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Abstract: 
In this research, a mathematical model of tumor treatment by radiotherapy is studied and a new 

modification for the model is proposed as well as introducing the check for the suggested modification. Also 

the stability of the modified model is analyzed in the last section. 
 

Mathematics Subject Classification: 

 

Key words: Cancer, Laplace Adomian Decomposition method,Radiotherapy. 

 

Introduction: 
One of the most important applications of 

differential equations in medicine is cancer growth 

and treatment. Cancer is nothing but an 

uncontrolled growth of abnormal cells inside the 

body (1). The origin of the word cancer is credited 

from the Greek physician Hippocrates (460-370 

BC), who is considered as “Father of Medicine”.  

Hippocrates used the terms carcinos and carcinoma 

to describe non-ulcer forming and ulcer-forming 

tumors. In Greek, these words refer to a crab, most 

likely applied to the disease, because the finger-

like spreading projections from a cancer called to 

mind the shape of a crab (2). There are five main 

cancer groups, including, Leukemias, Sarcomas, 

Carcinomas, Lymphomas, and Brain tumors (3). 

According to the reports of the Cancer Research 

Institute, about 1,252,000 cases were diagnosed, 

with 547,000 deaths in 1995 in the United States 

alone (4). The International Agency for Research 

on Cancer reported that 12.7 million new cancer 

cases were detected in 2008. Today, there are new 

techniques for the detection of cancer and this will 

increase the chances of survival to more than 50%.  

There are several treatment techniques which are 

used to treat cancer, such as surgery, 

chemotherapy, radiotherapy, immunotherapy, 

transplant one marrow and stem cells, hormone 

therapy, drug therapy, and clinical trials.  The idea 

of using the qualitative theory of ordinary 

differential equations goes back to the twenties of 

the past century when Lotka and Volterra 

formulated a simple mathematical model in 

population dynamics theory (5). They described 

the interaction between the predator and the prey 

in a model called predator-prey model, which is a 

very important problem in ecology.  In 1973, Bell 

proposed a mathematical model consisting of two 

equations based on the predator-prey model (6). 

De Boer and Hogeweg (1986) introduced a model 

consists of 10 ODEs and 3 additional equations 

describing several players of immune response. 

This model also covered all the phenomena from 

uncontrolled tumor growth to tumor regression due 

to immune system response (7). Kuznetsov (1994) 

presented a mathematical model of CTL 

(Cytotoxic T Lymphocytes i.e. cells with antitumor 

activity) cells response to the growth of 

immunogenic tumor, and he explained a number of 

phenomena, including sneaking through, dormant 

state of the tumor, and immunostimulation (8). 

Adam and Bellomo (1997) published a good 

summary on the tumor-immune dynamics, and it 

was based on Kuznetsov’s work (1).  Kirschner 

and Panetta (1998) described the dynamics 

between tumor cells, effector cells, and the 

cytokine interleukine-2 (IL-2) by a mathematical 

model, which is considered as a modulator of the 

immune stimulus (9). de Pillis and Radunskaya 

(2001 and 2006) proposed detailed models about 

the immune response differentiating between 

Natural Killer cells (NK-cells), CD8+ cytotoxic T-

cells, and other lymphocytes (10)(11).  
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In this paper, a mathematical model is 

reformulated with a new modification in one of its 

terms, specifically the radiation harvesting term. 

This term is responsible of the effect of radiation 

on the tumor cells. The new modification describes 

more powerful performance for the radiation 

without being affected by the change in parameters 

values. The value of the parameter in the new 

modification is calculated by using medical data of 

a patient and then the stability of the modified 

model is analyzed to explain the effect of the new 

term.   

 

The Mathematical Model 
In this section, we present the model that will be 

modified with new form to improve its 

performance in the treatment of tumors. The 

following model studies the coexistence of the 

healthy and cancer cells when treated with 

radiotherapy (12): 

 
𝑑𝐻

𝑑𝑡
= 𝛼1𝐻 (1 −

𝐻

𝑘1
) − 𝛽1𝐻𝑇 − 𝜀𝛾𝐻     

𝑑𝑇

𝑑𝑡
= 𝛼2𝑇 (1 −

𝑇

𝑘2
) − 𝛽2𝐻𝑇 − 𝛾𝑇           , 𝑡 ∈

[𝑛𝑡0, 𝑛𝑡0 + 𝑙]                                                    (1) 

 

With initial conditions: 𝐻(0) = ℎ , 𝑇(0) = 𝜏. 

Where 𝐻 is the concentration of healthy cells, 𝑇 is 

the concentration of tumor cells, ℎ, 𝜏 are the initial 

concentrations of healthy cells and tumor cells 

respectively, 𝛼1, 𝛼2 > 0 are the growth rates of 

healthy cells and tumor cells respectively, 𝑘1, 𝑘2 >
0 are the carrying capacities of healthy cells and 

tumor cells respectively, 𝛽1, 𝛽2 are the respective 

competition coefficients of healthy cells and tumor 

cells respectively, 𝜀 > 0 is the proportion 

coefficient of the radiation, and 𝛾 is the strategy of 

radiation (12). Before we suggest the modifications 

of model (1), we have to check for the effect of the 

radiotherapy on the tumor cells in the tumor site 

(when  𝐻 =  0). 

