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Abstract:  
        Regression testing being expensive, requires optimization notion. Typically, the optimization of test cases 

results in selecting a reduced set or subset of test cases or prioritizing the test cases to detect potential faults at an 

earlier phase. Many former studies revealed the heuristic-dependent mechanism to attain optimality while 

reducing or prioritizing test cases. Nevertheless, those studies were deprived of systematic procedures to manage 

tied test cases issue. Moreover, evolutionary algorithms such as the genetic process often help in depleting test 

cases, together with a concurrent decrease in computational runtime. However, when examining the fault 

detection capacity along with other parameters, is required, the method falls short. The current research is 

motivated by this concept and proposes a multifactor algorithm incorporated with genetic operators and powerful 

features. A factor-based prioritizer is introduced for proper handling of tied test cases that emerged while 

implementing re-ordering. Besides this, a Cost-based Fine Tuner (CFT) is embedded in the study to reveal the 

stable test cases for processing. The effectiveness of the outcome procured through the proposed minimization 

approach is anatomized and compared with a specific heuristic method (rule-based) and standard genetic 

methodology. Intra-validation for the result achieved from the reduction procedure is performed graphically. 

This study contrasts randomly generated sequences with procured re-ordered test sequence for over '10' 

benchmark codes for the proposed prioritization scheme. Experimental analysis divulged that the proposed 

system significantly managed to achieve a reduction of 35-40% in testing effort by identifying and executing 

stable and coverage efficacious test cases at an earlier phase. 

 

Key words: GA, Regression testing, Test cases, Test case minimization, Test case prioritization.                   

 

Introduction: 
         Whensoever evolution has occurred in the field 

of software, testing is required. Software testing is 

predominantly the operation conducted by testers to 

identify the defects or gaps and verify whether or not 

the system under consideration correctly complies 

with the client's specifications. During the software 

modification phase, the development teams, testers, 

and the stakeholders are more concerned about the 

authenticity and reliability of new features being 

worked on, not about the existing features that have 

been extensively tested and stable. As the latest piece 

of code is supposed to be incorporated with the 

existing features, during this time, it is exceedingly 

possible that any functionality may have been broken 

in the existing code. To ensure that the final product 

performs well even after the latest improvements have 

been pushed, regression testing must be executed. 

This notion also results in the formation and 

execution of a sizeable number of test cases and 

makes regression testing economically expensive in 

terms of maintenance, exhausting the testing budget 

to an approximation of up to 80% (1). 

         The unarguable reality that there are always 

thousands of variations and potential explanations 

why anything might go wrong is synonymous with 

testing. Sometimes, testers with a vivid imagination 

are merely unable to spot each one of them, 

particularly if the launch's delivery date is getting 

closer. Also, there is never sufficient time and 

resources for all alternative test conditions to be 

found and tested. So it is necessitated to reduce or 

prioritize the test conditions to retain the testing 
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process (2). Thence, this study's focal point is to 

emphasize the prime issue in software testing 

research, i.e., optimization of test cases 

('Minimization' + 'Prioritization' strategies). A large 

body of research exists for Test Case Minimization, 

which generally executes fewer test cases depending 

upon some criteria. Fundamental delineation of the 

problem of selecting a reduced set of test cases could 

be (3,4): 

Definition 1: A test suite T, a series of testing 

requirements r1, r2……rn that must be tested in order 

to have an appropriate testing coverage in accordance 

with the program and a list of subsets of T, one 

associated with each of the requirements (iterating 

from 1 to n) such that any one of the test cases Ti 

belonging to the subsets of T can be used to test the 

requirement rj. 

Problem: Find a representative set of test cases Ti 

that will satisfy all of the rj's. 

         Various approaches have been hypothesized to 

minimize the test suites. For instance, Harris and Raju 

(5) expounded an idea for diminishing the test suite 

size by plying an uncomplicated approach that 

concentrates on test metrics (i.e., desideratum and 

size coverage) and accordingly proposed a CBTSR 

(Coverage Based Test Suite Reduction) algorithm. 

The principal contribution of their modus operandi 

embraced the construction of test cases and desiderata 

through data flow testing that aimed to inspect the 

physical framework of the program and to discover 

the sub-paths which were being traversed by 

variables. Lin et al. in (6) emphasized and empirically 

estimated Greedy-based strategies (i.e., cost-aware 

Greedy tactics and the auxiliary Greedy) using gzip 

space, siemens, and ant applications. The result of 

their estimation indicated the accomplishment of 

higher proficiency of fault detection and lesser cost 

for regression testing with cost-aware procedures. 

