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Abstract:

In this research, a mathematical model of tumor treatment by radiotherapy is studied and a new
modification for the model is proposed as well as introducing the check for the suggested modification. Also
the stability of the modified model is analyzed in the last section.
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Introduction:

One of the most important applications of
differential equations in medicine is cancer growth
and treatment. Cancer is nothing but an
uncontrolled growth of abnormal cells inside the
body (1). The origin of the word cancer is credited
from the Greek physician Hippocrates (460-370
BC), who is considered as “Father of Medicine”.
Hippocrates used the terms carcinos and carcinoma
to describe non-ulcer forming and ulcer-forming
tumors. In Greek, these words refer to a crab, most
likely applied to the disease, because the finger-
like spreading projections from a cancer called to
mind the shape of a crab (2). There are five main
cancer groups, including, Leukemias, Sarcomas,
Carcinomas, Lymphomas, and Brain tumors (3).
According to the reports of the Cancer Research
Institute, about 1,252,000 cases were diagnosed,
with 547,000 deaths in 1995 in the United States
alone (4). The International Agency for Research
on Cancer reported that 12.7 million new cancer
cases were detected in 2008. Today, there are new
techniques for the detection of cancer and this will
increase the chances of survival to more than 50%.
There are several treatment techniques which are
used to treat cancer, such as surgery,
chemotherapy, radiotherapy, immunotherapy,
transplant one marrow and stem cells, hormone
therapy, drug therapy, and clinical trials. The idea
of using the qualitative theory of ordinary
differential equations goes back to the twenties of
the past century when Lotka and Volterra
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formulated a simple mathematical model in
population dynamics theory (5). They described
the interaction between the predator and the prey
in a model called predator-prey model, which is a
very important problem in ecology. In 1973, Bell
proposed a mathematical model consisting of two
equations based on the predator-prey model (6).
De Boer and Hogeweg (1986) introduced a model
consists of 10 ODEs and 3 additional equations
describing several players of immune response.
This model also covered all the phenomena from
uncontrolled tumor growth to tumor regression due
to immune system response (7). Kuznetsov (1994)
presented a mathematical model of CTL
(Cytotoxic T Lymphocytes i.e. cells with antitumor
activity) cells response to the growth of
immunogenic tumor, and he explained a number of
phenomena, including sneaking through, dormant
state of the tumor, and immunostimulation (8).
Adam and Bellomo (1997) published a good
summary on the tumor-immune dynamics, and it
was based on Kuznetsov’s work (1). Kirschner
and Panetta (1998) described the dynamics
between tumor cells, effector cells, and the
cytokine interleukine-2 (IL-2) by a mathematical
model, which is considered as a modulator of the
immune stimulus (9). de Pillis and Radunskaya
(2001 and 2006) proposed detailed models about
the immune response differentiating between
Natural Killer cells (NK-cells), CD8+ cytotoxic T-
cells, and other lymphocytes (10)(11).
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In this paper, a mathematical model is
reformulated with a new modification in one of its
terms, specifically the radiation harvesting term.
This term is responsible of the effect of radiation
on the tumor cells. The new modification describes
more powerful performance for the radiation
without being affected by the change in parameters
values. The value of the parameter in the new
modification is calculated by using medical data of
a patient and then the stability of the modified
model is analyzed to explain the effect of the new
term.

The Mathematical Model

In this section, we present the model that will be
modified with new form to improve its
performance in the treatment of tumors. The
following model studies the coexistence of the
healthy and cancer cells when treated with
radiotherapy (12):

dH

&= (1- —) B.HT — eyH

dT

T =a,r(1- —) BoHT — yT tE
[Tlto,nto + l] (1)

With initial conditions: H(0) = h, T(0) = 7.
Where H is the concentration of healthy cells, T is
the concentration of tumor cells, h, T are the initial
concentrations of healthy cells and tumor cells
respectively, a,,a, > 0 are the growth rates of
healthy cells and tumor cells respectively, k4, k, >
0 are the carrying capacities of healthy cells and
tumor cells respectively, B;, 8, are the respective
competition coefficients of healthy cells and tumor
cells respectively, &> 0 is the proportion
coefficient of the radiation, and y is the strategy of
radiation (12). Before we suggest the modifications
of model (1), we have to check for the effect of the
radiotherapy on the tumor cells in the tumor site
(when H = 0).

(1—]{12)—)/T

Solving the above equation to find T'(t):

daT
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Now, we have two cases to discuss:

ky(az—y)

1) When a, > y thenast — oo ,T(t) -
2) When a, < ythenast —» o, T(t) - 0

az

From the cases above, we notice that (2) is affected
by the values of a,,y which are the growth rate of
tumor cells and the amount of radiation
respectively. It is known that there is no cure that
completely eliminates cancer but can only stop its
growth. We need to think of the case of
eliminating the tumor completely, so we have to
find a modification which is not affected by any
change in the parameters values.