 
𝑑𝑇

𝑑𝑡
= 𝛼2𝑇 (1 −

𝑇

𝑘2
) − 𝛾𝑇  

 

Solving the above equation to find 𝑇(𝑡): 

 
𝑑𝑇

𝑑𝑡
= (𝛼2 − 𝛾)𝑇 −

𝛼2

𝑘2
𝑇2  

 

∫
𝑑𝑇

𝑇((𝛼2−𝛾)− 
𝛼2
𝑘2

 𝑇)

= ∫ 𝑑𝑡  

 
1

𝛼2−𝛾
 ln 𝑇 −

1

𝛼2−𝛾
ln |(𝛼2 − 𝛾) −  

𝛼2

𝑘2
 𝑇| = 𝑡 + 𝑐  

 

ln |
𝑇

(𝛼2−𝛾)− 
𝛼2
𝑘2

 𝑇
| = (𝛼2 − 𝛾)𝑡 + (𝛼2 − 𝛾)𝑐 , where 

(𝛼2 − 𝛾) − 
𝛼2

𝑘2
 𝑇 ≠ 0  

 
𝑇

(𝛼2−𝛾)− 
𝛼2
𝑘2

 𝑇
= 𝑘𝑒(𝛼2−𝛾)𝑡 , where  𝑘 = 𝑒(𝛼2−𝛾)𝑐   

 

𝑇(𝑡) =
(𝛼2−𝛾)𝑘

𝛼2𝑘

𝑘2
+ 𝑒−(𝛼2−𝛾)𝑡

                                            (2) 

 

Now, we have two cases to discuss: 

1) When 𝛼2 > 𝛾 then as 𝑡 → ∞ , 𝑇(𝑡) →
𝑘2(𝛼2−𝛾)

𝛼2
 

2) When 𝛼2 < 𝛾 then as 𝑡 → ∞ , 𝑇(𝑡) → 0 

 

From the cases above, we notice that (2) is affected 

by the values of 𝛼2, 𝛾 which are the growth rate of 

tumor cells and the amount of radiation 

respectively.  It is known that there is no cure that 

completely eliminates cancer but can only stop its 

growth. We need to think of the case of 

eliminating the tumor completely, so we have to 

find a modification which is not affected by any 

change in the parameters values. 

 

The Suggested Modification  
As mentioned before, the new modification is not 

affected by any change in parameters values. The 

radiation harvesting term 𝛾𝑇 in the second 

equation will be replaced by 𝛼3𝛾𝑇3 as follows: 

 
𝑑𝐻

𝑑𝑡
= 𝛼1𝐻 (1 −

𝐻

𝑘1
) − 𝛽1𝐻𝑇 − 𝜀𝛾𝐻     

𝑑𝑇

𝑑𝑡
= 𝛼2𝑇 (1 −

𝑇

𝑘2
) − 𝛽2𝐻𝑇 − 𝛼3𝛾𝑇3        , 𝑡 ∈

[𝑛𝑡0, 𝑛𝑡0 + 𝑙]          (3) 

 

Where 𝛼3 > 0 

The new term decreases the rate of change in the 

tumor concentration and kills more of tumor cells 

than model (1). Now, we check for the effect of the 

radiotherapy on the tumor cells in the tumor site 

(when ℎ =  0, that is 𝐻 = 0): 

 
𝑑𝑇

𝑑𝑡
= 𝛼2𝑇 (1 −

𝑇

𝑘2
) − 𝛼3𝛾𝑇3  

 

Solving the above equation to find 𝑇(𝑡): 

𝑇(𝑡) =

𝛼2
𝛼3𝑘2𝛾

𝑘 −√(
𝛼2

2𝑘2

𝛼3
2𝑘2

2𝛾2)−4
𝛼2

𝛼3𝛾
𝑘𝑒−2𝛼2𝑡(1−𝑘𝑒2𝛼2𝑡)

2(𝑒−2𝛼2𝑡− 𝑘)
  (4) 

                         

We see that as 𝑡 → ∞ , 𝑇(𝑡) → 0 and this explains 

that model (3) could be more powerful than model 

(1). 
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Laplace Adomian Decomposition Method  

Now, we introduce the Laplace Adomian 

decomposition method which will be used in the 

solution of model (3) when 𝐻 ≠ 0. This method is 

a combination of two methods Laplace 

transformation and the Adomian decomposition 

method, and it is used when we have nonlinear 

terms in the differential equation. The Adomian 

decomposition method simplifies the nonlinear 

terms before taking the Laplace transform, since 

Laplace transform deals with linear differential 

equations with constant coefficients. The Laplace 

Adomian decomposition method needs less work 

in comparison with the traditional Adomian 

decomposition method and it also decreases the 

calculations. 

Consider the following system (13): 

 

𝐿𝑡𝑢1 = 𝑅1(𝑢1, … , 𝑢𝑛) + 𝑁1(𝑢1, … , 𝑢𝑛) + 𝑔1  

𝐿𝑡𝑢2 = 𝑅2(𝑢1, … , 𝑢𝑛) + 𝑁2(𝑢1, … , 𝑢𝑛) + 𝑔2  

   ⋮ 
𝐿𝑡𝑢𝑛 = 𝑅𝑛(𝑢1, … , 𝑢𝑛) + 𝑁𝑛(𝑢1, … , 𝑢𝑛) + 𝑔𝑛                                                                                       
 

(5)  

 

With the initial conditions  

𝑢𝑖(0) = 𝑢𝑖0 , 𝑖 = 1, … , 𝑛      (6)                                                          

 

Where 𝐿𝑡 is a first−order differential operator, 

𝑅𝑖 and  𝑁𝑖, 𝑖 = 1, … , 𝑛 are linear and nonlinear 

operators, respectively, and  𝑔𝑖 , 𝑖 = 1, … , 𝑛 are 

analytic functions.  Now, we apply Laplace 

transform to both sides of system (5) and use the 

properties of Laplace transform with the initial 

conditions (6), we get: 

 

ℒ [𝑢1] =
1

𝑠
(𝑢1(0) + ℒ[𝑔1]) +

1

𝑠
ℒ[𝑅1(𝑢1, … , 𝑢𝑛)] +

1

𝑠
ℒ [𝑁1(𝑢1, … , 𝑢𝑛)]  

ℒ [𝑢2] =
1

𝑠
(𝑢2(0) + ℒ[𝑔2]) +

1

𝑠
ℒ[𝑅2(𝑢1, … , 𝑢𝑛)] +

1

𝑠
ℒ[𝑁2(𝑢1, … , 𝑢𝑛)]  

    ⋮ 
ℒ[𝑢𝑛] =
1

𝑠
(𝑢𝑛(0) + ℒ[𝑔𝑛]) +

1

𝑠
ℒ[𝑅𝑛(𝑢1, … , 𝑢𝑛)] +

1

𝑠
ℒ[𝑁𝑛(𝑢1, … , 𝑢𝑛)]            (7)                         

 

Representing the solution as an infinite series, 

namely  

 

𝑢𝑖(𝑡) = ∑ 𝑢𝑖𝑗

∞

𝑗=0

(𝑡),      𝑖 = 1, … , 𝑛                   (8) 

The terms 𝑢𝑖𝑗(𝑡) are to be recursively computed. 