         With progression in production code, test suites 

can congregate redundancies overtime. Vahabzadeh 

et al. in (7) focused on fine-graining the test 

minimization procedure and thus proposed a model 

for the statement-level analysis of test cases. A 

technique accompanying a tool (named Testler) was 

presented to lessen substantial redundancies in test 

statements of test cases. Many empirical studies also 

articulated the degradation of FDE (Fault Detection 

Effectiveness) due to the reduction mechanism. 

Jeffrey and Gupta  (8) focused on improving this fault 

detection capability by affixing a concept of 

selectively retaining those test cases that are fault 

revealing but reduced because of being redundant. 

The work discussed in (9) offered a solution for 

complications of regression test suite optimization, 

named FCBTSO (Fault Coverage- based Test Suite 

Optimization), which was formulated on HGS 

(Harrolds-Gupta-Soffa) test suite minimization 

strategy. Singh et al. in (10) propounded an algorithm 

to equilibrate the tradeoff between the time needed 

for test suite execution and their FDE. 

         A. Lawanna (11,12) described the design based 

technique for test cases, resulting in refinement of test 

case selection procedure and devised efficacious 

algorithms with the embedded concept of filtration, 

classification, and selection of germane test cases. 

Research regarding test case selection also deployed 

linear programming model to extract the subset of test 

cases, to rerun (13). The apprehension of these 

selection procedures was improvised in the study 

(14), where the weighted average sum of quantifiable 

aspects served as a base for the selection framework. 

Testing cost, code coverage, FDE of test suites, and 

code alter data were mentioned aspects of the study. 

Over the years, researchers also exercised NSGA- II 

(Non-dominated Sorting Genetic Algorithm II), a 

customary multi-objective approach, for reduction 

scheme. A variant of NSGA-II is presented in study 

(15) titled MORE+ (Multi-Objective test suite 

REduction). 

         Apart from reduction approaches, TCP (Test 

Case Prioritization) also proved to be efficacious, 

which optimally arrange the set of test cases for 

attaining certain criteria such as fault detection 

capability as expeditiously as possible. In one or the 

other way, this technique acquires two objectives, that 

is, re-ordering of test cases according to some criteria 

and detecting faults at the earlier stage, resultantly 

reducing testing time with much smaller overhead 

(16). 

         Along with the minimization of test cases, 

prioritization also encompassed a large body of 

research. Beena and Sarala (17) formulated a 

selection and prioritization approach, mainly 

concerned with the coverage aspect. Categorization of 

coverage particulars collected during the ordering of 

test cases reveals the static or dynamic nature. Zhou 

and Hao (18) conducted an extensive empirical study 

to evaluate and contrast different methods of 

prioritization based on these natures, together with 

various test granularities and coverage criteria. 

Mirarab et al. and other researchers utilized 

techniques such as BN (Bayesian network), clustering 

approach, or a hybrid technique incorporating both to 

prioritize the test cases. This hybrid technique 
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illustrated the idea of employing clustering methods 

for grouping the test cases according to the similarity 

based on the code coverage and then prioritizing 

those clustered test cases according to their 

probabilistic inference (i.e., the failure probability of 

test cases) being employed by BN model (19-21). 

         Many other researchers precisely worked on 

improving the prioritization of test cases by 

concentrating on real-world aspects, i.e., focused on 

practical priority features (22). The present study 

observed that the historical execution data is also 

significant as that data conveniently reveals how the 

test cases failed previously and to what extent the test 

cases are likely to fail later. Khalilian et al. in (23) 

deployed historical execution data for the 

computation of prioritization equations and modified 

them to possess dynamic coefficients. These 

enhanced mathematical equations were composed of 

execution history, test case priority, and historical 

FDE. Research presented in (24) ameliorated the 

history-based approach by applying it on each altered 

line of code, i.e., prioritizing the modified lines first 

and afterwards followed up with concerned test cases. 

Moreover, the data also depicted that some test cases 

have execution relations among them, i.e., the 

execution history of one test case predicts the other, 

therefore mining such execution relations among the 

test cases based on historical execution data would 

improve the optimization approach further (1,25). 

