
Open Access Baghdad Science Journal P-ISSN: 2078-8665

2021, Vol. 18 No.2 (Suppl. June) E-ISSN: 2411-7986

1056

DOI: http://dx.doi.org/10.21123/bsj.2021.18.2(Suppl.).1056

Multifactor Algorithm for Test Case Selection and Ordering

Atulya Gupta
 *
 Rajendra Prasad Mahapatra

Department of Computer Science and Engineering, SRMIST -201204, Delhi-NCR Campus, Ghaziabad, U.P., India
Corresponding Author: atulya.gupta.301@gmail.com , mahapatra.rp@gmail.com
*ORCID ID: https://orcid.org/0000-0002-1801-7674 *, https://orcid.org/0000-0002-9292-6331

Received 25/8/2020, Accepted 17/1/2021, Published 20/6/2021

 This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract:
 Regression testing being expensive, requires optimization notion. Typically, the optimization of test cases

results in selecting a reduced set or subset of test cases or prioritizing the test cases to detect potential faults at an

earlier phase. Many former studies revealed the heuristic-dependent mechanism to attain optimality while

reducing or prioritizing test cases. Nevertheless, those studies were deprived of systematic procedures to manage

tied test cases issue. Moreover, evolutionary algorithms such as the genetic process often help in depleting test

cases, together with a concurrent decrease in computational runtime. However, when examining the fault

detection capacity along with other parameters, is required, the method falls short. The current research is

motivated by this concept and proposes a multifactor algorithm incorporated with genetic operators and powerful

features. A factor-based prioritizer is introduced for proper handling of tied test cases that emerged while

implementing re-ordering. Besides this, a Cost-based Fine Tuner (CFT) is embedded in the study to reveal the

stable test cases for processing. The effectiveness of the outcome procured through the proposed minimization

approach is anatomized and compared with a specific heuristic method (rule-based) and standard genetic

methodology. Intra-validation for the result achieved from the reduction procedure is performed graphically.

This study contrasts randomly generated sequences with procured re-ordered test sequence for over '10'

benchmark codes for the proposed prioritization scheme. Experimental analysis divulged that the proposed

system significantly managed to achieve a reduction of 35-40% in testing effort by identifying and executing

stable and coverage efficacious test cases at an earlier phase.

Key words: GA, Regression testing, Test cases, Test case minimization, Test case prioritization.

Introduction:
 Whensoever evolution has occurred in the field

of software, testing is required. Software testing is

predominantly the operation conducted by testers to

identify the defects or gaps and verify whether or not

the system under consideration correctly complies

with the client's specifications. During the software

modification phase, the development teams, testers,

and the stakeholders are more concerned about the

authenticity and reliability of new features being

worked on, not about the existing features that have

been extensively tested and stable. As the latest piece

of code is supposed to be incorporated with the

existing features, during this time, it is exceedingly

possible that any functionality may have been broken

in the existing code. To ensure that the final product

performs well even after the latest improvements have

been pushed, regression testing must be executed.

This notion also results in the formation and

execution of a sizeable number of test cases and

makes regression testing economically expensive in

terms of maintenance, exhausting the testing budget

to an approximation of up to 80% (1).

 The unarguable reality that there are always

thousands of variations and potential explanations

why anything might go wrong is synonymous with

testing. Sometimes, testers with a vivid imagination

are merely unable to spot each one of them,

particularly if the launch's delivery date is getting

closer. Also, there is never sufficient time and

resources for all alternative test conditions to be

found and tested. So it is necessitated to reduce or

prioritize the test conditions to retain the testing

http://dx.doi.org/10.21123/bsj.2021.18.2(Suppl.).1056
mailto:atulya.gupta.301@gmail.com
mailto:mahapatra.rp@gmail.com
https://orcid.org/0000-0002-1801-7674
https://orcid.org/0000-0002-9292-6331
https://creativecommons.org/licenses/by/4.0/

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2021, Vol. 18 No.2 (Suppl. June) E-ISSN: 2411-7986

1057

process (2). Thence, this study's focal point is to

emphasize the prime issue in software testing

research, i.e., optimization of test cases

('Minimization' + 'Prioritization' strategies). A large

body of research exists for Test Case Minimization,

which generally executes fewer test cases depending

upon some criteria. Fundamental delineation of the

problem of selecting a reduced set of test cases could

be (3,4):

Definition 1: A test suite T, a series of testing

requirements r1, r2……rn that must be tested in order

to have an appropriate testing coverage in accordance

with the program and a list of subsets of T, one

associated with each of the requirements (iterating

from 1 to n) such that any one of the test cases Ti

belonging to the subsets of T can be used to test the

requirement rj.

Problem: Find a representative set of test cases Ti

that will satisfy all of the rj's.

 Various approaches have been hypothesized to

minimize the test suites. For instance, Harris and Raju

(5) expounded an idea for diminishing the test suite

size by plying an uncomplicated approach that

concentrates on test metrics (i.e., desideratum and

size coverage) and accordingly proposed a CBTSR

(Coverage Based Test Suite Reduction) algorithm.

The principal contribution of their modus operandi

embraced the construction of test cases and desiderata

through data flow testing that aimed to inspect the

physical framework of the program and to discover

the sub-paths which were being traversed by

variables. Lin et al. in (6) emphasized and empirically

estimated Greedy-based strategies (i.e., cost-aware

Greedy tactics and the auxiliary Greedy) using gzip

space, siemens, and ant applications. The result of

their estimation indicated the accomplishment of

higher proficiency of fault detection and lesser cost

for regression testing with cost-aware procedures.

 With progression in production code, test suites

can congregate redundancies overtime. Vahabzadeh

et al. in (7) focused on fine-graining the test

minimization procedure and thus proposed a model

for the statement-level analysis of test cases. A

technique accompanying a tool (named Testler) was

presented to lessen substantial redundancies in test

statements of test cases. Many empirical studies also

articulated the degradation of FDE (Fault Detection

Effectiveness) due to the reduction mechanism.

Jeffrey and Gupta (8) focused on improving this fault

detection capability by affixing a concept of

selectively retaining those test cases that are fault

revealing but reduced because of being redundant.

The work discussed in (9) offered a solution for

complications of regression test suite optimization,

named FCBTSO (Fault Coverage- based Test Suite

Optimization), which was formulated on HGS

(Harrolds-Gupta-Soffa) test suite minimization

strategy. Singh et al. in (10) propounded an algorithm

to equilibrate the tradeoff between the time needed

for test suite execution and their FDE.

 A. Lawanna (11,12) described the design based

technique for test cases, resulting in refinement of test

case selection procedure and devised efficacious

algorithms with the embedded concept of filtration,

classification, and selection of germane test cases.

Research regarding test case selection also deployed

linear programming model to extract the subset of test

cases, to rerun (13). The apprehension of these

selection procedures was improvised in the study

(14), where the weighted average sum of quantifiable

aspects served as a base for the selection framework.

Testing cost, code coverage, FDE of test suites, and

code alter data were mentioned aspects of the study.

Over the years, researchers also exercised NSGA- II

(Non-dominated Sorting Genetic Algorithm II), a

customary multi-objective approach, for reduction

scheme. A variant of NSGA-II is presented in study

(15) titled MORE+ (Multi-Objective test suite

REduction).