The nonlinear operator 𝑁𝑖 is decomposed as 

follows: 

𝑁𝑖(𝑢1, … , 𝑢𝑛) = ∑ 𝐴𝑖𝑗

∞

𝑗=0

, 𝑖 = 1, … , 𝑛            (9) 

And 𝐴𝑖𝑗 are the so-called Adomian polynomials 

that can be derived for various classes of 

nonlinearity according to specific algorithms set by 

Adomian. We will expand few terms of the infinite 

series for one variable and two-variable Adomian 

polynomials as follows: 

 

Let   𝐴𝑖𝑗 = 𝑓(𝑢𝑖𝑗)  

 

𝐴𝑖0 = 𝑓(𝑢𝑖0)  

 

𝐴𝑖1 = 𝑢𝑖1𝑓′(𝑢𝑖0)  

⋮   
And for the two-variable Adomian polynomials  

 

𝐴 = 𝑓(𝑢, 𝑣) , Where  

 

𝑢 = ∑ 𝑢𝑖𝑗

∞

𝑗=0

   ,   𝑣 = ∑ 𝑣𝑖𝑗

∞

𝑗=0

  ,   𝑖

= 1, … , 𝑛                                                                   (10) 

      

𝐴𝑖0 = 𝑓(𝑢𝑖0, 𝑣𝑖0)  
 

𝐴𝑖1 = 𝑢𝑖1
𝜕𝑓

𝜕𝑢𝑖0
|(𝑢𝑖0,𝑣𝑖0) + 𝑣𝑖1

𝜕𝑓

𝜕𝑣𝑖0
|(𝑢𝑖0,𝑣𝑖0)  

⋮                                                                                                        
Now, let 

𝜇𝑖(𝑠) =
1

𝑠
(𝑢𝑖(0) + ℒ [𝑔𝑖]),

𝑖
= 1, … , 𝑛                                                                   (11) 

 

Substituting (8), (9) and (11) into (7), and using the 

linearity of Laplace transform, we get 

∑ ℒ [𝑢1𝑗]

∞

𝑗=0

= 𝜇1(𝑠) +
1

𝑠
∑ ℒ

∞

𝑗=0

[𝑅1(𝑢1𝑗, … , 𝑢𝑛𝑗)]

+
1

𝑠
∑ ℒ

∞

𝑗=0

[𝐴1𝑗] 

∑ ℒ [𝑢2𝑗]

∞

𝑗=0

= 𝜇2(𝑠) +
1

𝑠
∑ ℒ

∞

𝑗=0

[𝑅2(𝑢1𝑗, … , 𝑢𝑛𝑗)]

+
1

𝑠
∑ ℒ

∞

𝑗=0

[𝐴2𝑗] 

           ⋮   
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∑ ℒ [𝑢𝑛𝑗]

∞

𝑗=0

= 𝜇𝑛(𝑠) +
1

𝑠
∑ ℒ

∞

𝑗=0

[𝑅𝑛(𝑢1𝑗, … , 𝑢𝑛𝑗)]

+
1

𝑠
∑ ℒ

∞

𝑗=0

[𝐴𝑛𝑗]                                                          (12) 

 

Then we have the following recurrence relations 

from corresponding terms on both sides of (12): 

 

ℒ [𝑢𝑖0(𝑡)] = 𝜇𝑖(𝑠) 

ℒ [𝑢𝑖1(𝑡)] =
1

𝑠
ℒ [𝑅𝑖(𝑢10, … , 𝑢𝑛0)] +

1

𝑠
ℒ [𝐴𝑖0]  

ℒ [𝑢𝑖2(𝑡)] =
1

𝑠
ℒ [𝑅𝑖(𝑢11, … , 𝑢𝑛1)] +

1

𝑠
ℒ [𝐴𝑖1]   

      ⋮                                                                                               

ℒ [𝑢𝑖(𝑗+1)(𝑡)] =
1

s
ℒ [𝑅𝑖(𝑢1𝑗, … , 𝑢𝑛𝑗)] +

1

s
ℒ [𝐴𝑖𝑗]       

                                                                         

                                                                           (13) 

 

Applying the inverse Laplace transform to the first 

equation in (13) gives the initial approximation: 

 

  𝑢𝑖0(𝑡) = ℒ−1[𝜇𝑖(𝑠)],    𝑖 = 1, … , 𝑛                  (14)                                                                                             

 

Substituting these values of  𝑢𝑖0 into the inverse 

Laplace transform of the second equation in (13) 

gives 𝑢𝑖1 

 

𝑢𝑖1 = ℒ−1 [
1

s
ℒ [𝑅𝑖(𝑢11, … , 𝑢𝑛1)] +

1

s
ℒ [𝐴𝑖1]]  (15)                                                                                  

 

The other terms 𝑢𝑖2, 𝑢𝑖3, … can be obtained 

recursively from the formula: 

𝑢𝑖(𝑗+1)(𝑡) = ℒ−1 [
1

s
ℒ [𝑅𝑖(𝑢1𝑗, … , 𝑢𝑛𝑗)] +

1

s
ℒ [𝐴𝑖𝑗]] , 𝑗 = 1,2, …         (16)  

