of microalgae by genetic engineering. Limitation of nutrients in culture media is a commonly technique

used to increase lipid inside the microalgal cells. N and P starvation besides magnesium (Mg) and carbon supplementation can induce biosynthesis of FAs 8,9 .

Little information is available on the effect of γ - radiation on the physiological mechanism and biochemical composition of microalgae ^{10, 11}. The objectives of this study were to investigate the effect of culture media composition, nutrients concentration (nitrogen, phosphorous, magnesium, and carbonate) as well as the dosage of γ - radiation on both algal growth and lipid parameters of microalga, *Dictyochloropsis splendida*

Materials and Methods: Cultivation of microalgae

The green alga, *Dictyochloropsis splendida* was provided by the algal culture collection from the Laboratory of Phycology in Botany and Microbiology Department, Faculty of Science, Cairo University, Egypt. The alga was cultivated on BG-11 medium ¹² and incubated under a continuous light intensity of 40 μ E m⁻² s⁻¹ (daylight fluorescent lamps, Philips, TLD18W/54-765) at 25± 1°C and aeration with constant sterilized bubbling of air (by a 0.22µm filter) for 25 days.

Influence of media composition on growth and lipid production of *D. splendida*

To evaluate the impact of media composition on the growth and lipid content, *D. splendida* was cultured in 1L glass flasks in BG11 medium ¹², BBM ¹³ and urea medium ¹⁴. Flasks were incubated under the same pervious conditions.

Influence of nutrients concentrations on growth and lipid production of *D. splendida*

In all experiments, D. splendida was grown in BG11 medium ¹² under continuous illumination with aeriation rate of 1.25 L/min at 25± 1°C for 25 days. Nitrogen was used in the form of NaNO₃ in concentrations 0, 380, 750, 1500, and 3000 mg L⁻¹. Phosphorous (P) was used in the form of K₂HPO₄ in concentrations of 0, 40, 80, 160, and 320 mg L⁻¹. Magnesium (Mg) was used as MgSO₄•7H₂O in concentrations 19, 38, 75, 113 and 150 mg L⁻¹. Carbonate (CO₃) as Na₂CO₃ in concentrations of 0, 10, 20 40 and 80 mg L⁻¹. Growth parameters and lipid content were determined at each experiment.

Influence of γ -radiation on growth and lipid production of *D. splendida*

Cultures of *D. splendida* were irradiated by different γ -doses 0, 25, 50, 100, 200,300, 500, 1000 Gy of ⁶⁰Co γ -rays. Irradiation was performed by ⁶⁰Co γ -rays (Gamma cell 4000-A- India) at National

Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Egypt at a dose rate of 1.296 KGy/h. Cultures after irradiation were incubated under previous conditions and growth was determined as optical density at 680 nm. The lipid content was calculated at the end of the experiment.

Cell growth measurements

From 1L incubated algal culture (900 ml BG11 + 100 ml algal inoculum), optical density (OD at 680nm) of the microalgal sample (3ml) was determined at regular interval of 5 days (in triplicates) using spectrophotometer (UV–Vis spectrophotometer, T60, UK). Twenty ml of washed filtered culture were dried at 105°C for 24 hrs., chilled in a desiccator, and the algal dry weight was determined and expressed as g L^{-1} .

The maximum specific growth rate, μ_{max} (d⁻¹), was evaluated as:

Where X_f and X_o are the biomass concentrations (g L⁻¹) at the final and the start of a batch run, respectively; and *t* is the time span of the run (day).

The biomass productivity (BP) (mg L⁻¹d⁻¹) and biomass yield $(BY, g L^{-1})$ were assessed as follows ¹⁵:

Where X_f and X_o are the biomass concentrations (g L⁻¹) at the final and the start of a batch run, respectively; and T_1 and T_2 (day) represent the incubation time of an experiment at the start time day and the final day of incubation, respectively.

Determination of lipid content

Lipids were extracted at the final incubation time by a 1:1:0.9 ratios of chloroform: methanol: deionized water mixture on volumetric basis ¹⁶ where 5 ml chloroform, 10 ml methanol, and 4 ml of deionized water were initially added to 0.3 g dried sample (0.3 g dried algal biomass/1L algal culture). Then, the mixture was shaken for 10 min, and then another 5 ml chloroform and 5 ml deionized water were added and shaken for overnight. The algal-solvent mix was refined to eliminate the algal precipitates. The chloroform layer of the filtrate was removed, solvent was volatilized at 40-45°C and the lipid was weighed. Lipid content was determined as percentage of cell dry weight:

$$LC = \frac{W_L}{W_B} * 100 \dots \dots \dots \dots (4)$$

Where *LC* is the lipid content (%), W_L and W_B are the weights of the extracted lipids and the dry biomass, respectively.

The lipid productivity (*LP*) was calculated as follows 17 :

Where *LP* is the lipid productivity (mg L⁻¹d⁻¹), *BP* (mg L⁻¹d⁻¹) and *LC* (% dry weight) are biomass productivity (BP) and lipid content, respectively. Lipid yield was calculated as follows ¹⁸:

Where *LY* is lipid yield (g L^{-1}), *BY* (g L^{-1}), *LC* (% dry weight) are biomass yield and lipid content, respectively.

Transesterification and Fatty acid analysis

Lipid was transesterified to produce fatty acid methyl ester (FAMEs) using 2% sulphuric acid in methanol ¹⁹. FA analysis was achieved in Central Laboratory, Faculty of Agriculture, El-Azhar University by gas chromatography (Perkin Elmer Auto System XL) using DB5 silica gel capillary column (60 m \times 0.32mm i.d.) with flame ionization detector and Helium was applied as the carrier gas (at the flow rate of 1 ml min⁻1).