 Apart from reduction approaches, TCP (Test

Case Prioritization) also proved to be efficacious,

which optimally arrange the set of test cases for

attaining certain criteria such as fault detection

capability as expeditiously as possible. In one or the

other way, this technique acquires two objectives, that

is, re-ordering of test cases according to some criteria

and detecting faults at the earlier stage, resultantly

reducing testing time with much smaller overhead

(16).

 Along with the minimization of test cases,

prioritization also encompassed a large body of

research. Beena and Sarala (17) formulated a

selection and prioritization approach, mainly

concerned with the coverage aspect. Categorization of

coverage particulars collected during the ordering of

test cases reveals the static or dynamic nature. Zhou

and Hao (18) conducted an extensive empirical study

to evaluate and contrast different methods of

prioritization based on these natures, together with

various test granularities and coverage criteria.

Mirarab et al. and other researchers utilized

techniques such as BN (Bayesian network), clustering

approach, or a hybrid technique incorporating both to

prioritize the test cases. This hybrid technique

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2021, Vol. 18 No.2 (Suppl. June) E-ISSN: 2411-7986

1058

illustrated the idea of employing clustering methods

for grouping the test cases according to the similarity

based on the code coverage and then prioritizing

those clustered test cases according to their

probabilistic inference (i.e., the failure probability of

test cases) being employed by BN model (19-21).

 Many other researchers precisely worked on

improving the prioritization of test cases by

concentrating on real-world aspects, i.e., focused on

practical priority features (22). The present study

observed that the historical execution data is also

significant as that data conveniently reveals how the

test cases failed previously and to what extent the test

cases are likely to fail later. Khalilian et al. in (23)

deployed historical execution data for the

computation of prioritization equations and modified

them to possess dynamic coefficients. These

enhanced mathematical equations were composed of

execution history, test case priority, and historical

FDE. Research presented in (24) ameliorated the

history-based approach by applying it on each altered

line of code, i.e., prioritizing the modified lines first

and afterwards followed up with concerned test cases.

Moreover, the data also depicted that some test cases

have execution relations among them, i.e., the

execution history of one test case predicts the other,

therefore mining such execution relations among the

test cases based on historical execution data would

improve the optimization approach further (1,25).

According to Tanzeem Bin Noor and Hadi Hemmati

(26), practically, it is not necessitated that a failing

test case would always be exactly identical to the test

case being failed previously, viz. the failing test case

could be a slightly altered version of the former

failing test case to reveal a fault that is being

undetected.

 In the view of studies surveyed and the need for

enhancement in optimization tactics, this research

addresses some significant issues in the above-

mentioned existing conventional systems for

optimizing the test cases as:

 The existing traditional methods or the genetic

process deployed for test case minimization

exploits a single parameter that is unjustified,

resulting in non-fulfilment of either the objective

or the requirements to be procured during software

testing.

 Many of the optimizations approach results in

static execution of test cases; that is, the order of

optimized test cases would not be updated based

on the runtime execution of test cases. Although

the authors (1) proposed the dynamic way of

optimizing the test case execution result, which

overpowers the previous concept, optimization is

still needed to get the most desirable outcome.

 No specific methodology is described for handling

the test case tied issues, i.e., the stated problem

either solved by preferring the test cases through

FCFS (First Come First Serve) approach or

random selection between the tied test cases,

resulting in lower efficacy of the system.

 Consequently, this paper presents a

methodology that:

 Considers multiple factors/ features/ parameters,

regarding test case optimization approach and

thence satisfying all the needed requirements as

possible, for testing the system, i.e., it would:

 Analyze historical execution data for mining

fail/pass rules of test cases.

 Compute the Fault Questing Potentiality (FQP)

and Test case Dependency Score (TDS) from the

historical execution data and pruned rules.

 Minimize the test cases by exercising one of the

computational-intelligence-based processes

(Genetic algorithm) to keep the coverage measure

similar to the test suite.

 Prioritizes the reduced test cases, accompanied by

a specific strategic approach for resolving issues

cognate with tied test cases, for the optimal

outcome. Moreover, the main concentration of the

proposed method lies in coverage only.

 A Genetic algorithm (GA) is the widely used

population-based approach inspired by the natural

phenomenon of survival to the fittest. An extended

version for applicability of Genetic algorithm in

test case optimization could be understood from

(27-32). The current study aims to manage the

issues that occur during test case analysis by

incorporating GA as a base structure and

prioritizing test cases by suggesting key variables

and strategies for the notion of the tied test cases.

 The rest of the paper's organization is as

follows: Subsequent section deals with the technique

proposed for test case optimization (Section 2). For a

concise overview of how the methodology progresses,

this section includes three subsections. Section 3

addresses the confirmation of the findings and the

possible future enhancements for the proposed

method. The final section (Section 4) of this paper

presents the conclusion.

Proposed Method:

 The regressive test procedure makes it almost

impossible to perform all probable and preferred tests.

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2021, Vol. 18 No.2 (Suppl. June) E-ISSN: 2411-7986

1059

That is why the significant challenge is to choose an

adequate test for code. If this critical step is not

accomplished, the code's important characteristic may

not be covered by the testing process. Additionally, it

is essential to prioritize the tests that are likely to

emphasize issues and are paramount to code

functioning. In order to deal with the complexities of

testing procedures, this research suggested and

implemented the techniques for optimizing test cases.

The broad visual perspective is represented in Fig. 1.

The production of the proposed model requires

multiple stages, which are described below.

Figure 1. Diagrammatic representation of overall Proposed Approach (Block-representation)

Investigation and mining of test case linkage:

 The conceptual framework of the proposed

solution starts from here. In general, during regression

testing, a background data depository is maintained,

which is a storage for historical details of every test

case. It includes the number of times a particular test

case is being deployed, the faults disclosed by the test

cases, and the severity of detected defects. In the

course of progression and planning of the present

work, it is observed that test cases' past performance

provides insight for fail/pass verdicts of test cases.

Any association was not considered before executing

the test cases, but results manifested the link among

the test cases after execution. The variables guided by

the historical execution relationship of test cases were

the current study's core concept.

Table 1. Sample data for the execution history of 10 test cases for five cycles

Execution

cycles

Test cases

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

1 Pass Pass Fail Fail Pass Pass Fail Pass Pass Pass

2 Fail Pass Pass Fail Fail Pass Pass Pass Fail Fail

3 Fail Pass Fail Pass Fail Pass Pass Fail Fail Fail

4 Fail Fail Pass Fail Pass Fail Fail Pass Fail Pass

5 Pass Pass Fail Pass Fail Pass Pass Fail Pass Fail

The relations of test cases are illustrated as

which test case to be executed first to get the

predicted test case executed precisely after that if it is

found to be fault revealing. From Table 1, this

concept could be delineated as if a test case T1 fails or

passes for a particular cycle; test case T9 also

generates the same verdict for that cycle. This notion

also includes that the two test cases would have

identical verdicts for all the execution cycles taken

into consideration at that time. For test cases

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2021, Vol. 18 No.2 (Suppl. June) E-ISSN: 2411-7986

1060

revealing such a type of association, rules can be

therefore pruned via RRA.