 

Solution of the Modified Model 
 Now, we introduce the solution of model (3) 

by using Laplace Adomian decomposition method 

as follows: 

 
𝑑𝐻

𝑑𝑡
= (𝛼1 − 𝜀𝛾)𝐻 −

𝛼1

𝑘1
𝐻2 − 𝛽1𝐻𝑇     

𝑑𝑇

𝑑𝑡
= 𝛼2𝑇 −

𝛼2

𝑘2
𝑇2 − 𝛼3𝛾𝑇3 − 𝛽2𝐻𝑇         , 𝑡 ∈

[𝑛𝑡0, 𝑛𝑡0 + 𝑙]                    (17) 

 

With initial conditions: 𝐻(0) = ℎ, 𝑇(0) = 𝜏. 

Applying the Laplace transform to both sides of 

(17), we get 

 

𝑠ℒ [𝐻] − 𝐻(0) = ℒ [(𝛼1 − 𝜀𝛾)𝐻] − ℒ [ 
𝛼1

𝑘1
𝐻2] −

ℒ[𝛽1𝐻𝑇]  

𝑠ℒ [𝑇] − 𝑇(0) = ℒ [𝛼2𝑇] − ℒ [ 
𝛼2

𝑘2
𝑇2] −

ℒ [𝛼3𝛾𝑇3] − ℒ [𝛽2𝐻𝑇]                                      (18)                                 

 

Applying the initial conditions and using the 

linearity property of Laplace transform to (18): 

 

ℒ [𝐻] =
ℎ

𝑠
+

(𝛼1−𝜀𝛾)

𝑠
ℒ [𝐻] −

𝛼1

𝑠𝑘1
ℒ[ 𝐻2] −

𝛽1

𝑠
ℒ[𝐻𝑇]   

ℒ [𝑇] =
𝜏

𝑠
+

𝛼2

𝑠
ℒ [𝑇] −

𝛼2

𝑠𝑘2
ℒ[ 𝑇2] −

𝛼3𝛾

𝑠
ℒ [𝑇3] −

𝛽2

𝑠
ℒ [𝐻𝑇]         (19) 

 

Now, we represent the solution as an infinite 

series, namely, 

𝐻 = ∑ 𝐻𝑛   ,

∞

𝑛=0

   𝑇 = ∑ 𝑇𝑛 

∞

𝑛=0

                (20)  

 

The terms 𝐻𝑛 and 𝑇𝑛 are to be recursively 

computed. Also the nonlinear terms in the system 

are represented as follows: 
 
𝐴 = 𝐻2, 𝐵 = 𝐻𝑇, 𝐶 = 𝑇2, 𝐷 = 𝑇3     (21)                                                                                   

 

The nonlinear operators 𝐴, 𝐵, 𝐶, and 𝐷 are 

decomposed as follows: 

𝐴 = ∑ 𝐴𝑛,

∞

𝑛=0

 𝐵 = ∑ 𝐵𝑛 

∞

𝑛=0

, 𝐶 = ∑ 𝐶𝑛

∞

𝑛=0

 , 𝑎𝑛𝑑 𝐷

= ∑ 𝐷𝑛

∞

𝑛=0

                                                                    (22) 

 

Where 𝐴𝑛, 𝐵𝑛, 𝐶𝑛, and 𝐷𝑛 are the so-called 

Adomian polynomials and we will expand them as 

follows: 

 

𝐴0 =  𝐻0
2                      ,           𝐵0 =  𝐻0𝑇0 

𝐴1 = 2𝐻1𝐻0                ,        𝐵1 =  𝐻0𝑇1 + 𝐻1𝑇0 

𝐴2 = 2𝐻2𝐻0 + 𝐻1
2     ,   𝐵2 =  𝐻0𝑇2 + 𝐻1𝑇1 +

𝐻2𝑇0 
 

 

  ⋮                                                                     ⋮ 
𝐶0 =  𝑇0

2                           ,            𝐷0 =  𝑇0
3  

𝐶1 = 2𝑇1𝑇0                     ,            𝐷1 =  3𝑇1𝑇0
2 

𝐶2 = 2𝑇2𝑇0 + 𝑇1
2        ,            𝐷2 =  3𝑇2𝑇0

2 +
3𝑇0𝑇1

2 
 

  ⋮                                                                    ⋮ 
 

Substituting (20) and (22) into (19): 
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ℒ [∑ 𝐻𝑛
∞
𝑛=0 ] =

ℎ

𝑠
+

(𝛼1−𝜀𝛾)

𝑠
ℒ[∑ 𝐻𝑛

∞
𝑛=0 ] −

𝛼1

𝑠𝑘1
ℒ [∑ 𝐴𝑛

∞
𝑛=0 ] −

𝛽1

𝑠
ℒ [∑ 𝐵𝑛

∞
𝑛=0 ]   

 

ℒ [∑ 𝑇𝑛
∞
𝑛=0 ] =

𝜏

𝑠
+

𝛼2

𝑠
ℒ [∑ 𝑇𝑛

∞
𝑛=0 ] −

𝛼2

𝑠𝑘2
ℒ [∑ 𝐶𝑛

∞
𝑛=0 ] −

𝛼3𝛾

𝑠
ℒ [∑ 𝐷𝑛

∞
𝑛=0 ] − 

𝛽2

𝑠
ℒ [∑ 𝐵𝑛

∞
𝑛=0 ]    (23) 

 

Matching both sides of (23) yields the following 

iterative algorithms: 

ℒ [𝐻0] =
ℎ

𝑠
  

ℒ [𝐻1] =
(𝛼1−𝜀𝛾)

𝑠
ℒ [𝐻0] −

𝛼1

𝑠𝑘1
ℒ [𝐴0] −

𝛽1

𝑠
ℒ [𝐵0]     