Statistical analysis

All the experiments were conducted in 3 replicates. One-way ANOVA with 95% confidence (probability limit of p < 0.05 was utilized to estimate the significant difference in dependent variables, and Tukey's test at a reliability level of (p<0.05) was used to identify differences between each level of treatment. The statistical analyses were achieved using Minitab software (V18, Minitab Inc., State College, PA, USA).

Results and Discussion

Influence of media composition on growth and lipid accumulation

The effect of various culture media (BG11, BBM and Urea) composition on the growth of *D.* splendida were assessed as outlined in Figure 1. The highest *BY* of *D. splendida* (0.90 ± 0.01 g L⁻¹) resulted in culturing on BG11 medium. With this medium, the maximum μ_{max} and *BP* were 0.097 ± 0.002 d⁻¹ and 32.96 ± 0.54 mg L⁻¹d⁻¹, respectively. Also, highest *LC*, *LB* and *LY* were 16.92 ± 0.07 %, 5.58 ± 0.07 mg L⁻¹ d⁻¹ and 0.152 ± 0.001 g L⁻¹, respectively while urea medium showed the lowest *LC* (10.43 ± 0.79 %) as illustrated in (Figure 2A,B). The increase in the *LY* of *D. splendida* when cultured on the BG11 medium may be back to the high N concentration (1.5 g L⁻¹) in the BG11 medium which led to an increasing μ_{max} , where *LY*

is the product of the *BY* multiplied by the *LC*¹⁸. This finding went parallel with Chandra et al ²⁰ who studied the effect of different culture media (BG-11, modified CHU-13 and BBM medium) on the growth and lipid production of *Chlorella minutissima*. Maximum *BY* and *LY* were achieved by modified CHU-13 medium (970 \pm 0.21 and 356.63 \pm 0.51 mg L⁻¹, respectively) succeed in descending order by those produced by BG-11 medium (850 \pm 0.12 mg L⁻¹ and 243.65 \pm 0.30 mg L⁻¹, respectively) and the minimum values were recorded by BBM medium (730 \pm 0.42 mg L⁻¹ and 196.83 \pm 0.43 mg L⁻¹, respectively).

In another study. Chlorella sp. and Scenedesmus sp. were cultivated in media with more or less nutrients. Accumulation of lipid was higher in media deficient of nutrients whereas μ_{max} and *LP* were reduced²¹. Furthermore, micronutrients such as iron, cobalt, zinc, copper and manganese and nickel are the most essential trace metals required by algae for several metabolic functions²². This supports our results, where the highest μ_{max} and LP of D. splendida were recorded on BG11 medium followed in descending order by BBM and urea medium, which may be due to the availability (or not) of nutrients in the media²³. On other hand, several studies used nitrate in source of N in culture media, whereas urea has been highly applied in large-scale algal cultivation due to its competent low cost compared to the others. Nevertheless, the manipulation of urea concentration through the cultivation is the challenge. Urea can liberate urease or be hydrolyzed to ammonia in basic conditions which lead to the growth of inhibition at high levels

Figure 1. Growth curve of *D. splendida* cultured on different culture media. Error bars represent ±SD of three replicates.

Figure 2. Growth and lipid parameters of *D. splendida* cultured on different of culture media. Different small letters on the same lines and bars indicate significant difference (p<0.05). Error bars represent ±SD of three replicates.

Impact of nutrients concentrations on growth and lipid formation Nitrogen

The impact of initial concentrations of N on the growth of D. splendida was represented in Figure 3A. Increasing the P and N, was accompanied by an increase in growth. The highest *BP* and *BY* of 42.06 \pm 2.25 mg L⁻¹d⁻¹ and 1.15 \pm 0.05 g L^{-1} , respectively were obtained by cultivation with a start N concentration of 3000 mg L^{-1} (Table 1). Elevation of the N concentration from 0 to 3000 mg L^{-1} showed an obvious increment in biomass and growth rate, but a decline in lipid accumulation. The highest LC of 18.09 ± 0.03 % was recorded under N depletion (380 mg L^{-1}) as illustrated in Figure 4A. The LY of D. splendida was significantly influenced by the N concentration (P < 0.05). The highest LP $(5.37 \pm 0.12 \text{ mg L}^{-1}\text{d}^{-1})$ and LY $(0.0152 \pm 1000 \text{ mg}^{-1}\text{s}^{-1}\text{d}^{-1})$ 0.001 g L⁻¹) were recorded at N concentration of 1500 mg L^{-1} .

Nitrogen is the most commonly reported nutrient-limiting factor in the growth and lipid accumulation of microalgae ²⁴. The obtained results agrees with Ishika et al. ²⁵ who reported that N deficiency results in an increment in lipid and /or carbohydrate accumulation of microalgae and a decline in growth rate, photosynthetic efficacy, and protein amounts. Rehman and Anal ²⁶ noted that the *LC* of *Chlorococcum* sp. TISTR 8583 increased by 1.7 folds when cultured on N-deficient medium and optimized light intensity. Similarly, Yodsuwan et al. ²⁷reported that the maximum *LC* of *P. tricornutum* (53.04 \pm 3.26% %) was noted under N-deficient condition.