Figure 2. Algorithm 1: Rule Retrenching Algorithm (RRA)

Table 2. Fail/Pass rules derived from RRA

Fail Rules Pass Rules

1. (𝑉(𝑇1) = 𝐹𝑎𝑖𝑙)
𝑓𝑎𝑖𝑙
→ (𝑉(𝑇9) = 𝐹𝑎𝑖𝑙)

2. (𝑉(𝑇1) = 𝑃𝑎𝑠𝑠)
𝑝𝑎𝑠𝑠
→ (𝑉(𝑇9) = 𝑃𝑎𝑠𝑠)

3. (𝑉(𝑇2) = 𝐹𝑎𝑖𝑙)
𝑓𝑎𝑖𝑙
→ (𝑉(𝑇6) = 𝐹𝑎𝑖𝑙)

4. (𝑉(𝑇2) = 𝑃𝑎𝑠𝑠)
𝑝𝑎𝑠𝑠
→ (𝑉(𝑇6) = 𝑃𝑎𝑠𝑠)

5. (𝑉(𝑇5) = 𝐹𝑎𝑖𝑙)
𝑓𝑎𝑖𝑙
→ (𝑉(𝑇10) = 𝐹𝑎𝑖𝑙)

6. (𝑉(𝑇5) = 𝑃𝑎𝑠𝑠)
𝑝𝑎𝑠𝑠
→ (𝑉(𝑇10) = 𝑃𝑎𝑠𝑠)

7. (𝑉(𝑇6) = 𝐹𝑎𝑖𝑙)
𝑓𝑎𝑖𝑙
→ (𝑉(𝑇2) = 𝐹𝑎𝑖𝑙)

8. (𝑉(𝑇6) = 𝑃𝑎𝑠𝑠)
𝑝𝑎𝑠𝑠
→ (𝑉(𝑇2) = 𝑃𝑎𝑠𝑠)

9. (𝑉(𝑇9) = 𝐹𝑎𝑖𝑙)
𝑓𝑎𝑖𝑙
→ (𝑉(𝑇1) = 𝐹𝑎𝑖𝑙)

10. (𝑉(𝑇9) = 𝑃𝑎𝑠𝑠)
𝑝𝑎𝑠𝑠
→ (𝑉(𝑇1) = 𝑃𝑎𝑠𝑠)

11. (𝑉(𝑇10) = 𝐹𝑎𝑖𝑙)
𝑓𝑎𝑖𝑙
→ (𝑉(𝑇5) = 𝐹𝑎𝑖𝑙)

12. (𝑉(𝑇10) = 𝑃𝑎𝑠𝑠)
𝑝𝑎𝑠𝑠
→ (𝑉(𝑇5) = 𝑃𝑎𝑠𝑠)

 The pruned rules (Table 2) according to

Algorithm 1 (Fig. 2) and historical execution data

(Table 1) are adequate to calculate the factors like

Fault Questing Potentiality (FQP) and Test case

Dependency Score (TDS). These two components

illustrated the empirical values depending on the

number of times a test case failed or predicted others,

respectively.

 Fault Questing Potentiality (FQP) (1) would

be the ratio of the number of times a test case failed to

the number of times it is executed.

i.e. 𝐹𝑄𝑃 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑎 𝑡𝑒𝑠𝑡 𝑐𝑎𝑠𝑒 ℎ𝑎𝑣𝑒 𝑎 𝑓𝑎𝑖𝑙 𝑣𝑒𝑟𝑑𝑖𝑐𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡 𝑐𝑎𝑠𝑒 𝑤𝑎𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑

For example, from Table 1, the FQP value of T1 will

be 3/5, i.e., 0.6. Comparably, the FQP factor for every

test case would be evaluated.

Test case Dependency Score (TDS) (1) clarifies the

number of specific test cases whose outcome would

be determined by implementing Ti using the stated

failure and pass rules that are extracted from the

historical data (Table 2). For example, it is only

possible to use the execution of test case T1 to

determine the execution result of test case T9

formulated on rules 1 and 2 of Table 2, and thus, the

TDS value of T1 will be '1'. Conversely, no test case

can be determined based on the execution outcome of

T5, so the TDS value of T5 will be '0'.

Reduction mechanism based on GA notion:

 The concept proceeds with scheming the initial

population for every execution cycle (i.e., for every

source code). The gene formation for every execution

cycle will describe the statement coverage by the

particular test case, i.e., the gene value '0' will depict

no coverage by a processing test case for the

statement. In contrast, '1' will illustrate that the test

case covers a particular execution cycle's statement.

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2021, Vol. 18 No.2 (Suppl. June) E-ISSN: 2411-7986

1061

Figure 3. Algorithm 2: Initial population generation

 Algorithm 2 (Fig. 3) describes how to structure

the initial population in context to test coverage. The

current work explained the detailed methodological

account with a case study comprising of ten test cases

and five execution cycles as:

 Initial Population: The 0-1 matrix will be

formed depicting the statement coverage by the test

cases respectively, where '0' and '1' are supposed to be

a gene, while the complete coverage information by a

test case for a particular cycle will be a chromosome

(Fig. 4). Each information residing in the execution

cycle is assigned some random weightage ranging in

between [0-1]. The weightage factor discloses the

criticality of the data and conditions that these

statements are holding (Table 3).

Table 3. Showing the initial population (Statement coverage by test cases) with respective weightage

values for execution cycle1

Weight for every statement

(Wj)

Statements (Sj) for execution

cycle '1'

Test cases

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

0.4 1 1 1 1 1 1 1 1 1 1 1

0.6 2 1 1 1 1 1 1 1 1 1 1

0.5 3 1 0 1 0 1 1 1 1 1 1

0.2 4 1 0 1 0 0 1 1 0 1 1

0.2 5 0 0 0 0 1 0 0 1 0 0

0.1 6 0 0 0 0 1 0 0 1 0 0

0.4 7 0 1 0 1 0 0 0 0 0 0

0.7 8 0 1 0 1 0 0 0 0 0 0

0.1 9 0 1 0 0 0 0 0 0 0 0

0.5 10 0 0 0 1 0 0 0 0 0 0

0.3 11 0 0 0 1 0 0 0 0 0 0

0.6 12 1 1 1 1 1 1 1 1 1 1

0.5 13 1 1 1 1 1 1 1 1 1 1

0.4 14 1 1 1 1 1 1 1 1 1 1

0.1 15 1 1 1 1 1 1 1 1 1 1

Figure 4. Portrayal of coverage information by test

case '1' for execution cycle '1'

 Fitness Function: The fitness of every test case

for all of the 'p' execution cycle would be calculated

as:

 𝐹(𝑇𝑖) = [{∑ {∑ (𝐶𝑉 (𝑆𝑗) × 𝑊𝑗)
𝑚
𝑗=1 }

𝑝
1 } +

𝐹𝑄𝑃(𝑇𝑖) + 𝑇𝐷𝑆(𝑇𝑖)] … (1)

where 'p' denotes the number of execution cycles; for

the considered case study, the value of 'p' is 5, CV (Sj)

is the statement coverage value by the test case whose

fitness is being computed, i.e., either '1' or '0' by the

test case, Wj is the weight assigned to every specific

statement, 'm' defines the total number of statement.