   ⋮ 

ℒ [𝐻𝑛+1] =
(𝛼1−𝜀𝛾)

𝑠
ℒ[𝐻𝑛] −

𝛼1

𝑠𝑘1
ℒ [𝐴𝑛] −

𝛽1

𝑠
ℒ [𝐵𝑛]  

                            (24) 

And  

ℒ [𝑇0] =
𝜏

𝑠
  

ℒ [𝑇1] =
𝛼2

𝑠
ℒ [𝑇0] −

𝛼2

𝑠𝑘2
ℒ [𝐶0] −

𝛼3𝛾

𝑠
ℒ [𝐷0] −

 
𝛽2

𝑠
ℒ [𝐵0]     

   ⋮                                          

ℒ [𝑇𝑛+1] =
𝛼2

𝑠
ℒ [𝑇𝑛] −

𝛼2

𝑠𝑘2
ℒ [𝐶𝑛] −

𝛼3𝛾

𝑠
ℒ [𝐷𝑛] −

 
𝛽2

𝑠
ℒ [𝐵𝑛]                (25) 

 

Taking the first term of each series: 

ℒ [𝐻0] =  
ℎ

𝑠
 ,ℒ[ 𝑇0] =

𝜏

𝑠
                             (26) 

 

Applying the inverse Laplace transform to (26), we 

get  

𝐻0 = ℎ,   𝑇0 = 𝜏                              (27) 

 

 Using the values from (27) to obtain 𝐻1, 𝑇1 

ℒ [𝐻1] =
(𝛼1−𝜀𝛾)

𝑠
ℒ [ℎ] −

𝛼1

𝑠𝑘1
ℒ [ℎ2] −

𝛽1

𝑠
ℒ [ℎ𝜏]  

            = (𝛼1 − 𝜀𝛾 −
𝛼1ℎ

𝑘1
− 𝛽1𝜏)

ℎ

𝑠2  

ℒ [𝑇1] =
𝛼2

𝑠
ℒ [𝜏] −

𝛼2

𝑠𝑘2
ℒ [𝜏2] −

𝛼3𝛾

𝑠
ℒ [𝜏3] −

 
𝛽2

𝑠
ℒ [ℎ𝜏]    = (𝛼2 − 𝛽2ℎ −

𝛼2𝜏

𝑘2
− 𝛼3𝛾𝜏2)

𝜏

𝑠2     (28)                                   

 

Applying the inverse Laplace transform to (28), we 

get 

𝐻1 = (𝛼1 − 𝜀𝛾 −
𝛼1ℎ

𝑘1
− 𝛽1𝜏)ℎ 𝑡  

𝑇1 = (𝛼2 − 𝛽2ℎ −
𝛼2𝜏

𝑘2
− 𝛼3𝛾𝜏2)𝜏 𝑡             (29) 

Using the values from (29) to obtain  𝐻2 , 𝑇2 with 

the same procedure: 

𝐻2 = [(𝛼1 − 𝜀𝛾 −
2α1ℎ

𝑘1
− 𝛽1𝜏)(𝛼1 − 𝜀𝛾 −

α1ℎ

𝑘1
−

𝛽1𝜏) − 𝛽1𝜏 (𝛼2 − 𝛽2ℎ −
α2𝜏

𝑘2
− 𝛼3𝛾𝜏2)] ℎ

𝑡2

2
  

𝑇2 = [(𝛼2 − 𝛽2ℎ −
2α2𝜏

𝑘2
− 3𝛼3𝛾𝜏2)(𝛼2 − 𝛽2ℎ −

α2𝜏

𝑘2
− 𝛼3𝛾𝜏2) − 𝛽2ℎ(𝛼1  − 𝜀𝛾 −

α1ℎ

𝑘1
− 𝛽1𝜏)]𝜏

𝑡2

2
  

(30) 

 

Because of the uniform convergence property, few 

terms of each series of  𝐻 and 𝑇 are enough for a 

good accuracy. Then we can write the solution of 

system (3) as follows: 

𝐻(𝑡) = ℎ + (𝛼1 − 𝜀𝛾 −
α1ℎ

𝑘1
− 𝛽1𝜏)ℎ𝑡 + [(𝛼1 −

𝜀𝛾 −
2α1ℎ

𝑘1
− 𝛽1𝜏)(𝛼1 − 𝜀𝛾 −

α1ℎ

𝑘1
− 𝛽1𝜏) −

𝛽1𝜏 (𝛼2 − 𝛽2ℎ −
α2𝜏

𝑘2
− 𝛼3𝛾𝜏2)] ℎ

𝑡2

2
                      

(31)                                                                                    

𝑇(𝑡) = 𝜏 + (𝛼2 − 𝛽2ℎ −
α2𝜏

𝑘2
− 𝛼3𝛾𝜏2)𝜏𝑡 + [(𝛼2 −

𝛽2ℎ −
2α2𝜏

𝑘2
−  3𝛼3𝛾𝜏2)(𝛼2 − 𝛽2ℎ −

α2𝜏

𝑘2
− 𝛼3𝛾𝜏2)   

         −𝛽2ℎ(𝛼1 − 𝜀𝛾 −
α1ℎ

𝑘1
− 𝛽1𝜏)]𝜏

𝑡2

2
    (32) 

                                                                                              

Calculation of the Unknown Parameter (𝜶𝟑)  

In this section, a full study of the stability of model 

(3) will be analyzed to explain the behavior of the 

model with the new modification. First, we have to 

calculate the value of the unknown parameter (𝛼3) 

in the suggested modification. In table 1 medical 

data of a patient suffering from renal cell 

carcinoma (RCC) during radiotherapy will be used 

to calculate (𝛼3). 

 

Table 1. Values and Description of the 

Parameters in Model (3). 