Phosphorous

The growth curve of *D. splendida* in the growth medium for different initial P concentrations are shown in Figure 3B. Reasonably, the maximum

cell density increased with an increase in initial P concentration. From the ANOVA results, we found that P had a remarkable effect (p < 0.05) on biomass production of D. splendida. The maximum μ_{max} , BP and *BY* of 0.111 \pm 0.010 d⁻¹, 41.01 \pm 3.96 mg L⁻¹d⁻¹ and 1.10 ± 0.11 g L⁻¹ were obtained at 160 mg L⁻¹, respectively. Increasing the P concentration from 40 mg L⁻¹ to 320 mg L⁻¹ had an insignificant effect (p>0.05) on BY (Table 1). The lipid accumulation of D. splendida under different initial P concentrations was given in Figure 4B. While deficiency in P significantly promoted lipid accumulation (p< 0.05). The highest LC (18.39 \pm 1.22 %), LP (7.06 \pm 0.82 mg L⁻¹d-1) and LY (0.189 \pm 0.023 g L⁻¹) were recorded at 80 mg L^{-1} P as shown in Table 1and Figure 4B.

Phosphorous is the main player in cellular metabolic processes, which are connected to photosynthesis and energy transfer. The results agreed with those of Guschina and Harwood ²⁸ who that under Р deficiency. mentioned the photosynthetic rates decreased, the cell division rates reduced, and this may lead to the accumulation of triacylglycerols. Also, under P limitation, the LC of *Tisochrysis lutea*²⁹ and *P. tricornutum*³⁰ were increased. In addition, the total FAs content increased over two folds under P depletion, conversely total FAs content was inversely proportional with P concentration over a factor of ten 31 .

Magnesium

Figure 3C illustrates the time-course study on the effect of Mg on the growth of *D. splendida*. Increasing the Mg from 0–75 mg L⁻¹ showed significant increase (p > 0.05) on the growth of *D. splendida*, while increasing Mg from 75 to 150 mg L⁻¹ had insignificant effect on the *BY*. The maximum μ_{max} and *BP* of 0.120 ± 0.001 d⁻¹ and 34.47 ± 0.46 mg L⁻¹d⁻¹ were obtained at 113 mg L⁻¹ Mg, respectively (Table 1). On the contrary, the increasing Mg concentration exhibited a negative impact on the *LC*. The maximum *LC* (20.06 \pm 0.15 %) was achieved at 19 mg L⁻¹ of Mg (Figure 4C). Further, the *LP* and *LY* of the tested microalga were significantly affected by alteration in the Mg concentration (*P*<0.05).

Mg plays a key role in the growth of microalgae, whereas it is the central atom of chlorophyll and as a co-factor of some enzymes in the metabolic pathway ³². There are limited studies on microalgae responses during Mg limitation in terms of biomass growth and lipid accumulation ³³. The lipid yield and growth of microalgae were improved by Mg supplementation, whereas the starvation of Mg ions anticipates the decrease in mitotic division, hinder of chlorophyll formation and, so, the biomass yields ³⁴.

In harmony with the obtained data, Gorain et al. ³⁵ found a marked increase in the neutral lipid content of Chlorella vulgaris and Scenedesmus obliquus in Mg- and Ca-free medium. Also, Increasing the concentration of Mg exhibited positive effects on BY of C. vulgaris and S. *obliquus*, and at concentration (150 mg L^{-1}) the BY was elevated up to 1.5 g L^{-1} (36% rise) for S. obliquus and 1.6 g L^{-1} (33% rise) for C. vulgaris on the 18^{th} day of incubation. While the *LC* was increased with maximum up to 27% and 26%, respectively at 100 mg L^{-1} of Mg. The function of Mg ions in switch on the enzyme Acetyl-CoA carboxylase and catalyzing the first stage of FA production was proved³⁶. In addition, the productivity of microalgae is augmented when Mg²⁺ concentration is in the range of $2-8 \text{ mg/L}^{-24}$.

Carbonate

High and low sodium carbonate concentration in the growth medium had significant influence (p < 0.05) on growth (Figure 3D) and lipid production of D. splendida (Figure 4D). Table 1 summarizes the biomass and lipid parameters of D. splendida under different concentrations of sodium carbonate. At 20 mg L^{-1} of CO₃, the maximum BY $(0.90 \pm 0.01 \text{ g L}^{-1})$ was recorded, whereas, rising the CO₃ concentration showed a significant decrease in the growth parameters (μ_{max} and BP) (p<0.05). The highest LC of 19.46 ± 0.32 % was showed at 40 mg L^{-1} as presented in Figure 4D. The LP and LY ranged between 1.66-5.37 mg $L^{-1}d^{-1}$ and 0.051- 0.152 mg L^{-1} , respectively.

Most investigations that have been done on the effect of inorganic carbon supply and lipid formation in microalgae cultures have converged on the addition of CO_2 ³⁷. In some works, NaH_2CO_3 has been utilized as a source of carbon on experimenting growth and biochemical composition in various microalgae species ³⁸ and induced the accumulation of triacylglycerol in microalgal species. On the contrary, Zhao et al. ³⁹ recorded that the addition of sodium bicarbonate in the culture medium of *Scenedesmus quadricauda* had a negative influence on the lipid production and the highest *LC* was obtained under air. On the other hand, Li et al. ⁴⁰ found that the maximum *LC* of 494 mg g⁻¹ and *LP* of 44.5 mg L⁻¹ d⁻¹ of *C. vulgaris* were recorded at 160 mM NaHCO₃ and pH 9.5, and 10 mM NaHCO₃ was the optimal concentration for cell growth and elevating NaHCO₃ from 10 to 160 mM prosecute an inhibition to biomass.