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2021, Vol. 18 No.2 (Suppl. June) E-ISSN: 2411-7986

1062

Figure 5. Algorithm 3: Test Case Minimization

Figure 6. Algorithm 4: GA()

 The above-stated algorithms, i.e., algorithm 3

and 4 (Fig. 5 and 6) elucidate the procedure as to

how the reduction methodology works and how the

genetic operators would aid in extracting the minimal

amount of test cases for every execution cycle with at

least 75% of initial termination criterion. The final

termination requirements are set to 50% to extract the

best test sequence from the original test suite for

every execution cycle. Following is the elaborative

working of genetic operators.

 Selection: This study deploys a random

selection scheme to initially select two test cases from

the test suite and perform an Ex-OR operation

between the randomly selected test cases. The

consequent chromosome would be analyzed on

coverage factor, i.e., the coverage percentile of the

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2021, Vol. 18 No.2 (Suppl. June) E-ISSN: 2411-7986

1063

resultant chromosome would either be equal to or

exceeds 75% (initial termination), to be in the reduced

test sequence of the processing execution cycle.

Within the modules, a knock-out based selection

scheme is followed. Coverage for every test case

would be enumerated as:

 𝐶𝑜𝑣(𝑇𝑖) = 𝑆𝑐𝑜𝑣𝑒𝑟𝑒𝑑/𝑆𝑡𝑜𝑡𝑎𝑙 … (2)

where Scovered = number of statements executed by the

test case and Stotal = total number of statements in the

processing execution cycle.

 Crossover: If the selected pair of test cases

would not satisfy the initial termination criterion, then

crossover is carried out. Those two test cases' genes

are swapped from the position where both test cases

are covering the same statement to the point where

neither of the two test cases covers a statement (Fig.

7). This swapping is performed only once in between

the genes of two test cases.

Figure 7. Crossover Operation

 Ex-OR is performed betwixt the newly formed

chromosomes, and coverage will be evaluated. If the

coverage attained through the crossover mechanism

gives unsatisfactory results, i.e., below 75%, then the

outcome acquired through the crossover step is

mutated.

 Mutation: This refers to a slight change in the

chromosome. The '0' bit is flipped to '1' according to

the weightage assigned to the statements (single bit

mutation).

 Suppose the initial termination criterion is not

satisfied by any of the three operators for the two test

cases. In that case, from one of the two test cases, the

test case with a low fitness value will be placed in a

waiting queue. So, a waiting queue is maintained

every time the pair of test cases would not satisfy the

coverage criterion (Fig. 8). If the combination of

randomly selected test cases fulfils the genetic loop

coverage criteria, then those two test cases would be

included in the processing cycle test sequence. The

test sequences are further maintained in the final

repository, and the selected test cases are excluded

from the original test suite (T). Therefore for every

execution cycle, a separate reduced test sequence is

formed.

 Whenever the inclusion of fitted pair of test

cases in the reduced test sequence for a particular

cycle occurred, the waiting queue is being inspected

for the presence of any test case. If any test case

exists, it will be extracted from there, and the

procedure continues with the same extracted test case

by pairing it with some other randomly selected test

case from the original test suite. The last test case in

the reduced test sequence will be fitness based only.

If no test case satisfies the coverage criterion (initial

termination), then the initial termination criterion

should be dropped (relaxation). This genetic loop is

repeated until the final termination criterion is met,

i.e., 50%.

Figure 8. Exemplar view of how a test case with lower fitness value shifts to waiting queue and the

random selection of parent from the test suite after shifting procedure

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2021, Vol. 18 No.2 (Suppl. June) E-ISSN: 2411-7986

1064

The reduction methodology denouement will

result in a catalogue embedded with individual test

sequences for every specific EC, i.e., FR. Further,

CFT scrutinizes FR to have overall one best test

sequence among all the test sequences existing in FR,

which would be applicable to every execution cycle,

i.e., FMT. Every test case in their respective

execution cycles are covering a number of statements

and also has some random weightage value for those

statements. CFT utilizes these particulars for the

assessment of the cost factor of every test case

residing test sequences of FR as:

𝐶(𝑇𝑖) = ∑ {𝐶𝑉(𝑆𝑗) ×𝑊𝑗}
𝑚
𝑗=1 … (3)

For example, {T5, T2, T6, T4, T1} is the sequence for

execution cycle '1' of FR. The cost of each test case

residing in this sequence would be computed as:

𝐶(𝑇5) = (1 ∗ 0.4 + 1 ∗ 0.6 + 1 ∗ 0.5 + 1 ∗ 0.2 + 1 ∗
0.1 + 1 ∗ 0.6 + 1 ∗ 0.5 + 1 ∗ 0.4 + 1 ∗ 0.1) = 3.4
𝐶(𝑇2) = (1 ∗ 0.4 + 1 ∗ 0.6 + 1 ∗ 0.4 + 1 ∗ 0.7 + 1 ∗
0.1 + 1 ∗ 0.6 + 1 ∗ 0.5 + 1 ∗ 0.4 + 1 ∗ 0.1) = 3.8

𝐶(𝑇6) = (1 ∗ 0.4 + 1 ∗ 0.6 + 1 ∗ 0.5 + 1 ∗ 0.2 + 1 ∗
0.6 + 1 ∗ 0.5 + 1 ∗ 0.4 + 1 ∗ 0.1) = 3.3

𝐶(𝑇4) = (1 ∗ 0.4 + 1 ∗ 0.6 + 1 ∗ 0.4 + 1 ∗ 0.7 + 1 ∗
0.5 + 1 ∗ 0.3 + 1 ∗ 0.6 + 1 ∗ 0.5 + 1 ∗ 0.4 + 1 ∗
0.1) = 4.5

𝐶(𝑇1) = (1 ∗ 0.4 + 1 ∗ 0.6 + 1 ∗ 0.5 + 1 ∗ 0.2 + 1 ∗
0.6 + 1 ∗ 0.5 + 1 ∗ 0.4 + 1 ∗ 0.1) = 3.3

Table 4. Displaying the cost estimation by CFT

for each test case of individual sequences which

are located in FR

 Test cases/cost

Cycle 1

T5 T2 T6 T4 T1

3.4 3.8 3.3 4.5 3.3

Cycle 2

T8 T1 T5 T3 T4

3.8 4.3 3.8 4.3 3.8

Cycle 3

T5 T6 T2 T8 T4

4.2 3.1 3.6 4.2 3.6

Cycle 4

T3 T8 T2 T5 T4

3.6 3.8 3.8 4.2 3.8

Cycle 5

T5 T1 T10 T2 T4

4.2 4.9 4.2 4.9 4.9

 This stage concludes by demystifying every test

case's final cost, associated with FR, through the

aggregation of individual cost of test cases in every

particular execution cycle. This cost evaluation

indicates each test case's importance as it is directly

associated with the weight factor values allocated at

the time of structuring the initial population. The

higher the cost, the most consequential the test case

is. For example, the final cost of T5 would be:

𝑇5 = 3.4 + 3.8 + 4.2 + 4.2 + 4.2 = 19.8 (Data

from Table 4)

Final termination criterion and highly valued test

cases from final cost are being considered together for

procuring FMT (Fig.9).