Parameter Description Value Source 

𝜶𝟏 
The growth rate of 

healthy cells 
0.2 (12) 

𝜶𝟐 
The growth rate of 

tumor cells 
0.45 (12) 

𝒌𝟏 
The carrying 

capacity of healthy 

cells 
0.65 (12) 

𝒌𝟐 
The carrying 

capacity of tumor 

cells 
1 (12) 

𝜺 
The proportion 

coefficient of 

radiation 
0.3 (12) 

𝜸 
The strategy of 

radiation 
0.65 (12) 

𝜷𝟏 

The respective 

competition 

coefficient of 

healthy cells 

0.5 (12) 

𝜷𝟐 

The respective 

competition 

coefficient of tumor 

cells 

0.55 (12) 
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       Now, we introduce medical data of a cancer 

patient suffering from (RCC) during the treatment 

with radiotherapy. The data includes the time of 

radiation dose (in hours) and the concentration of 

tumor cells corresponding to each time as in table 

2. 

 

Table 2. Medical Data of a Cancer Patient 

During Radiotherapy. 
Time (hours) Concentration of tumor cells 

0 0.8 

1 0.69 

2.25 0.20 

 

The initial conditions (12) are: 

𝐻(0) = ℎ = 0.5   
 𝑇(0) = 𝜏 = 0.8                                      (33) 

 

Substituting the values of the parameters in Table 

1 and the initial conditions from (33) into (32), we 

get 𝑇(𝑡): 
 

𝑇(𝑡) = 0.8 − (0.148 + 0.3328 𝛼3)𝑡 +
(0.16613376 𝛼3

2 + 0.146432 𝛼3 −
 0.028109076)𝑡2                                              (34) 

 

When 𝑡 = 1 and 𝑇 = 0.69 in (34), we obtain 

0.16613376 𝛼3
2 − 0.186368 𝛼3 −

0.066109076 = 0                                             (35)    

 

(𝛼3)1,2 =
0.186368±√0.078664828

0.33226752
  

 = {
1.405013978

−0.283219106
 

 

Then  𝛼3 = 1.405013978 > 0  

 

After finding the value of 𝛼3; then we can study 

the stability of model (3) and the linearization 

theorem will be used for this purpose as follows: 

 
𝑑𝐻

𝑑𝑡
= 𝛼1𝐻(1 −

𝐻

𝑘1
) − 𝛽1𝐻𝑇 − 𝜀𝛾𝐻      

𝑑𝑇

𝑑𝑡
= 𝛼2𝑇(1 −

𝑇

𝑘2
) − 𝛽2𝐻𝑇 − 𝛼3𝛾𝑇3  

Setting  ( 
𝑑𝐻

𝑑𝑡
= 0,

𝑑𝑇

𝑑𝑡
= 0), we get: 

𝛼1𝐻(1 −
𝐻

𝑘1
) − 𝛽1𝐻𝑇 − 𝜀𝛾𝐻 = 0                                                          

𝛼2𝑇(1 −
𝑇

𝑘2
) − 𝛽2𝐻𝑇 − 𝛼3𝛾𝑇3 = 0  

From the first equation, we have: 𝐻 = 0 or 𝑇 =
1

𝛽1
(𝛼1 − 𝜀𝛾 −

𝛼1

𝑘1
𝐻)  

 

When 𝐻 = 0 in the second equation, we get: 

𝑇 = 0 or (𝛼3𝛾𝑇2 +
𝛼2

𝑘2
𝑇 − 𝛼2) = 0  

 

Then we have the following two equilibrium 

points: 

𝐸1 = (0,0) and 𝐸2 = (0,
−𝛼2+√𝛼2

2+4𝛼3𝛼2𝛾𝑘2
2

2𝛼3𝛾𝑘2
 )   (36)                                                                           

 

When 𝑇 =
1

𝛽1
(𝛼1 − 𝜀𝛾 −

𝛼1

𝑘1
𝐻) in the second 

equation, we get the following cubic equation: 
𝛼1

3𝛼3𝛾

𝑘1
3𝛽1

3 𝐻3 + ( 
𝛼1𝛽2

𝑘1𝛽1
−

𝛼1
2𝛼2

𝛽1
2𝑘1

2𝑘2
−

3𝛼1
2𝛼3𝛾

𝑘1
2𝛽1

3 (𝛼1 −

𝜀𝛾)) 𝐻2 + (−
𝛼1𝛼2

𝑘1𝛽1
−

𝛽2

𝛽1
(𝛼1 − 𝜀𝛾) +  

2𝛼1𝛼2

𝛽1
2𝑘1𝑘2

(𝛼1 −

𝜀𝛾)  

+
3𝛼1𝛼3𝛾

𝑘1𝛽1
3 (𝛼1 − 𝜀𝛾)2) 𝐻 +  ( 

𝛼2

𝛽1
(𝛼1 − 𝜀𝛾) −

𝛼2

𝛽1
2𝑘2

(𝛼1 − 𝜀𝛾)2 −
𝛼3𝛾

𝛽1
3 (𝛼1 − 𝜀𝛾)3) = 0                       

(37) 

 

Substituting the values of the parameters into (36) 

and (37), we get: 

𝐸1 = (0,0)    
𝐸2 = (0, 0.497564521)   

And equation (37) will be: 

𝐻3 + 0.740832892 𝐻2 − 1.300170734 𝐻 +
0.020927857 = 0                                                     
(38) 

 

The roots of (38) are: 

𝐻1 = 0.81777  

𝐻2 = 0.01625  

𝐻3 = −1.57485  

We take 𝐻2 only since 𝐻1 gives negative value for 

T. Then we have the third equilibrium point: 

𝐸3 = (0.01625, 2.25 × 10−11)  

The linearization matrix of system (3) is 

 

𝐴 =

[
𝛼1 − 𝜀𝛾 −

2𝛼1

𝑘1
H − 𝛽1T −𝛽1H

−𝛽2T 𝛼2 −
2𝛼2

𝑘2
T − 𝛽2H − 3𝛼3𝛾T2

]  

 

Now, we calculate 𝐴 at each equilibrium point 

1) 𝐴E1
= [

0.005 0
0 0.45

]  

The eigenvalues are 

𝜆1 = 0.45 ,   𝜆2 = 0.005  

We notice that 𝐸1 is unstable equilibrium point 

which is the case when there are no healthy cells 

and tumor cells.  