Gamma radiation

Figure 3E shows the growth curve of *D*. splendida under different gamma radiation doses. The data exhibited that high doses of γ -ray had a negative effect on growth. The maximum μ_{max} was decreased with elevating irradiation dose (Table 2). The *BY* declined from 0.90 ± 0.01 g L⁻¹ to 0.21 ± 0.02 g L⁻¹ (decreased by 76.67 %) when cultures were displayed to irradiation dosage of 1000 Gy. The *LC* of *D*. splendida given in Figure 4E, the highest *LC* of 18.26 ± 0.81 % was achieved when the alga cell exposed to 25 Gy. While the higher irradiation doses had negative impact on the lipid accumulation. The maximum *LP* (5.37 ± 0.12 mg L⁻¹ d⁻¹ and 5.24 ± 0.43 mg L⁻¹ d⁻¹) was recorded at zero and 25 Gy, respectively.

Gamma rays can generate free radicals (ROS), which have the ability to change the composition of cells in comparison with the slight penetration influence of UV-B⁴¹. Hence, 60 Co-yrays were selected for irradiation due to their powerful penetration ability. In concomitant with the obtained results, Cheng et al. ¹⁰ found that the lipid amount of Nitzschia sp. declined with increased irradiation dose (0-900 Gy). Agarwal et al. ⁴² reported that the high irradiation doses extremely injure cell metabolism regulation complex and growth cease if cells lose their selfrepair potential through injury recuperation. Considering that various strains had diverse irradiation vulnerability to nuclear irradiation, whereas under low dosages of γ -ray irradiation, some microalgal cells were still slightly damaged and recuperate their normal states within a brief period 43 .

Figure 3. Growth curve of *D. splendida* cultured under different concentrations of nutrients and gamma radiation doses. (A) Nitrogen, (B) Phosphorous, (C) Magnesium, and (D) Carbonate, and (E) gamma radiation. Results represent mean ±SD of three replicates.

Figure 4. Lipid production of *D. splendida* cultured under different concentrations of nutrients and gamma radiation doses. (A) Nitrogen, (B) Phosphorous, (C) Magnesium, and (D) Carbonate, and (E) gamma radiation. Different small letters on the bars indicate significant difference at p<0.05. Results represent mean ±SD of three replicates.

Nutrient concentration (mg L ⁻¹)	Biomass productivity (<i>BP</i>) (mg L ⁻¹ d ⁻¹)	Maximum specific growth rate (μ_{max}) (d^{-1})	Biomass yield (BY) ($g L^{-1}$)	Lipid productivity (LP) (mg L ⁻¹ d ⁻¹)	Lipid yield (LY) (g L ⁻¹)
NaNO ₃					
0	$16.70 \pm 0.98^{\circ}$	0.071 ± 0.004^{c}	$0.50 \pm 0.02^{\mathbf{d}}$	2.93 ± 0.16^{bc}	$0.088\pm0.003^{\rm c}$
380	17.65 ± 1.47^{c}	0.081 ± 0.027^{c}	$0.55\pm0.04^{\text{cd}}$	$2.85\pm0.23^{\rm c}$	$0.088\pm0.005^{\rm c}$
750	19.93 ± 2.13^{c}	$0.082\pm0.004^{\text{b}}$	$0.60 \pm 0.02^{\circ}$	$3.61 \pm 0.39^{\mathbf{b}}$	0.108 ± 0.003^{b}
1500	31.73 ± 0.83^{b}	0.084 ± 0.004^{b}	0.90 ± 0.01^{b}	$5.37\pm0.12^{\mathbf{a}}$	$0.152\pm0.001^{\mathbf{a}}$
3000	$42.06\pm2.25^{\mathbf{a}}$	$0.099 \pm 0.005^{\mathbf{a}}$	$1.15\pm0.05^{\mathbf{a}}$	5.58 ± 0.31^{a}	$0.152\pm0.007^{\mathbf{a}}$
K ₂ HPO ₄					
0	$21.36 \pm 1.20^{\circ}$	0.076 ± 0.002^{b}	0.63 ± 0.04^{b}	$3.31\pm0.18^{\rm c}$	0.097 ± 0.005^{c}
40	31.73 ± 0.83^{b}	0.084 ± 0.004^{b}	$0.90\pm0.01^{\mathbf{a}}$	5.37 ± 0.12^{b}	0.152 ± 0.001^{b}
80	38.31 ± 1.92^{ab}	0.105 ± 0.006^{a}	1.03 ± 0.06^{a}	7.06 ± 0.82^{a}	0.189 ± 0.023^{a}
160	41.01 ± 3.96^{a}	$0.111 \pm 0.010^{\mathbf{a}}$	$1.10 \pm 0.11^{\mathbf{a}}$	5.84 ± 0.97^{b}	0.156 ± 0.026^{b}
320	40.91 ± 4.51^{a}	0.105 ± 0.003^{a}	1.09 ± 0.12^{a}	5.62 ± 0.56^{b}	0.149 ±0.015 ^b
MgSO ₄ .7H ₂ O					
19	17.08 ± 0.82^{d}	$0.073 \pm 0.001^{\circ}$	$0.51 \pm 0.03^{\circ}$	3.43 ± 0.15^{c}	0.102 ± 0.005^{d}
38	$23.68 \pm 0.96^{\circ}$	$0.075 \pm 0.006^{\text{bc}}$	0.70 ± 0.02^{b}	3.35 ± 0.13^{c}	0.098 ± 0.003^{d}
75	31.73 ± 0.83^{b}	0.084 ± 0.004^{b}	0.90 ± 0.01^{a}	5.37 ± 0.12^{a}	0.152 ± 0.001^{a}
113	34.47 ± 0.46^{a}	0.120 ± 0.001^{a}	0.91 ± 0.01^{a}	5.08 ± 0.05^{a}	0.133 ± 0.001^{6}
150	$30.53 \pm 0.75^{\text{b}}$	$0.084 \pm 0.003^{\text{D}}$	0.87 ± 0.03^{a}	$4.06 \pm 0.16^{\text{b}}$	$0.115 \pm 0.005^{\circ}$
Na_2CO_3					
0	20.97 ± 1.19^{c}	0.079 ± 0.002^{a}	$0.61 \pm 0.03^{\circ}$	3.01 ± 0.21^{c}	$0.087 \pm 0.005^{\circ}$
10	28.28 ± 0.55^{b}	0.085 ± 0.002^{a}	$0.80 \pm 0.01^{\text{D}}$	3.75 ± 0.02^{b}	$0.106 \pm 0.001^{\text{b}}$
20	31.73 ± 0.83^{a}	0.084 ± 0.004^{a}	0.90 ± 0.01^{a}	5.37 ± 0.12^{a}	0.152 ± 0.001^{a}
40	13.91 ± 0.83^{d}	0.066 ± 0.001	0.43 ± 0.01^{a}	2.70 ± 0.06^{d}	$0.083 \pm 0.003^{\circ}$
80	13.07 ± 0.74^{d}	0.065 ± 0.001^{b}	0.41 ± 0.02^{a}	1.66 ± 0.11^{e}	0.051 ± 0.0033^{d}