Figure 9. Outcome of the case study considered

for reduction mechanism (FMT)

 If the final cost of any test case collides with

some other test case while selecting it in a finally

minimized test suite, then the occurrence factor is

considered for those two test cases. The occurrence of

a specific test case would be computed by summation

of the position of that test case in every execution

cycle. If two test cases had the same final cost while

selecting, then the test case with the highest

occurrence value would be preferable.

 The test cases in FMT would result in high

coverage compared to the test cases in the test

sequences residing in FR. Through the reduction

methodology of this proposed approach, the test cases

got lessened. Still, the lessened test cases'

prioritization would re-order them into a sequence

that would be more optimal in detecting more faults at

an earlier phase.

Prioritization mechanism for lessened test cases:

 The prioritization structure would incorporate

some indispensable features and the test cases that got

minimized due to the reduction mechanism. These

aspects would be the coverage, cost, DU-pair,

requirement covered by the test cases, including the

historical data that would exploit the same features

during the prioritization mechanism, i.e., eight

features as a whole. Test cases coverage precisely

relies on Scovered being elucidated in equation (2) while

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2021, Vol. 18 No.2 (Suppl. June) E-ISSN: 2411-7986

1065

cost computation of test cases for prioritization is

devised as:

𝐶𝑜𝑠𝑡(𝑇𝑖) = {𝐶(𝑇𝑖)} × 10 … (4)

where C(Ti) is effectively defined in equation (3), to

be utilized in equation (4), for simplification in

calculating decimals, equation (4) is multiplied by 10.

 DU-pair is the abbreviation of Definition-Use

pair, a dataflow-dependent adequacy criterion,

utilizing either predicate-use or computational-use of

variable, in a manner that there would have had at

least one definition clear path in between the

definition and the use of the variable. For instance, let

say variable 'a' has a DU-pair [2,6], which would

elucidate that '2' in the pair is the statement number

defining the variable 'a' and '6' in the pair is the

statement number using the variable 'a' (the use could

be either p-use or c-use).

 Another aspect is the requirement data, being

prepared by the desideratum coverage of every test

case. For instance, the features could be depicted for a

certain code in consideration as:

Coverage Matrix (Statement coverage) =

𝑻𝟏
𝑻𝟐
𝑻𝟒
𝑻𝟓
𝑻𝟖

[

𝟏 𝟎 𝟎 𝟏 𝟏 𝟎 𝟎
𝟏 𝟏 𝟏 𝟏 𝟎 𝟎 𝟎
𝟏 𝟎 𝟏 𝟎 𝟏 𝟏 𝟎
𝟏 𝟎 𝟎 𝟏 𝟏 𝟏 𝟏
𝟏 𝟏 𝟏 𝟎 𝟏 𝟎 𝟏]

 Cost Matrix =

𝑻𝟏
𝑻𝟐
𝑻𝟒
𝑻𝟓
𝑻𝟖

[

𝟏𝟏
𝟐𝟑
𝟐𝟓
𝟐𝟏
𝟐𝟗]

History Coverage Matrix =

𝑻𝟏
𝑻𝟐
𝑻𝟒
𝑻𝟓
𝑻𝟖

[

𝟏 𝟎 𝟎 𝟎 𝟎 𝟏 𝟎
𝟏 𝟏 𝟎 𝟎 𝟏 𝟎 𝟎
𝟏 𝟎 𝟏 𝟏 𝟏 𝟎 𝟎
𝟏 𝟏 𝟏 𝟏 𝟎 𝟎 𝟎
𝟏 𝟎 𝟏 𝟏 𝟏 𝟏 𝟏]

History Cost Matrix =

𝑻𝟏
𝑻𝟐
𝑻𝟒
𝑻𝟓
𝑻𝟖

[

𝟏𝟕
𝟏𝟑
𝟏𝟕
𝟏𝟔
𝟑𝟑]

History du-pair coverage Matrix =

𝑻𝟏
𝑻𝟐
𝑻𝟒
𝑻𝟓
𝑻𝟖

[

𝟐/𝟖
𝟐/𝟖
𝟑/𝟖
𝟒/𝟖
𝟔/𝟖]

History Requirement Matrix =

𝑻𝟏
𝑻𝟐
𝑻𝟒
𝑻𝟓
𝑻𝟖

[

𝟏𝟏
𝟐𝟏
𝟐𝟒
𝟐𝟗
𝟒𝟖]

DU-pair Matrix =

𝑻𝟏
𝑻𝟐
𝑻𝟒
𝑻𝟓
𝑻𝟖

[

𝟒/𝟏𝟔
𝟖/𝟏𝟔
𝟐/𝟏𝟔
𝟔/𝟏𝟔
𝟏𝟎/𝟏𝟔]

Requirement Matrix =

𝑻𝟏
𝑻𝟐
𝑻𝟒
𝑻𝟓
𝑻𝟖

[

𝟑𝟎
𝟒𝟒
𝟒𝟔
𝟓𝟐
𝟒𝟗]

 The FMT test cases acquired five different

positions; therefore, every test case in the FMT would

have five positions to be re-ordered. Every position

possesses some threshold value, which is being fixed

at the time of re-ordering the test cases. These

threshold values will help during the evaluation, as of

which test case would be best suited for which

particular possie. These test cases could be arranged

in 'n' number of sequences. That is, there could be 'n'

combinations regarding the test cases in FMT, but this

methodology targets at achieving an optimal outcome

that incorporates a highly preferable sequence of test

cases with a high possibility of earlier fault detection.

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2021, Vol. 18 No.2 (Suppl. June) E-ISSN: 2411-7986

1066

Table 5. Threshold percentile fixed for every possie for the five test cases.
Feature threshold in

percentile
Positions of test cases

1st position 2nd position 3rd position 4th position 5th position

Coverage

Cost

His. coverage

His. cost

His. Du-pair

His. requirement

DU-pair

Requirement

65

25

60

25

60

26

51

45

85

33

75

34

81

49

75

70

90

34

81

35

82

50

75

71

91

35

82

35

83

51

80

72

92

37

90

35

90

59

85

73

 Table 5 delineates the percentile depiction fixed

for the five positions. Variation within the threshold

values of diverse parameters (present in Table 5) is

notable for every time the test case evaluation is done

for every specific possie. Different positions would

have a distinct or slight equal threshold for every

aspect being considered for assessment. This

variability in threshold percentile indicates that the

significant information from previously ordered test

cases is weighed to find out more optimal test cases at

subsequent positions. Then, while reckoning a test

case for succeeding positions, percentile varies from

previous ones.

The du-pair and requirement feature could be

estimated through:

𝐷(𝑇𝑖) = 𝑑𝑐𝑜𝑣𝑒𝑟𝑒𝑑/𝑑𝑡𝑜𝑡𝑎𝑙 … (5)

𝑅(𝑇𝑖) = ∑ {𝐶𝑉(𝑆𝑗) × 𝑟𝑗}
𝑚
𝑗=1 … (6)

 D(Ti) in equation (5) reveals DU-pair Matrix

particulars, where dcovered is the number of du-pair

covered by that test case, and dtotal is the total number

of du-pair. For practicable demonstration, dcovered

details are taken into account. In equation (6), R(Ti)

denotes the test case requirement calculation, and rj is

the requirement value attained by every statement of

the cycle in execution.