2) 𝐴E2
= [

−0.24378226 0
−0.273660486 −0.676095964

] 

The eigenvalues are  

𝜆1 = −0.24378226 ,   𝜆2 = −0.676095964  

Since both of the eigenvalues are negative then 𝐸2 

is an asymptotically stable equilibrium point. This 
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means that when there are only tumor cells, then 

the radiation will eliminate them successfully. 

 

3) 

𝐴E3
=

[5.000000011 × 10−3 −8.125 × 10−3

−1.2375 × 10−11 −3.93750002 × 10−3] 

𝑝(𝜆) = 𝜆2 − 1.062499991 × 10−3𝜆 −
1.02515625 × 10−13 = 0  
 

The eigenvalues are  

𝜆1 = 0.0010625 ,   𝜆2 = −9.648528 × 10−11  

Since the eigenvalues have opposite signs, then 𝐸3 

is an unstable saddle node. In this case there are 

healthy and tumor cells in the tumor site and this 

causes a delay in the work of radiotherapy which 

gives a chance to tumor cells to grow and divide. 

 

Conclusion:   
 In this paper, we presented a dynamical 

system of two equations which describe the 

coexistence between healthy cells and tumor cells. 

A modification was introduced to enhance the 

performance of the radiotherapy by suggesting a 

new harvesting term 𝛼3𝛾𝑇3which assumes that the 

radiation kills more than one tumor cell in the 

same time without increasing the dose of 

radiation 𝛾. The Laplace Adomian decomposition 

method was used for solving the system and to 

find 𝛼3, we used medical data of a cancer patient 

during the treatment with radiotherapy. Finally, we 

studied the stability of the modified model when 

all the parameters are known.   
 

 

Authors' declaration: 
- Conflicts of Interest: None. 

- We hereby confirm that all the Figures and 

Tables in the manuscript are mine ours. 

Besides, the Figures and images, which are not 

mine ours, have been given the permission for 

re-publication attached with the manuscript. 

- The author has signed an animal welfare 

statement. 

- Ethical Clearance: The project was approved by 

the local ethical committee in University of 

Baghdad.        

 
 

References:  
1. Adam JA, Bellomo N. A Survey of Models for 

Tumor-Immune System Dynamics. Boston, USA: 

Birkhauser Series on Modeling and Simulation in 

Science, Engineering and Technology [internet], 

Birkhauser.1997. Available from: 

https://doi.org/10.1002/1097-

0258(20001130)19:22%3C3140::AID-

SIM610%3E3.0.CO;2-Q 

2. American Cancer Society, Early History of Cancer; 

[cited 2017 Feb 2].  

Available from:   

https://www.cancer.org/cancer/cancer.../history...canc

er/what-is-cancer  

3. Cancer Research UK, What is cancer; [cited 2017 

Feb 2]. Available from: 

https://www.cancerresearchuk.org/about-

cancer/what-is-cancer 

4. Chang W, Crowl L, Malm E, Todd-Brown K, 

Thomas L, Vrable M. Analyzing Immunotherapy 

and Chemotherapy of Tumors through Mathematical 

Modeling. HMC [internet]. 2003 May [cited 2017 

Feb 19]. Available from: 

https://www.math.utah.edu/~crowl/research/tumor 

5. Tsygvintsev A, Marino S, Kirschner DE. 

Mathematical Methods and Models in Biomedicine 

[internet]. Berlin, Germany: Springer; 2013. A 

Mathematical Model of Gene Therapy for the 

Treatment of Cancer [cited 2017 Jan 26]. p. 355-73. 

Available from: 

https://www.researchgate.net/publication/267829423  

6. Pang L, Shen L, Zhao Z. Mathematical Modeling 

and Analysis of Tumor Treatment Regimens with 

Pulsed Immunotherapy and Chemotherapy. Comput 

Math Methods Med [internet]. 2016 [cited 2017 Jan 

26]; 2016(2016):1-12. Available from: 

http://dx.doi.org/10.1155/2016/6260474 

7. Roesch K, Hasenclever D, Scholz M. Modeling 

Lymphoma Therapy and Outcome. Bull Math Biol 

[internet]. 2014 Jan [cited 2017 Jan 26];76(2):401-

30. Available from: 

https://link.springer.com/article/10.1007/s11538-013-

9925-3 

8. Kuznetsov VA, Makalkin IA, Taylor MA, Perelson 

AS. Nonlinear Dynamics of Immunogenic Tumors: 

Parameter Estimation and Global Bifurcation 

Analysis. Bull Math Biol [internet]. 1994 [cited 2017 

Jan 26];56(2): 295-21. Available from: 

https://www.sciencedirect.com/science/article/pii/S00

92824005802605  

9. Kirschner D, Panetta JC. Modeling Immunotherapy 

of the Tumor-Immune Interaction. J Math Biol 

[internet]. 1998 [cited 2017 Feb 19];37(3):235-52. 