According to Tanzeem Bin Noor and Hadi Hemmati 

(26), practically, it is not necessitated that a failing 

test case would always be exactly identical to the test 

case being failed previously, viz. the failing test case 

could be a slightly altered version of the former 

failing test case to reveal a fault that is being 

undetected. 

         In the view of studies surveyed and the need for 

enhancement in optimization tactics, this research 

addresses some significant issues in the above-

mentioned existing conventional systems for 

optimizing the test cases as: 

 The existing traditional methods or the genetic 

process deployed for test case minimization 

exploits a single parameter that is unjustified, 

resulting in non-fulfilment of either the objective 

or the requirements to be procured during software 

testing.  

 Many of the optimizations approach results in 

static execution of test cases; that is, the order of 

optimized test cases would not be updated based 

on the runtime execution of test cases. Although 

the authors (1) proposed the dynamic way of 

optimizing the test case execution result, which 

overpowers the previous concept, optimization is 

still needed to get the most desirable outcome. 

 No specific methodology is described for handling 

the test case tied issues, i.e., the stated problem 

either solved by preferring the test cases through 

FCFS (First Come First Serve) approach or 

random selection between the tied test cases, 

resulting in lower efficacy of the system.  

         Consequently, this paper presents a 

methodology that: 

 Considers multiple factors/ features/ parameters, 

regarding test case optimization approach and 

thence satisfying all the needed requirements as 

possible, for testing the system, i.e., it would:  

 Analyze historical execution data for mining 

fail/pass rules of test cases. 

 Compute the Fault Questing Potentiality (FQP) 

and Test case Dependency Score (TDS) from the 

historical execution data and pruned rules. 

 Minimize the test cases by exercising one of the 

computational-intelligence-based processes 

(Genetic algorithm) to keep the coverage measure 

similar to the test suite. 

 Prioritizes the reduced test cases, accompanied by 

a specific strategic approach for resolving issues 

cognate with tied test cases, for the optimal 

outcome. Moreover, the main concentration of the 

proposed method lies in coverage only. 

         A Genetic algorithm (GA) is the widely used 

population-based approach inspired by the natural 

phenomenon of survival to the fittest. An extended 

version for applicability of Genetic algorithm in 

test case optimization could be understood from 

(27-32). The current study aims to manage the 

issues that occur during test case analysis by 

incorporating GA as a base structure and 

prioritizing test cases by suggesting key variables 

and strategies for the notion of the tied test cases. 

         The rest of the paper's organization is as 

follows: Subsequent section deals with the technique 

proposed for test case optimization (Section 2). For a 

concise overview of how the methodology progresses, 

this section includes three subsections. Section 3 

addresses the confirmation of the findings and the 

possible future enhancements for the proposed 

method. The final section (Section 4) of this paper 

presents the conclusion.  

 

Proposed Method: 

         The regressive test procedure makes it almost 

impossible to perform all probable and preferred tests.  
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That is why the significant challenge is to choose an 

adequate test for code. If this critical step is not 

accomplished, the code's important characteristic may 

not be covered by the testing process. Additionally, it 

is essential to prioritize the tests that are likely to 

emphasize issues and are paramount to code 

functioning. In order to deal with the complexities of 

testing procedures, this research suggested and 

implemented the techniques for optimizing test cases. 

The broad visual perspective is represented in Fig. 1. 

The production of the proposed model requires 

multiple stages, which are described below. 

 

 
Figure 1. Diagrammatic representation of overall Proposed Approach (Block-representation) 

 

Investigation and mining of test case linkage: 

         The conceptual framework of the proposed 

solution starts from here. In general, during regression 

testing, a background data depository is maintained, 

which is a storage for historical details of every test 

case. It includes the number of times a particular test 

case is being deployed, the faults disclosed by the test 

cases, and the severity of detected defects. In the 

course of progression and planning of the present 

work, it is observed that test cases' past performance 

provides insight for fail/pass verdicts of test cases. 

Any association was not considered before executing 

the test cases, but results manifested the link among 

the test cases after execution. The variables guided by 

the historical execution relationship of test cases were 

the current study's core concept. 