Figure 10. Algorithm 5: Test Case Prioritization (Prioritizing the test case at position 1)

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2021, Vol. 18 No.2 (Suppl. June) E-ISSN: 2411-7986

1067

Figure 11. Grid representation of features plotted for prioritizing appropriate test case at position '1'.

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2021, Vol. 18 No.2 (Suppl. June) E-ISSN: 2411-7986

1068

 Algorithm 5 (Fig. 10) reveals the best-suited test

case for position '1' while Fig. 11 depicts the eight

features being plotted for position '1', with considered

test sequence {T1, T2, T4, T5, T8}. The red-colour-

highlighted plots elucidate that those test cases satisfy

the threshold criteria, which is being set for the first

position. Test case T8 satiated all the aspects and

extracted as common among all the test cases meeting

the threshold of the features. After being prioritized at

the very first, T8 would then be used as the previous

test case for all other Ti's left in 'n' sequences where

all ['n' sequences – {T8}] would be served as input for

the second iteration of the prioritization procedure.

For this mechanism, this study took '5' sequences into

consideration; therefore, every data of test case T8

would be utilized for every feature in prioritizing the

test cases being left in the sequences, at the specific

position. The computational procedure for every

aspect present in Table 5 would be updated for the

test case being prioritized at the next position to T8.

The equations of the features to be utilized at

succeeding positions would be:

𝐶𝑜𝑣(𝑇𝑖) = 𝑆𝑐𝑜𝑣𝑒𝑟𝑒𝑑(𝑇𝑖−1) + 𝑇𝑖𝑛(𝑠𝑡) … (7)

𝐶𝑜𝑠𝑡(𝑇𝑖) = 𝐶𝑜𝑠𝑡(𝑇𝑖−1) + 𝐶𝑜𝑠𝑡(𝑇𝑖𝑛(𝑠𝑡)) …(8)

𝐷(𝑇𝑖) = 𝑑𝑐𝑜𝑣𝑒𝑟𝑒𝑑(𝑇𝑖−1) + 𝑇𝑖𝑛(𝑑) … (9)

𝑅(𝑇𝑖) = 𝑅(𝑇𝑖−1) + 𝑅(𝑇𝑖𝑛(𝑠𝑡)) … (10)

where Ti is the test case in processing, (Ti-1) is the

previously selected test case; Tin(st) is the number of

additional new statement covered by the processing

test case concerning the coverage of the previously

selected test case, and Tin(d) is the number of

additional du-pair covered by the processing test case

pertaining to the previously selected test case.

 History features will utilize the same equations,

i.e., 7-10, for evaluating the integrated features in it.

The five sequences would assess all the features

respectively, and the test case that is found to be

frequent in all the sequences would acquire the

succeeding position with reference to the former test

case. Some amount of relaxation in the threshold will

be expected if the commonality notion is not satiated.

This whole procedure for prioritizing the test cases

continues until a final optimal sequence of '5' test

cases is procured.

 The graphs for the sequence {T1, T2, T4, T5} are

portrayed precisely in Fig. 12 that reveals T5 as the

test case to be prioritized at position '2'. Similarly, the

three different sequences considered for the study, i.e.

{T2, T4, T5, T1}, {T4, T5, T1, T2}, {T5, T1, T2, T4}

would be plotted, the fourth sequence comes out to be

identical to the first sequence and the common test

cases from these sequences extracted. From those

extracted test cases, from every sequence, the

commonality notion is preferable to have a test case

for that processing possie. After affixing test case T5

at possie '2', test cases T8 and T5 would be considered

as previous test cases for evaluating the aspects of left

test cases (i.e., {T1, T2, T4}) in order to prioritize them

at succeeding positions.

 Evaluation of left test cases depicts a tie among

them for the succeeding positions. Hence, the tied test

cases are prioritized further by allocating priority or

preference to each considered feature. According to

the priority-levels, the individual value of every

feature corresponding to the tied test cases is

examined. The test case, which would have higher

figures for the features, is extracted among the tied

test cases and is re-ordered at the appropriate position.

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2021, Vol. 18 No.2 (Suppl. June) E-ISSN: 2411-7986

1069

Figure 12. Grid representation of features plotted for prioritizing appropriate test case at position '2'.

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2021, Vol. 18 No.2 (Suppl. June) E-ISSN: 2411-7986

1070

Table 6. Preference and feature evaluation for

tied test cases.
Preference

allotted

(Priority)

Features in accordance

with the priority

assigned

Test cases to be

prioritized

T1 T2 T4

I

II

III

IV

V

VI

VII

VIII

Cost

History Requirement

History Coverage

History Cost

History du-pair

Coverage

Requirement

DU-pair

11

11

 2

17

 2

 3

30

 4

23

21

 3

13

 2

 4

44

 8

25

24

 4

17

 3

 4

46

 2

Table 6 explains that T4 is the test case consisting of

at most five features to be high valued while two

features with equal value compared with test cases T1

and T2, consequently prioritizing T4 at the third

position. A similar strategy would be applicable for

the two test cases, i.e., for T1 and T2. The final

optimal outcome, i.e., the prioritized sequence of test

cases, would be:

Figure 13. Final outcome of the proposed

methodology

The test cases acquiring at first in Fig. 13 are

coverage effective, i.e., more faults would be revealed

earlier, and the least coverage effectual test cases are

at last in Fig. 13, deducing a notion that more fault

detection would be procured at earlier phase only.

Results and Discussion:
Experimental evaluation of the proposed Test

Case Minimization methodology:

 To validate the significance of the strategy

proposed in this study for lessening of test cases, the

proposed system was compared with some previously

stated and existing algorithms and processes from the

studies, i.e., rule-based methodology and

conventional genetic algorithm. For experimentation

analysis, few benchmark exemplar codes were taken

and inspected for the parameters, such as the number

of test cases reduced and statements covered by the

respective algorithm. The altered version of GA

(proposed algorithm) attained up to 80% (maximum

percentile) statement coverage, with only 50 % of test

cases (Maximum reduction achieved) during analysis

(Table 7).

Table 7. Results of experimental analysis for proposed reduction scheme in this study.

Exemplar code for

examination

Techniques/Algorithms

used

Test cases left after

reduction (Out of 10 test

cases)

Number of statements

covered (in percentage)

Finding maximum among

three integers

Rule-based optimization

strategy
7 70%

GA 6 75%

Proposed Algorithm 5 75%

Identification of Prime

number

Rule-based optimization

strategy
7 70%

GA 8 80%

Proposed Algorithm 5 80%

Finding a minimum

among three integers

Rule-based optimization

strategy
7 80%

GA 6 70%

Proposed Algorithm 5 75%

Factorial code using

recursion

Rule-based optimization

strategy
7 75%

GA 7 78%

Proposed Algorithm 5 80%

Program to implement

Binary Search Algorithm

Rule-based optimization

strategy
7 67%

GA 6 65%

Proposed Algorithm 5 80%

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2021, Vol. 18 No.2 (Suppl. June) E-ISSN: 2411-7986

1071

Comparative corroboration within the proposed

Test Case Minimization methodology:

 The test case sequence attained after the

reduction procedure (i.e., FMT) (Fig. 9) was

compared with the test sequences for the five

execution cycles (i.e., with (FR)). According to the

case study considered in this research, the embedded

test sequences in FR and their graphical comparison

are presented in Fig. 14. Three out of five cases have

shown promising results regarding the proposed

reduction methodology. The outcomes of the

comparison between FMT and test sequences of FR

comes out to be either higher or equal in three cases

for FMT (in terms of cost) (Fig. 14).