Table 1. Kinetics of cell growth and lipid production of *D. splendida* under on different nutrients stress

All cultures were incubated under continuous illumination of 40 μ E m⁻² s⁻¹ and temperature of 25± 1 °C with aeriation rate of 1.25 L/min for 25 days. Different superscript letters within the same column for each nutrient indicate significant difference at *p*<0.05. Results represent mean ±SD of three replicates.

Table 2.	Kinetics	of ce	ell growth	and	lipid	production	of D.	splendida	exposed	to	different	gamma
radiation	o doses											

Gamma	Biomass	Maximum	Biomass yield	Lipid	Lipid yield
radiation	productivity	specific growth	(BY)	productivity	(LY)
(Gy)	(BP)	rate (μ_{max})	$(g L^{-1})$	(LP)	$(g L^{-1})$
	$(mg L^{-1}d^{-1})$	(d^{-1})		$(mg L^{-1}d^{-1})$	
0	$31.73\pm0.83^{\mathbf{a}}$	0.084 ± 0.004^{a}	0.90 ± 0.01^{a}	5.37 ± 0.12^{a}	0.152 ± 0.001^{a}
25	28.67 ± 1.28^{b}	0.079 ± 0.002^{b}	$0.82 \pm 0.04^{ m b}$	$5.24\pm0.43^{\mathbf{a}}$	0.149 ± 0.012^{a}
50	$27.09 \pm 1.04^{\mathbf{b}}$	$0.079 \pm 0.002^{\mathbf{b}}$	0.78 ± 0.03^{b}	3.96 ± 0.26^{b}	0.113 ± 0.006^{b}
100	$11.76 \pm 1.05^{\circ}$	$0.052 \pm 0.006^{\circ}$	0.40 ± 0.02^{c}	1.93 ± 0.19^{c}	$0.066 \pm 0.003^{\circ}$
200	$12.69 \pm 0.25^{\circ}$	0.057 ± 0.001^{c}	$0.42 \pm 0.01^{\circ}$	2.24 ± 0.02^{c}	0.073 ± 0.007^{c}
300	11.44 ± 0.14^{c}	0.057 ± 0.002^{c}	$0.38 \pm 0.01^{\circ}$	1.84 ± 0.11^{c}	$0.060 \pm 0.003^{\circ}$
500	7.41 ± 1.27^{d}	$0.046 \pm 0.006^{\mathbf{d}}$	$0.27\pm0.03^{\mathbf{d}}$	$0.89\pm0.18^{\rm d}$	0.032 ± 0.005^{d}
1000	4.53 ± 0.61^{e}	0.032 ± 0.001^{e}	0.21 ± 0.02^{e}	0.53 ± 0.09^{d}	0.024 ± 0.003^{d}

All cultures were incubated under continuous illumination of 40 μ E m⁻² s⁻¹ and temperature of 25± 1 °C with aeriation rate of 1.25 L/min for 25 days. Different superscript letters within the same column indicate significant difference at *p*<0.05. Results represent mean ±SD of three replicates.

Fatty acid composition

The fatty acid composition of *D. splendida* was given in Table 3. The FAME mainly contains saturated fatty acids (SFAs, 63.33 %) and unsaturated fatty acids (UFAs, 37.02%), also, the carbon chain lengths were from C12 to C24. Among the identified FAs, C16:0 was found to be

present in higher concentration about 43.58 % followed by 19.22 % of C18:2, 10.72 % of C15:0 and 9.40 % of C16:1. The amounts of other FAs species were 17.08 % of the total FAs. Also, PUFAs and MUFAs values recorded 22.8 % and 14.2 %, respectively.

Table	3.	Lipid	profile	of	D .	splendida	lipid
cultiva	ted	on BG	11 mediu	ım			

FA types	FA (%)
Lauric acid (C12:0)	1.15
Myristic acid (C14:0)	3.10
Pentadecanoic acid (C15:0)	10.72
Palmitic acid (C16:0)	43.58
Palmitoleic acid (C16:1)	9.40
Stearic acid (C18:0)	0.64
Oleic acid (C18:1)	4.80
linoleic acid (C18:2)	19.22
linolenic acid (C18:3)	3.60
Arachidic acid (C20:0)	0.46
Behenic acid (C22:0)	1.05
Lignoceric acid (C24:0)	2.28
Saturated fatty acids (SFAs)	63.33
Unsaturated fatty acids (UFAs)	37.02
Monounsaturated fatty acids (MUFAs)	14.2
Polyunsaturated fatty acids (PUFAs)	22.82

FA, fatty acid

Regarding the biodiesel formation from *D. splendida*, the green microalgal lipid usually has a FAs content of mostly C16 and C18 FAs that is alike to that of vegetable oils, and so appropriate for biodiesel formation ⁴⁴. The C16-C18 FAs of *D. splendida* were 80.55%, which can give the best relation between oxidative stability and cold flow properties⁴⁵. MUFAs, which mainly formed of C16:1 and C18:1, are regarded as the most favorable components for forming biodiesel, and they give the best compromise between oxidative stability and cold flow properties ⁴⁶.