The Suggested Modification

As mentioned before, the new modification is not
affected by any change in parameters values. The
radiation harvesting term yT in the second
equation will be replaced by a3yT?3 as follows:

= (1 ——) B HT — eyH
=, (1- —) B,HT — azyT? te

[nty, nty + 1] 3)

Where a; > 0

The new term decreases the rate of change in the
tumor concentration and kills more of tumor cells
than model (1). Now, we check for the effect of the
radiotherapy on the tumor cells in the tumor site
(when h = 0,thatis H = 0):

dar
- = azT

dt (1 - klz) —asyT?

Solving the above equation to find T (t):

252
ask
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T(t) = (4)
We see that as t —» oo, T(t) — 0 and this explains
that model (3) could be more powerful than model

(1).
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Laplace Adomian Decomposition Method

Now, we introduce the Laplace Adomian
decomposition method which will be used in the
solution of model (3) when H # 0. This method is
a combination of two methods Laplace
transformation and the Adomian decomposition
method, and it is used when we have nonlinear
terms in the differential equation. The Adomian
decomposition method simplifies the nonlinear
terms before taking the Laplace transform, since
Laplace transform deals with linear differential
equations with constant coefficients. The Laplace
Adomian decomposition method needs less work
in comparison with the traditional Adomian
decomposition method and it also decreases the
calculations.
Consider the following system (13):

:un) + Nl(ull ey

Liug = Ry (uy, ... up) + g1

Lt.uz = Ry(Uq, oy Up) + No(Uy, o, uy) + g2
Lt'un =R, (uq, ..., uy) + Ny(uq, ..., up) + gn
(%)

With the initial conditions

u;(0) =up, i=1,..,n (6)

Where L, is a first—order differential operator,
R;and N;,i=1,..,n are linear and nonlinear
operators, respectively, and g;,i =1,..,n are
analytic functions. Now, we apply Laplace
transform to both sides of system (5) and use the
properties of Laplace transform with the initial
conditions (6), we get:

Lu] =

= (w1 (0) + L[gs]) + £ LIRy (s, o 1) +
%L [N;(uq, ..., up)]

f [u,] = .

;(uZ(O) + L[g.]) + ;L[Rz(up e Up)] +
%L[Nz (Uq, vy up)]

Llu,] =

< (0) + LIgn]) + 7 LIRn (s, .., )] +
< L[Ny (g, oy )] Y

Representing the solution as an infinite series,
namely

[ee)

ui(t) :Zuij ®, i=1,..,n

j=0

(8)
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The terms u;;(t) are to be recursively computed.

The nonlinear operator N; is decomposed as
follows:

Ni(ul,...,un) = ZAU,l = 1, e, n

And A4;; are the so-called Adomian polynomials
that can be derived for various classes of
nonlinearity according to specific algorithms set by
Adomian. We will expand few terms of the infinite
series for one variable and two-variable Adomian
polynomials as follows:

)

Let Al] = f(ul])
Ajo = f ()
‘.41'1 = w1 f' (uio)

And for the two-variable Adomian polynomials

A = f(u,v), Where

j=0 j=0
=1,..,n (10)
Ajo = f (o, vio)

_ af af
Aj =up T | wiowio) T Vin F | Cwiovio)
Now, let

1

ui(s) = ;(ui(o) + L [g:D,
i
=1,..,n (11)

Substituting (8), (9) and (11) into (7), and using the
I|near|ty of Laplace transform we get

ZL 1] = b1 (5) + ZL (R (1 o1t

e in )]
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[ee)

> £ funy)

j=0

1 [ee]
= i (s) + ;Z L[Rn (1, - unj)]
j=0
1
+ ;Z L[An]
j=0

Then we have the following recurrence relations
from corresponding terms on both sides of (12):

(12)

£ [ ()] = pi(s)
£ [ui (0] = £ £ [Ri (a0, - Uno)] + 5 £ [4go]

S

L [uip(®] = £ Ry, oo tny)] + 2 £ [Ain]

L [wijsny )] = éL [Ri(ttajy e tinj)] + 513 [A44]
(13)

Applying the inverse Laplace transform to the first
equation in (13) gives the initial approximation:

uo(t) = L7 w(s)], i=1,.. (14)

,n

Substituting these values of wu;, into the inverse
Laplace transform of the second equation in (13)
gives u;;

uy =L71 EL [Ri(Uq1, s Un1)] + éL [Ai1]] (15)

The other terms u;,,u;3,... can be obtained

recursively from the formula:
—-111
ui(]-+1)(t) =L71 I:EL [Ri(ulj, ...,unj)] +

; [Aij]] Jj=12..  (16)

Solution of the Modified Model

Now, we introduce the solution of model (3)
by using Laplace Adomian decomposition method
as follows:

aH _ _ T

o = (@ — e H — 2 H? — BiHT

I = @, T —2T2 — g yT3 — B,HT tE
dt Ky

[nty, nty + 1] @an

With initial conditions: H(0) = h, T(0) = 7.