Figure 14. Validation of FMT over FR through graphical representation.

Performance analysis of the proposed Test Case

Prioritization scheme:

 The prioritized test cases (Fig. 13) were collated

with a randomly generated sequence of these '5' test

cases, i.e. {T2, T1, T5, T4, T8}. This was done to

scrutinize the accuracy of prioritized test cases at their

specific position, following the threshold set in Table

5. The prioritized test sequence proved to be more

scrupulous exact, i.e., highly accurate when collated

with a random sequence. The graph below delineates

the performance analysis of the two sequences (Fig.

15):

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2021, Vol. 18 No.2 (Suppl. June) E-ISSN: 2411-7986

1072

Figure 15. {T8, T5, T4, T2, T1} v/s {T2, T1, T5, T4, T8}

Experimental evaluation of the proposed Test

Case Prioritization scheme:

 Effort calculated during this phase of the

analysis showed that the test sequence that was

achieved as an outcome (Fig. 13) required only 60%

of exertion. In comparison, the test sequence that was

generated by randomly shuffling the tied test cases

with the remaining test cases requires 100% effort

(Fig. 15). To understand this nature and verify the

system's robustness, an analysis was performed with

ten benchmark exemplar codes (Table 8).

Table 8. Results of experimental analysis for proposed prioritization scheme in this study.

Exemplar code for examination
Effort required through

the proposed system

Effort needed for

random approach

Coverage attained through

the proposed system

Finding maximum among three numbers 60% 100% 85%

Factorial program using recursion 80% 100% 80%

Fibonacci series 60% 100% 90%

String reverse code 60% 100% 80%

Finding a minimum among three

numbers
60% 100% 85%

Calculating Permutation and

combination of 2 numbers
80% 100% 90%

Identification of Prime number 80% 100% 85%

Verifying whether a string is palindrome

or not
60% 100% 75%

Program to implement Binary Search

Algorithm
80% 100% 90%

Finding the area of a parallelogram 60% 100% 75%

 The presented results and analysis suggest the

significance of reduction and prioritization

methodologies proposed in this study. Earlier studies

demonstrated relevant findings regarding the test case

optimization problem but lack an appropriate strategic

solution for handling the tied test case problem

together with optimizing them. Although this current

study proposes an optimal solution for test case

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2021, Vol. 18 No.2 (Suppl. June) E-ISSN: 2411-7986

1073

reduction and re-ordering problem, there are certain

threats to validity.

 Earlier detection of fault revealing test cases

reduces the cost and effort required for the testing

process. For this, the current study suggests an

algorithmic framework; however, with increased

complexity, supervised machine learning models such

as Support Vector Machine (SVM) should be

practiced for full automation. These models with

kindred algorithms will provide a strong

mathematical base (separating hyperplane) to classify

faulty and non-faulty test cases. Further, unsupervised

machine learning tasks such as clustering will aid in

forming the clusters of those test cases that will be

going to collide on the same position while

prioritizing and hence will provide a futuristic view of

test case tie.

 An increment in the line of codes will directly

affect the length of the population generated; that is, it

will increase drastically. Therefore more intelligent

optimization methods such as Particle Swarm

Optimization (PSO), Grey-Wolf Optimization must

be exercised to reduce population or to handle

independent paths. Moreover, this study was

evaluated with a limited number of programs and can

be examined with much more complicated codes to

get better insights.

Conclusion:
 This paper exhibits a novel strategic approach

towards regression test case optimization with certain

predetermined objectives. This study proposes an

algorithmic rule (basic structure) for processing data

obtained from the test case execution history at the

earliest stage of the technique. Refinement of this data

gives a visual illustration of the existence of

relationships among different test cases. These test

cases proceed at the reduction stage, where genetic

operators are merged with factors that uncover fault

and dependency ratios, further, on obtaining the

reduced repository, the filtration stage aids in

procuring the most favourable test cases.

 Additionally, to effectuate this study's objective,

the prioritization stage is initiated that discloses the

optimal order for the filtered test cases. Analysis

records clarified the effectiveness of the proposed

system as compared to the randomly generated test

sequence.

 For future work, the multifactor algorithm

propounded in this research can be collated with the

concept of artificial intelligence for robustness and

can be evaluated with many programs.

Authors' declaration:
- Conflicts of Interest: None.

- We hereby confirm that all the Figures and Tables

in the manuscript are mine ours. Besides, the

Figures and images, which are not mine ours, have

been given the permission for re-publication

attached with the manuscript.

- Ethical Clearance: The project was approved by

the local ethical committee in SRMIST -201204,

Delhi-NCR Campus.

References:
1. Pradhan D, Wang S, Ali S, Yue T, Liaaen M. REMAP:

Using Rule Mining and Multi-Objective Search for

Dynamic Test Case Prioritization. In 2018 IEEE 11th

ICST; 2018; Vasteras. p. 46-57.

2. Gupta N, Sharma A, Pachariya MK. An Insight Into

Test Case Optimization: Ideas and Trends With Future

Perspectives. IEEE Access. 2019; 7: 22310-22327.

3. Alian M, Suleiman D, Shaout A. Test Case Reduction

Techniques - Survey. Int J Adv Comput Sci Appl. 2016

Jun; 7(5): 264-275.

4. Mohapatra SK, Pradhan M. Finding Representative

Test Suit for Test Case Reduction in Regression

Technique. In 2015 IEEE IC4; 2015; Indore. p. 1-6.

5. Harris P, Raju N. A Greedy Approach for Coverage-

Based Test Suite Reduction. Int Arab J Inf Technol.

2015 Jan; 12(1): 17-23.

6. Lin CT, Tang KW, Wang JS, Kapfhammer GM.

Empirically evaluating Greedy-based test suite

reduction methods at different levels of test suite

complexity. Sci Comput Program. 2017 Dec; 150: 1-

25.

7. Vahabzadeh A, Stocco A, Mesbah A. Fine-Grained

Test Minimization. In 2018 ACM/IEEE 40th Int Conf

Softw Eng; 2018; Gothenburg. p. 210- 221.

8. Jeffrey D, Gupta N. Improving Fault Detection

Capability by Selectively Retaining Test Cases during

Test Suite Reduction. IEEE Trans Softw Eng. 2007

Feb; 33(2): 108-123.

9. Agrawal AP, Choudhary A, Kaur A, Pandey HM. Fault

coverage-based test suite optimization method for

regression testing: learning from mistakes-based

approach. Neural Comput Appl. 2020 Jun; 32: 7769–

7784.

10. Singh L, Singh SN, Dawra S, Tuli R. A New

Technique for Test Suite Minimization in Regression

Testing. SSRN Electron J. 2019 Jan.

11. Lawanna A. Test case design based technique for the

improvement of test case selection in software

maintenance. In 2016 55th Annu Conf SICE Jpn; 2016;

Tsukuba. p. 345-350.

12. Lawanna A. Filtering test case selection for increasing

the performance of regression testing. Int J Appl Sci

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2021, Vol. 18 No.2 (Suppl. June) E-ISSN: 2411-7986

1074

Technol. 2016; 9(1): 19-25.