The tested microalga had $\frac{1}{4}$ distinctly higher amounts of C16 and C18 which were closer to those of *Haematococcus pluvialis* (76.6%)⁴⁷. Also, *D. splendida* demonstrated considerable amount of C18:2 and C18:3, formed in low melting points, and are preferable for the improvement of the low temperature properties of biodiesel⁴⁸.

Conclusion:

The impact of media components, nutrients stress and γ - radiation on the biomass and lipid production of *D. splendida* was studied. The highest *BY* and *LY* were achieved when alga culturing on BG11 medium. The maximum μ_{max} was obtained at high N, P and Mg as well as low CO₃. While the highest *LC* was observed under nutrients limitation. Additionally, high γ -radiation doses expressed a negative influence on both growth and lipid production. The C16-C18 FAs of *D. splendida* were 80.55% which firmly manifested that *D. splendida* is a promising source for biodiesel formation.

Acknowledgement:

The authors acknowledge Science and Technology Development Fund (STDF) for their support throughout this work.

Authors' declaration:

- Conflicts of Interest: None.
- We hereby confirm that all the Figures and Tables in the manuscript are mine ours. Besides, the Figures and images, which are not mine ours, have been given the permission for republication attached with the manuscript.
- Ethical Clearance: The project was approved by the local ethical committee in Cairo University.

Authors' contributions statement:

Conception, Shanab SMM, Ali HEA; Design, acquisition of data and analysis, Ali HEA; Interpretation, Shanab SMM; drafting the MS, SMM, Ali HEA, Revision, and proofreading, Shanab SMM, Ali HEA, Abo-State MAM

References:

- 1. Mofijur M, Rasul M G, Hassan N M , Nabi M N. Recent development in the production of third generation biodiesel from microalgae. Energy Procedia 2019; 156: 53-58.
- 2. Shomal R, Hisham H, Mlhem A, Hassan R, Al-Zuhair S. Simultaneous extraction–reaction process for biodiesel production from microalgae. Energy Rep. 2019; 5: 37-40.
- Singh D, Sharma D, Soni SL, Sharma S, Sharma PK, Jhalani A. A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel. 2020 15;262:116553.
- 4. Anwar F, Rashid U, Ashraf M, Nadeem M. Okra (*Hibiscus esculentus*) seed oil for biodiesel production. Appl. Energy 2010; 87: 779-785.
- 5. Chang A, Pan JH, Lai NC, Tsai MC, Mochizuki T, Toba M, et al. Efficient simultaneous esterification/transesterification of non-edible Jatropha oil for biodiesel fuel production by templatefree synthesized nanoporous titanosilicates. Catalysis Today. 2019 12.
- 6. Yin Z, Zhu L, Li S, Hu T, Chu R, Mo F, et al. A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: environmental pollution control and future directions. Bioresour. Technol. 2020; 122804.
- Chozhavendhan S, Singh MV, Fransila B, Kumar RP, Devi GK. A review on influencing parameters of biodiesel production and purification processes. Curr. Opin. Green Sustain. 2020; 1(1):1-6.
- Abo-State MA M, Shanab S M M, Ali H E A. Effect of nutrients and gamma radiation on growth and lipid accumulation of *Chlorella vulgaris* for biodiesel production. J. Rad. Res. Appl. Sci. 2019; 12(1): 332-342.
- Ali, H E A, El-fayoumy, E A, Rasmy, W E, Soliman, R M, Abdullah, M A. Two-stage cultivation of Chlorella vulgaris using light and salt-stress conditions for simultaneous production of lipid, carotenoids, and antioxidants. J. Appl. Phycol. 2021; 33: 227–239.