Applying the Laplace transform to both sides of
(17), we get
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sL [H] —H0)=L [(0(1 - gy)H] _L[Z_iHZ] _
L[B,HT]
sL[T]=T(0) = £ [a;T] - £ [Z_ETZ] —

L [azyT?] = L [B,HT] (18)

Applying the initial conditions and using the
linearity property of Laplace transform to (18):

L[H] =2+ g - SEo[H?) -

£ lnT)

LIT]=Z+2L[T] - S%L[TZ] =L [rd -
Briary (o)

Now, we represent the solution as an infinite
series, namely,
(00}

H=ZHn, T=ZTn

n=0 n=0

(20)

The terms H,andT,are to be recursively
computed. Also the nonlinear terms in the system
are represented as follows:

A =H?B=HT,C =T?>,D=T3% (21)

The nonlinear operators A,B,C, and D are
decomposed as follows:

A=) A, B=ZBn ,C=ZCn ,and D

0 n=0 n=0

n=

-> b, (22)
n=0
Where A,,B,,C,,andD, are the so-called

Adomian polynomials and we will expand them as
follows:

Ay = HE , By = H,T,

A, = 2H{H, . By = HyT, + HT,
A, = 2H,H, + H? ,  By,= H,T, +HT, +
H,T,

Co= T¢ : Dy = T§

C, = 2T, T, : D, = 3T,T¢

C, = 2T,Ty + T? : D, = 3T,T¢ +
3T, T?

Substituting (20) and (22) into (19):
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M L% Hnl -
AL (S50 Bl

[Zn OH ]
SaTllL [Zn:O An] -
L[Xn=oTal =
S+ LY T
Y L[S0 Dal —

— S L[N Gl -
B r(ye,B.] (29)

Matching both sides of (23) yields the following
iterative algorithms:

L[Ho] _E

L[H] = (a1~ C1Z £ [Ho] — S £ [Ag] — 22 £ [Bo]

_ (al_g)/)L[H ] _
- n

£ [Hyya] == L [An] =L [By)

(24)
And
L[T,]
L[T]

£ £ [Bo]

g1

=L L [Do] —

5 LTl = 52 L1Co] =

£ [Toys] -

£ £ [Ba]

= ZLI[T] - 2 LG
(25)

—ML[D
N

Taking the first term of each series:

h
L[Ho] = 7 .L[To] == (26)
Applying the inverse Laplace transform to (26), we
get
HO = h, TO =T (27)

Using the values from (27) to obtain H,, T;

LH] =L ) - 22 r - L (b
=(a1—sy———31 )%
L[T1]=%L[r]—j;22u 2] )

Bl =(-ph—E-ayt®)S  (29)
2

Applying the inverse Laplace transform to (28), we

get

Hy = (a1 — ey =55~ Biodht
Ty = (az — B2h — % —azyti)Tt (29)

Using the values from (29) to obtain H,,T, with
the same procedure

Hy = [(aq
B17) — B1T (@

och

- ,Bzh - k—z — azy7?)] h;

20,T

- 3a3VT2)(az
2

T, = [(a; — B2h — — B2h —

o= agyt?) = Boh(ay —ey =T Bl
(30)

Because of the uniform convergence property, few
terms of each series of H and T are enough for a
good accuracy. Then we can write the solution of
system (3) as follows:

Ht)=h+ (ay —ey ——— ﬁlr)ht + [(ag —

20(1

- 31T)(“1 —&y ————p17) —

Bit (az Brh —°Z — agyr )] e
(31)

T(t) =1+ (a, — Byh — E - a3y12)rt + [(ay —

Boh — =2 — 3a3yr2)(az Boh — 22 — azy1?)

s ey - Ll Blr)]r;z (32)

Calculation of the Unknown Parameter (a3)

In this section, a full study of the stability of model
(3) will be analyzed to explain the behavior of the
model with the new modification. First, we have to
calculate the value of the unknown parameter (a3)
in the suggested modification. In table 1 medical
data of a patient suffering from renal cell
carcinoma (RCC) during radiotherapy will be used
to calculate (a3).

Table 1. Values and Description of the
Parameters in Model (3).