13. Panda S, Mohapatra DP. Regression test suite

minimization using integer linear programming model.

Softw Pract Exp. 2017 Nov; 47(11): 1539-1560.

14. Kazmi R, Jawawi DNA, Mohamad R, Ghani I, Younas

M. A Test Case Selection Framework and Technique:

Weighted Average Scoring Method. J Telecommun

Electron Comput Eng. 2017; 9: 15-22.

15. Marchetto A, Scanniello G, Susi A. Combining Code

and Requirements Coverage with Execution Cost for

Test Suite Reduction. IEEE Trans Softw Eng. 2019

Apr; 45(4): 363-390.

16. Mukherjee R, Patnaik KS. A Survey on Different

Approaches for Software Test Case Prioritization. J

King Saud Univ - Comput Inf Sci. 2018 Oct.

17. Beena R, Sarala S. Code coverage based test case

selection and prioritization. Int J Softw Eng Appl.

2013; 4(6): 39-49.

18. Zhou J, Hao D. Impact of Static and Dynamic

Coverage on Test-Case Prioritization: An Empirical

Study. In 2017 IEEE ICST Workshops; 2017; Tokyo.

p. 392-394.

19. Mirarab S, Tahvildari L. A Prioritization Approach for

Software Test Cases Based on Bayesian Networks.

Fundam Approaches Softw Eng. 2007; 4422: 276-290.

20. Carlson R, Do H, Denton A. A clustering approach to

improving test case prioritization: An industrial case

study. In 2011 27th IEEE ICSM; 2011; Williamsburg.

p. 382-391.

21. Zhao X, Wang Z, Fan X, Wang Z. A Clustering-

Bayesian Network Based Approach for Test Case

Prioritization. In 2015 IEEE 39th Annu Int Comput

Softw Appl Conf; 2015; Taichung. p. 542-547.

22. Mahmood MH, Hosain MS. Improving Test Case

Prioritization Based on Practical Priority Factors. In

2017 8th IEEE ICSESS; 2017; Beijing. p. 899-902.

23. Khalilian A, Azgomi MA, Fazlalizadeh Y. An

improved method for test case prioritization by

incorporating historical test case data. Sci Comput

Program. 2012; 78(1): 93-116.

24. Gupta A, Mishra N, Tripathi A, Vardhan M, Kushwaha

DS. An Improved History-Based Test Prioritization

Technique Technique Using Code Coverage. Adv

Comput Commun Eng Technol. 2015 Nov; 315: 437-

448.

25. Anderson J, Salem S, Do H. Improving the

effectiveness of test suite through mining historical

data. In MSR 2014: Proc 11th Work Conf Min Softw

Repos; 2014. p. 142-151.

26. Noor TB, Hemmati H. A similarity- based approach for

test case prioritization using historical failure data. In

2015 IEEE 26th ISSRE; 2015; Gaithersbury, MD. p.

58-68.

27. Goyal S, Mishra P, Lamichhane A, Gandhi P. Software

Test Case Optimization Using Genetic Algorithm. Int J

Sci Eng Sci. 2018; 1(12): 69-73.

28. Bhawna, Kumar G, Bhatia PK. Software Test Case

Reduction using Genetic Algorithm: A Modified

Approach. Int J Innov Sci Eng Technol. 2016 May;

3(5): 349-354.

29. Priyanka, Kumar R, Nipur. Generation of optimized

and effective test case : A proposed model. Int J Eng

Sci Math. 2017 Jul; 6(3): 115-123.

30. Mateen A, Nazir M, Awan SA. Optimization of Test

Case Generation using Genetic Algorithm (GA). Int J

Comput Appl. 2016 Oct; 151(7): 6-14.

31. Akour M, Abuwardih L, Alhindawi N, Alshboul A.

Test Case Minimization using Genetic Algorithm: Pilot

Study. In 2018 8th Int Conf CSIT; 2018. p. 66-70.

32. Serdyukov KE, Avdeenko TV. Using genetic algorithm

for generating optimal data sets to automatic testing the

program code. Inf Technol Nanotechnol. 2019 Jan;:

173-182.

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2021, Vol. 18 No.2 (Suppl. June) E-ISSN: 2411-7986

1075

 وترتيبهاخوارزمية متعددة العوامل لاختيار الحالة

 راجندرا براساد ماهاباترا أتوليا جوبتا

 إن سي آر ، غازي أباد ، يو بي ، الهند-، حرم دلهي SRMIST -201204قسم علوم وهندسة الكمبيوتر ،

 : الخلاصة
تحديد مجموعة مصغرة أو ختبار الانحدار باهظ التكلفة ، وهو مفهوم التحسين المطلوب. عادةً ما ينتج عن تحسين حالات الاختبار ا

اسات مجموعة فرعية من حالات الاختبار أو إعطاء الأولوية لحالات الاختبار لاكتشاف الأخطاء المحتملة في مرحلة سابقة. كشفت العديد من الدر

ياتها. ومع ذلك ، فقد حُرمت تلك السابقة عن آلية تعتمد على الكشف عن مجريات الأمور للوصول إلى الأمثل مع تقليل حالات الاختبار أو تحديد أولو

ية الجينية الدراسات من إجراءات منهجية لإدارة قضية حالات الاختبار المقيدة. علاوة على ذلك ، غالباً ما تساعد الخوارزميات التطورية مثل العمل

ك ، عند فحص قدرة الكشف عن الخطأ مع في استنفاد حالات الاختبار ، جنباً إلى جنب مع انخفاض متزامن في وقت التشغيل الحسابي. ومع ذل

وميزات المعلمات الأخرى ، فإن الطريقة تقصر. يقترح البحث الحالي ، بدافع من هذا المفهوم ، خوارزمية متعددة العوامل مدمجة مع عوامل وراثية

د الأولويات المستند إلى العوامل من أجل المعالجة السليمة لحالات الا ختبار المقيدة التي ظهرت أثناء تنفيذ إعادة الطلب. إلى قوية. يتم تقديم مُحدِّ

(في الدراسة للكشف عن حالات الاختبار المستقرة للمعالجة. يتم تشريح فعالية CFTجانب ذلك ، تم تضمين جهاز ضبط دقيق يعتمد على التكلفة)

إرشادية محددة)قائمة على القواعد(ومنهجية وراثية قياسية. يتم النتيجة التي يتم الحصول عليها من خلال نهج التقليل المقترح ومقارنتها بطريقة

الاختبار الذي إجراء التحقق الداخلي للنتيجة المحققة من إجراء التخفيض بيانياً. قارنت هذه الدراسة التسلسلات التي تم إنشاؤها عشوائياً مع تسلسل

حديد الأولويات المقترحة. كشف التحليل التجريبي أن النظام المقترح نجح بشكل كبير في أكواد معيارية لخطة ت 10تم شراؤه المعاد ترتيبه لأكثر من

 ٪ في جهد الاختبار من خلال تحديد وتنفيذ حالات اختبار فعالة ومستقرة للتغطية في مرحلة مبكرة. 40-35تحقيق انخفاض بنسبة

 .تصغير حالة الاختبار ، تحديد أولويات حالة الاختبار ، اختبار الانحدار ، حالات الاختبار ، GA :المفتاحية:الكلمات