Available from: 

https://doi.org/10.1007/s002850050127  

10. De Pillis L, Radunskaya A. A Mathematical Tumor 

Model with Immune Resistance and Drug Therapy: 

An Optimal Control Approach, J Theor Med 

[internet]. 2001 [cited 2017 Jan 26];3(2):79-100. 

http://dx.doi.org/10.1080/10273660108833067  

11. De Pillis L, Gu W, Radunskaya A. Mixed 

Immunotherapy and Chemotherapy of Tumors: 

Modeling, Applications and Biological 

Interpretations. J Theor Biol [internet]. 2006 Mar 

[cited 2017 Jan 26]; 238(4): 841-62. Available from: 

https://doi.org/10.1016/j.jtbi.2005.06.037  

12. Liu Z, Yang C. A Mathematical Model of Cancer 

Treatment by Radiotherapy. Comput Math Methods 

Med [internet]. 2014 Nov [cited 2017 May 

22];2014(2014):1-12. Available from: 

https://doi.org/10.1002/1097-0258(20001130)19:22%3C3140::AID-SIM610%3E3.0.CO;2-Q
https://doi.org/10.1002/1097-0258(20001130)19:22%3C3140::AID-SIM610%3E3.0.CO;2-Q
https://doi.org/10.1002/1097-0258(20001130)19:22%3C3140::AID-SIM610%3E3.0.CO;2-Q
https://www.cancer.org/cancer/cancer.../history...cancer/what-is-cancer
https://www.cancer.org/cancer/cancer.../history...cancer/what-is-cancer
https://www.cancerresearchuk.org/about-cancer/what-is-cancer
https://www.cancerresearchuk.org/about-cancer/what-is-cancer
https://www.math.utah.edu/~crowl/research/tumor
https://www.google.com/search?q=Berlin&stick=H4sIAAAAAAAAAOPgE-LUz9U3MImvKjFQ4gAxDU3NCrW0spOt9POL0hPzMqsSSzLz81A4VhmpiSmFpYlFJalFxYtY2ZxSi3Iy8wBw_1z_TAAAAA&sa=X&ved=2ahUKEwjWg7T3sMHjAhW4AxAIHel7BfwQmxMoATAXegQIDBAH
https://www.researchgate.net/publication/267829423_A_Mathematical_Model_of_Gene_Therapy_for_the_Treatment_of_Cancer
http://dx.doi.org/10.1155/2016/6260474
https://link.springer.com/article/10.1007/s11538-013-9925-3
https://link.springer.com/article/10.1007/s11538-013-9925-3
https://www.sciencedirect.com/science/article/pii/S0092824005802605
https://www.sciencedirect.com/science/article/pii/S0092824005802605
https://doi.org/10.1007/s002850050127
http://dx.doi.org/10.1080/10273660108833067
https://doi.org/10.1016/j.jtbi.2005.06.037


Open Access     Baghdad Science Journal                                P-ISSN: 2078-8665 

2020, 17(3):841-848                                                            E-ISSN: 2411-7986 

 

848 

 

http://dx.doi.org/10.1155/2014/172923  

13. Radunskaya A, Kim R, Woods II T. (2018), 

Mathematical Modeling of Tumor Immune 

Interactions: A Closer Look at the Role of a PD-L1 

Inhibitor in Cancer Immunotherapy. Spora [internet]. 

2018 [cited 2018 Dec 15];4(1):25-41. Available 

from: 

http://doi.org/10.30707/SPORA4.1Radunskaya  

14. Arrowsmith DK., Place CM. Dynamical Systems: 

Differential Equations, Maps and Chaotic Behavior. 

London: Chapman and Hall; 1992. 330. 

15. Hayder MA, Andrew JA, John W. (2018), 

Dynamical Density-Functional-Theory-Based 

Modeling of Tissue Dynamics: Application to 

Tumor Growth. Phys Rev E [internet]. 2018 Aug 

[cited 2018 Oct 10];98(2-1): 022407. Available 

from: 

https://doi.org/10.1103/PhysRevE.98.022407 

16. Medina MA. Mathematical Modeling of Cancer 

Metabolism. Crit Rev Oncol Hematol [internet]. 

2018 Apr [cited 2018 Oct 10];124(2018):37-40. 

Available from: 

https://doi.org/10.1016/j.critrevonc.2018.02.004  

17. Milad Shamsi, Mohsen Saghafian, Morteza Dejam 

and Amir Sanati-Nezhad. Mathematical Modeling of 

the Function of Warburg Effect in Tumor 

Microbiology. Sci Rep [internet]. 2018 Jun [cited 

2018 Oct 10];8(1):8903. Available from: 

https://doi.org/10.1038/s41598-018-27303-6  

18. Olivia M. A mathematical model of cancer networks 

with radiation therapy. J Young Investig [internet]. 

2014 [cited 2017 Jun 13];27(6):17-26. Available 

from: 

https://static1.squarespace.com/static/5443d7c7e4b06

e8b47de9a55/t/58dc7ecd6a4963e5f5c2c169/149084

5398292/JYI_Dec2014_17to26-1.pdf 

19. Sabir W, Mohammed AK. Approximation 

Algorithm for a System of Pantograph Equations. J 

Appl Math [internet]. 2012 Mar [cited 2017 Jan 

26];2012(2012):1-9. Available from: 

http://dx.doi.org/10.1155/2012/714681  

20. Sebastian B, Clare L, Dominique B, Lynn H, Philip 

H. Mathematical Modeling of Tumor-Tumor Distant 

Interactions Supports A Systemic Control of Tumor 

Growth. Am J Cancer [internet]. 2017 Jul [cited 

2018 Oct 10];77(18):5183-5193. Available from: 

https://doi.org/10.1158/0008-5472.can-17-0564  

 

 

 نموذج رياضي معدل لمعالجة الاورام باستخدام العلاج الاشعاعي

 
 فاطمه احمد شهاب                سعد ناجي العزاوي          

 

 , بغداد, العراق., جامعة بغدادكلية العلوم للبنات, قسم الرياضيات
 

  الخلاصة: 

درسنا في هذا البحث نموذجاً رياضياً لمعالجة الاورام باستخدام العلاج الاشعاعي و تم اقتراح تعديل جديد للنموذج بالاضافة الى 

 التحقق من التعديل. وايضاً تم تحليل استقرارية النموذج في البند الاخير. 
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