 

Table 1.  Sample data for the execution history of 10 test cases for five cycles 

Execution 

cycles 

Test cases 

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 

1 Pass Pass Fail Fail Pass Pass Fail Pass Pass Pass 

2 Fail Pass Pass Fail Fail Pass Pass Pass Fail Fail 

3 Fail Pass Fail Pass Fail Pass Pass Fail Fail Fail 

4 Fail Fail Pass Fail Pass Fail Fail Pass Fail Pass 

5 Pass Pass Fail Pass Fail Pass Pass Fail Pass Fail 

          

The relations of test cases are illustrated as 

which test case to be executed first to get the 

predicted test case executed precisely after that if it is 

found to be fault revealing. From Table 1, this 

concept could be delineated as if a test case T1 fails or 

passes for a particular cycle; test case T9 also 

generates the same verdict for that cycle. This notion 

also includes that the two test cases would have 

identical verdicts for all the execution cycles taken 

into consideration at that time. For test cases 
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revealing such a type of association, rules can be 

therefore pruned via RRA. 

 

   

 

 
Figure 2. Algorithm 1: Rule Retrenching Algorithm (RRA) 

 

Table 2.  Fail/Pass rules derived from RRA 

Fail Rules Pass Rules 

1. (𝑉(𝑇1) = 𝐹𝑎𝑖𝑙)  
𝑓𝑎𝑖𝑙
→   (𝑉(𝑇9) = 𝐹𝑎𝑖𝑙) 

2. (𝑉(𝑇1) = 𝑃𝑎𝑠𝑠)  
𝑝𝑎𝑠𝑠
→   (𝑉(𝑇9) = 𝑃𝑎𝑠𝑠) 

3. (𝑉(𝑇2) = 𝐹𝑎𝑖𝑙)  
𝑓𝑎𝑖𝑙
→   (𝑉(𝑇6) = 𝐹𝑎𝑖𝑙) 

4. (𝑉(𝑇2) = 𝑃𝑎𝑠𝑠)  
𝑝𝑎𝑠𝑠
→   (𝑉(𝑇6) = 𝑃𝑎𝑠𝑠) 

5. (𝑉(𝑇5) = 𝐹𝑎𝑖𝑙)  
𝑓𝑎𝑖𝑙
→   (𝑉(𝑇10) = 𝐹𝑎𝑖𝑙) 

6. (𝑉(𝑇5) = 𝑃𝑎𝑠𝑠)  
𝑝𝑎𝑠𝑠
→   (𝑉(𝑇10) = 𝑃𝑎𝑠𝑠) 

7. (𝑉(𝑇6) = 𝐹𝑎𝑖𝑙)  
𝑓𝑎𝑖𝑙
→   (𝑉(𝑇2) = 𝐹𝑎𝑖𝑙) 

8. (𝑉(𝑇6) = 𝑃𝑎𝑠𝑠)  
𝑝𝑎𝑠𝑠
→   (𝑉(𝑇2) = 𝑃𝑎𝑠𝑠) 

9. (𝑉(𝑇9) = 𝐹𝑎𝑖𝑙)  
𝑓𝑎𝑖𝑙
→   (𝑉(𝑇1) = 𝐹𝑎𝑖𝑙) 

10. (𝑉(𝑇9) = 𝑃𝑎𝑠𝑠)  
𝑝𝑎𝑠𝑠
→   (𝑉(𝑇1) = 𝑃𝑎𝑠𝑠) 

11. (𝑉(𝑇10) = 𝐹𝑎𝑖𝑙)  
𝑓𝑎𝑖𝑙
→   (𝑉(𝑇5) = 𝐹𝑎𝑖𝑙) 

12. (𝑉(𝑇10) = 𝑃𝑎𝑠𝑠)  
𝑝𝑎𝑠𝑠
→   (𝑉(𝑇5) = 𝑃𝑎𝑠𝑠) 

 

 

         The pruned rules (Table 2) according to 

Algorithm 1 (Fig. 2) and historical execution data 

(Table 1) are adequate to calculate the factors like 

Fault Questing Potentiality (FQP) and Test case 

Dependency Score (TDS). These two components 

illustrated the empirical values depending on the 

number of times a test case failed or predicted others, 

respectively. 

         Fault Questing Potentiality (FQP) (1) would 

be the ratio of the number of times a test case failed to 

the number of times it is executed. 