- 10. Golz A L, Bradshaw C. Gamma radiation induced changes in the biochemical composition of aquatic primary producers and their effect on grazers. Front. Environ. Sci. 2019; 7: 100.
- 11. Gomes T, Xie L, Brede D, Lind O C, Solhaug K A, Salbu B, et al . Sensitivity of the green algae *Chlamydomonas reinhardtii* to gamma radiation: Photosynthetic performance and ROS formation. Aqu. Toxicol. 2017; 183: 1-10.
- Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G. Purification and properties of unicellular bluegreen algae (order Chroococcales). Bacteriol. Rev. 1971; 35(2): 171-205.
- Bischoff H W, Bold HC. Some soil algae from enchanted rock and related algal species. Austin, Tex.: University of Texas 1963.
- Crocheck C L, Monstross M, Xinyi E, Shea AP, Crocker M, Andrews R. Influence of media composition on the growth rate of *Chlorella vulgaris* and *Scenedesmus acutus* utilized for CO₂ mitigation. J. Biochem. Technol. 2012; 4: 589-594.
- 15. Vidyashankar S, Shankara Murthy V, Venkata Swarnalatha G MD K, Chauhan V, Ravi R, Bansal AK, et al. Characterization of fatty acids and hydrocarbons of chlorophycean microalgae towards their use as biofuel source. Biomass Bioenergy 2015; 77: 75-91.
- 16. Bligh EG, Dyer W J. A rapid method of total lipid extraction and purification. *Canadian* J. Biochem. Physiol. 1959; 37(8): 911-917.
- 17. Hempel N, Petrick I, Behrendt F. Biomass productivity and productivity of fatty acids and amino acids of microalgae strains as key characteristics of suitability for biodiesel production. J. Appl. Phycol. 2012; 24(6): 1407-1418.
- 18. Yang F, Long L, Sun X, Wu H, Li T, Xiang W. Optimization of medium using response surface methodology for lipid production by *Scenedesmus* sp. Mar. Drugs 2014; 12(3): 1245-1257.
- 19. Christie W W. Preparation of ester derivatives of fatty acids for chromatographic analysis. Adv. lipid Methodol. 1993; 2(69): e111.
- 20. Chandra R, Ghosh UK. Effects of various abiotic factors on biomass growth and lipid yield of *Chlorella minutissima* for sustainable biodiesel production. Environ. Sci. Poll. Res. 2019; 26(4): 3848-3861.
- 21. Zhang Q, HongY. Comparison of growth and lipid accumulation properties of two oleaginous microalgae under different nutrient conditions. Front. Environ. Sci. Eng. 2014; 8(5): 703-709.
- 22. Bruland KW, Donat JR, Hutchins DA. Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnol. Oceanogr. 1991; 36(8): 1555-1577
- 23. Matsudo M, Bezerra R, Sato S, Perego P, Converti A, Carvalho J C. Repeated fed-batch cultivation of *Arthrospira* (*Spirulina*) *platensis* using urea as nitrogen source. Biochem. Eng. J. 2009; 43: 52-57.
- 24. Sajjadi B, Chen W-Y, Raman A A A, Ibrahim S. Microalgae lipid and biomass for biofuel production: A comprehensive review on lipid enhancement

strategies and their effects on fatty acid composition. Renew. Sustain. Energy Rev. 2018; 97: 200-232.

- 25. Ishika T, Moheimani NR, Bahri PA. Sustainable saline microalgae co-cultivation for biofuel production: a critical review. Renew. Sustain. Energy Rev. 2017; 78: 356–68
- 26. Rehman ZU, Anal A K. Enhanced lipid and starch productivity of microalga (*Chlorococcum* sp. TISTR 8583) with N limitation following effective pretreatments for biofuel production. Biotechnol. Rep. 2019; 21: e00298.
- 27. Yodsuwan N, Sawayama S, Sirisansaneeyakul S. Effect of N concentration on growth, lipid production and fatty acid profiles of the marine diatom *Phaeodactylum tricornutum*. J Agric Nat Resour. 2017 1;51:190-7.
- 28. Guschina I A, Harwood J L. Algal lipids and effect of the environment on their biochemistry. In M. Kainz, M. T. Brett & M. T. Arts (Eds.), Lipids in Aquatic Ecosystems 2009; (pp. 1-24). New York, NY: Springer New York
- 29. Huang B, Marchand J, Thiriet-Rupert S, Carrier G, Saint-Jean B, Lukomska E, et al. Betaine lipid and neutral lipid production under nitrogen or phosphorous limitation in the marine microalga *Tisochrysis lutea* (Haptophyta). Algal Res. 2019;40:101506.
- 30. Yu S-J, Shen X F, Ge H-Q, Zheng H, Chu F-F, Hu H, et al. Role of sufficient phosphorous in biodiesel production from diatom *Phaeodactylum tricornutum*. Appl. Microbiol. Biotechnol. 2016; 100:6927-6934
- 31. Spijkerman E, Wacker A. Interactions between Plimitation and different C conditions on the fatty acid composition of an extremophile microalga. Extremophiles. 2011 1;15(5):597.
- 32. Esakkimuthu S, Krishnamurthy V, Govindarajan R, Swaminathan K. Augmentation and starvation of calcium, magnesium, phosphate on lipid production of *Scenedesmus obliquus*. Biomass Bioenergy 2016; 88: 126-134.
- 33. Goh B H H, Ong HC, Cheah MY, Chen W-H, Yu K L, Mahlia T M I. Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review. Renew. Sustain. Energy Rev. 2019; 107: 59-74.
- 34. Finkle Yeh K-L, Chang J-S, Chen W-M. Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga *Chlorella vulgaris* ESP-31. Eng. Life Sci. 2010; 10: 201-208.
- 35. Gorain P C, Bagchi S K, Mallick N. Effects of calcium, magnesium and sodium chloride in enhancing lipid accumulation in two green microalgae. Environ.Technol. 2013; 34: 1887-1894.
- 36. Nelson DL, Cox MM. Lipid biosynthesis. In: Principles of biochemistry. 4th ed. New York: W. H. Freeman and Company. 2008; p. 805–845.
- 37. Lakshmikandan M, Murugesan AG, Wang S, Abomohra AE, Jovita PA, Kiruthiga S. Sustainable biomass production under CO₂ conditions and effective wet microalgae lipid extraction for biodiesel production. J. Clean. Prod. 2020;247:119398.

- 38. Yeh K-L, Chang J-S, Chen W-M. Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga *Chlorella vulgaris* ESP-31. Eng. Life Sci. 2010; 10: 201-208.
- 39. Zhao G, Yu J, Jiang F, Zhang X, Tan T. The effect of different trophic modes on lipid accumulation of *Scenedesmus quadricauda*. Bioresour. Technol. 2012; 114: 466-471.
- 40. Li J, Li C, Lan C, Liao D. Effects of sodium bicarbonate on cell growth, lipid accumulation, and morphology of *Chlorella vulgaris*. Microb. Cell Fact. 2018; 17(1): 111.
- 41. Pradhan B, Baral S, Patra S, Behera C, Nayak R, MubarakAli D, et al. Delineation of gamma irradiation (60Co) induced oxidative stress by decrypting antioxidants and biochemical responses of microalga, *Chlorella* sp. Biocatal. Agric. Biotechnol. 2020; 1:101595.
- 42. Agarwal R, Rane S S, Sainis JK. Effects of (60) Co gamma radiation on thylakoid membrane functions in Anacystis nidulans. J. Photochem. Photobiol. B, Biol. 2008; 91: 9-19.
- 43. Fuma S, Ishii N, Takeda H, Miyamoto K, Yanagisawa K, Doi K, et al. Effects of acute gamma-

irradiation on the aquatic microbial microcosm in comparison with chemicals. J. Environ. Rad. 2009; 100(12): 1027-1033.