Parameter Description Value  Source

The growth rate of
healthy cells
The growth rate of
tumor cells
The carrying
capacity of healthy
cells
The carrying
capacity of tumor 1
cells
The proportion
& coefficient of

radiation
The strategy of
1.4 radiation
The respective
competition
coefficient of
healthy cells
The respective
competition
coefficient of tumor
cells

a, 0.2 (12)

a, 0.45 (12)

0.65 (12)

(12)

0.3 (12)

0.65 (12)

B1 0.5 (12)

B 0.55 (12)

845



Open Access
2020, 17(3):841-848

Baghdad Science Journal

P-1SSN: 2078-8665
E-ISSN: 2411-7986

Now, we introduce medical data of a cancer
patient suffering from (RCC) during the treatment
with radiotherapy. The data includes the time of
radiation dose (in hours) and the concentration of
tumor cells corresponding to each time as in table
2.

Table 2. Medical Data of a Cancer Patient
During Radiotherapy.

Time (hours) Concentration of tumor cells

0 0.8
1 0.69
2.25 0.20

The initial conditions (12) are:
H(0) =h=0.5
T(0)=1t=08 (33)
Substituting the values of the parameters in Table
1 and the initial conditions from (33) into (32), we
get T(t):

T(t) = 0.8 — (0.148 + 0.3328 a3)t +
(0.16613376 a2 + 0.146432 a; —

0.028109076)t> (34)
Whent = 1and T = 0.69 in (34), we obtain
0.16613376 a3 — 0.186368 a5 —

0.066109076 = 0 (35)

0.186368+1/0.078664828

0.33226752
1.405013978

- {—0.283219106

(a3)12 =

Then a3 = 1.405013978 > 0

After finding the value of a3; then we can study
the stability of model (3) and the linearization
theorem will be used for this purpose as follows:

dH

dat

daT
Z = azT(l -

=a,H(1 - kil) — B,HT — eyH

) = BoHT — asyT?

Setting (‘;—i’ = 0,% = 0), we get:

aH(1 - kil) —BHT —eyH = 0

a,T(1— klz) — ByHT — azyT3 =0

From the first equation, we have: H =0orT =

1 ey
Bl(% 4 le)

When H = 0 in the second equation, we get:
T = Oor(cx3yT2+%T—a2) =0
2
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Then we have the following two equilibrium
points:

—a,+ |aZ+4aza,yks
E, = (0,0)and E, = (0,—Y>— """y (36)

2“3]/](2

When T =—(a; —ey —2H) in the second
ﬁl kl

equation, we get the following cubic equation:

3 2 2
ajazy a1Br _aja;  3aiazy

3 —
s 10+ G, G (@

2, (% B, 20, _
N H™ + (=g =g @ —en) + (o
sys)

a1 a
+ 2228 (o —ep)?) H + (22 (ay —y) —
k1 B3 B

%(“1 —ey)? - %y(al —ep)®) =0
(37)

Substituting the values of the parameters into (36)
and (37), we get:

El = (010)

E, = (0,0.497564521)

And equation (37) will be:

H3 +0.740832892 H? — 1.300170734 H +
0.020927857 =0

(38)

The roots of (38) are:

H, =0.81777

H, = 0.01625

H; = —1.57485

We take H, only since H,; gives negative value for
T. Then we have the third equilibrium point:

E; = (0.01625,2.25 x 10711

The linearization matrix of system (3) is

A=
2
a1—€V—ki11H—ﬂ1T —p1H
=BT ay — %T — B;H — 3azyT?
2
Now, we calculate A at each equilibrium point
_[0.005 0
1) Ag, = [ 0 0.45]

The eigenvalues are

A, =045, 1, =0.005
We notice that E; is unstable equilibrium point
which is the case when there are no healthy cells
and tumor cells.

2) Ag, 0.24378226

2 = [—0.273660486
The eigenvalues are

A, = —0.24378226, A, = —0.676095964
Since both of the eigenvalues are negative then E,
is an asymptotically stable equilibrium point. This

095964
—0.676095964
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means that when there are only tumor cells, then
the radiation will eliminate them successfully.

3)
AE3 =
5.000000011 x 1073 —8.125x 1073
—-1.2375x 10711 —-3.93750002 x 1073
p(1) = A2 — 1.062499991 x 10731 —
1.02515625 x 10713 =0

The eigenvalues are

A, = 0.0010625, 1, = —9.648528 x 10711
Since the eigenvalues have opposite signs, then E;
is an unstable saddle node. In this case there are
healthy and tumor cells in the tumor site and this
causes a delay in the work of radiotherapy which
gives a chance to tumor cells to grow and divide.

Conclusion:

In this paper, we presented a dynamical
system of two equations which describe the
coexistence between healthy cells and tumor cells.
A modification was introduced to enhance the
performance of the radiotherapy by suggesting a
new harvesting term a5y T 3which assumes that the
radiation kills more than one tumor cell in the
same time without increasing the dose of
radiation y. The Laplace Adomian decomposition
method was used for solving the system and to
find @3, we used medical data of a cancer patient
during the treatment with radiotherapy. Finally, we
studied the stability of the modified model when
all the parameters are known.
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