- 44. Converti A, Casazza A A, Ortiz EY, Perego P, Del Borghi M . Effect of temperature and N concentration on the growth and lipid content of *Nannochloropsis oculata* and *Chlorella vulgaris* for biodiesel production. Chem. Eng. Process. 2009; 6:1146-1151.
- 45. Knothe G. Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ. Sci. 2009; 2: 759-766.
- 46. Knothe G. A technical evaluation of biodiesel from vegetable oils vs. algae. Will algae-derived biodiesel perform? Green Chem. 2011; 13: 3048-3065.
- 47. Ho SH, Chen WM, Chang JS. *Scenedesmus obliquus* CNW-N as a potential candidate for CO(2) mitigation and biodiesel production. Bioresour. Technol. 2010; 101: 8725-8730.
- 48. Knothe, G. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process. Technol. 2005; 86: 1059-1070.

تأثير تركيب الاوساط الغذائية و المغذيات واشعة جاما على إنتاج الكتلة الحيوية والدهون من الطحلب الدقيق الاخضر Dictyochloropsis splendida ، كمواد خام واعده للديزل الحيوى

ثناء محمود متولی شنب ¹

مرفت على محمد ابوستيت² حمدى السيد احمد على²

¹ قسم النبات والميكروبيولوجي، كلية العلوم، جامعة القاهرة، الجيزة، مصر. ² قسم الميكروبيولوجيا الاشعاعيه، المركز القومي لبحوث وتكنولوجيا الاشعاع، هيئه الطاقة الذرية، القاهرة، مصر.

الخلاصة:

يعتمد إنتاج الديزل الحيوي من الطحالب الدقيقة على إنتاج الكتلة الحيوية ومحتوى الدهون. يتم التحكم في زياده انتاج الكتلة الحيوية و محتوى الدهون بواسطة عدة عوامل فى هذا العمل تم دراسة تأثيرات ثلاث اوساط غذائيه خاصة بزراعة الطحالب (BG11, BBM, Urea و تراكم الدهون بواسطة عدة عوامل فى هذا العمل تم دراسة تأثيرات ثلاث اوساط غذائيه خاصة بزراعة الطحالب (BG11, BBM, Urea و تراكم الدهون بواسطة عدة عوامل فى هذا العمل تم دراسة تأثيرات ثلاث اوساط غذائيه خاصة بزراعة الطحالب (BG11, BBM, Urea و تراكم الدهون بواسطة عدة عوامل فى هذا العمل تم دراسة تأثيرات ثلاث اوساط غذائيه خاصة بزراعة الطحالب (BG11, BBM, Urea و و تراكم الدهون الطحالب و و المغنيسيوم و الكربون) واشعة جاما على نمو وانتاج الدهون لطحالب *Dictyochloropsis splendida* و الدهون لطحالب قد 2000 مالجدام / لتر نيتروجين او 160 منه من راعة الطحلب على الوسط الغذائي BG11 . علاوة على ذلك كان اعلى انتاجية للكتله الحيويه عند 3000 مليجرام / لتر نيتروجين او 160 مليجرام / لتر فوسفور او 110 مليجرام / لتر مغنسيوم و 200 مليجرام / لتر كربونات . بينما عند غياب المغنيات فان تراكم الدهون زاد. من منجز ام / لتر فوسفور او 110 مليجرام / لتر من الحال الحيوية و 200 مليجرام / لتر مربونات . بينما عند غياب المغنيات فان تراكم الدهون زاد. من منجية اخرى فان المحتوى الدهنى للطحلب وصل الى 18.2% عندما تعرضت خلايا الطحلب لجرعة 25 جراى من اشعة جاما. وكانت الدهون الدهون الدهون الدهون (200 مليجون الدهون الدهون زاد. من الدهون المستخلصة من الطحلب تتكون من نسبة عالية من الاحماض الدهنية المشبعة (33.3%) فصن بنتاديكانويك (25.5%) وحمض الدهون الدهون المستخلصة من الطحلب تتكون من نسبة عالية من الاحماض الدهنية المشبعة (33.3%) فصن بنتاديكانويك (25.5%) وحمض الدهون المستخلصة من الطحلب قرار (20.5%) معمض اللينوليك (20.5%) وحماض الدهون المعني بنتاديكانويك (25.5%) وحمض والدون المستخلصة من الطحلب قرار (25.5%) وحمض اللينوليك (25.5%) وحمض اللينوليك (25.5%) وحمض اللينوليك (25.5%) وحمض اللينوليك (25.5%) و ممثل اللينوليك (25.5%) وحمض الينوليك (25.5%) و ممثل الدماوى وادى وادى والاحماض الدهنية المشبعة (25.5%) وحمض واليون (25.5%) و ممثل اليوليك (25.5%) و ممض اللينوليك (25.5%) و ممض اليلي واليك (25.5%) و ومض الموليك وواديك (25.5%) و ومض الول

الكلمات المفتاحية : وقود الديزل الحيوي ، Dictyochloropsis splendida ، إشعاع جاما ، محتوى الدهون ، العناصر الغذائية.