 

i.e. 𝐹𝑄𝑃 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑎 𝑡𝑒𝑠𝑡 𝑐𝑎𝑠𝑒 ℎ𝑎𝑣𝑒 𝑎 𝑓𝑎𝑖𝑙 𝑣𝑒𝑟𝑑𝑖𝑐𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡 𝑐𝑎𝑠𝑒 𝑤𝑎𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑
 

 

For example, from Table 1, the FQP value of T1 will 

be 3/5, i.e., 0.6. Comparably, the FQP factor for every 

test case would be evaluated. 

 

Test case Dependency Score (TDS) (1) clarifies the 

number of specific test cases whose outcome would 

be determined by implementing Ti using the stated 

failure and pass rules that are extracted from the 

historical data (Table 2). For example, it is only 

possible to use the execution of test case T1 to 

determine the execution result of test case T9 

formulated on rules 1 and 2 of Table 2, and thus, the 

TDS value of T1 will be '1'. Conversely, no test case 

can be determined based on the execution outcome of 

T5, so the TDS value of T5 will be '0'. 

 

Reduction mechanism based on GA notion: 

         The concept proceeds with scheming the initial 

population for every execution cycle (i.e., for every 

source code). The gene formation for every execution 

cycle will describe the statement coverage by the 

particular test case, i.e., the gene value '0' will depict 

no coverage by a processing test case for the 

statement. In contrast, '1' will illustrate that the test 

case covers a particular execution cycle's statement. 
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Figure 3. Algorithm 2: Initial population generation 

 

         Algorithm 2 (Fig. 3) describes how to structure 

the initial population in context to test coverage. The 

current work explained the detailed methodological 

account with a case study comprising of ten test cases 

and five execution cycles as: 

         Initial Population: The 0-1 matrix will be 

formed depicting the statement coverage by the test 

cases respectively, where '0' and '1' are supposed to be 

a gene, while the complete coverage information by a 

test case for a particular cycle will be a chromosome 

(Fig. 4). Each information residing in the execution 

cycle is assigned some random weightage ranging in 

between [0-1]. The weightage factor discloses the 

criticality of the data and conditions that these 

statements are holding (Table 3). 

 

Table 3.  Showing the initial population (Statement coverage by test cases) with respective weightage 

values for execution cycle1 

Weight for every statement 

(Wj) 

Statements (Sj) for execution 

cycle '1' 

Test cases 

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 

0.4 1 1 1 1 1 1 1 1 1 1 1 

0.6 2 1 1 1 1 1 1 1 1 1 1 

0.5 3 1 0 1 0 1 1 1 1 1 1 

0.2 4 1 0 1 0 0 1 1 0 1 1 

0.2 5 0 0 0 0 1 0 0 1 0 0 

0.1 6 0 0 0 0 1 0 0 1 0 0 

0.4 7 0 1 0 1 0 0 0 0 0 0 

0.7 8 0 1 0 1 0 0 0 0 0 0 

0.1 9 0 1 0 0 0 0 0 0 0 0 

0.5 10 0 0 0 1 0 0 0 0 0 0 

0.3 11 0 0 0 1 0 0 0 0 0 0 

0.6 12 1 1 1 1 1 1 1 1 1 1 

0.5 13 1 1 1 1 1 1 1 1 1 1 

0.4 14 1 1 1 1 1 1 1 1 1 1 

0.1 15 1 1 1 1 1 1 1 1 1 1 

          

 
Figure 4. Portrayal of coverage information by test 

case '1' for execution cycle '1' 

 

         Fitness Function: The fitness of every test case 

for all of the 'p' execution cycle would be calculated 

as: 

 

          𝐹(𝑇𝑖) = [{∑ {∑ (𝐶𝑉 (𝑆𝑗) × 𝑊𝑗)
𝑚
𝑗=1 }

𝑝
1 } +

𝐹𝑄𝑃(𝑇𝑖) + 𝑇𝐷𝑆(𝑇𝑖)]             …  (1) 

 

where 'p' denotes the number of execution cycles; for 

the considered case study, the value of 'p' is 5, CV (Sj) 

is the statement coverage value by the test case whose 

fitness is being computed, i.e., either '1' or '0' by the 

test case, Wj is the weight assigned to every specific 

statement, 'm' defines the total number of statement. 
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Figure 5. Algorithm 3: Test Case Minimization 

 

 
Figure 6. Algorithm 4: GA( ) 

 

         The above-stated algorithms, i.e., algorithm 3 

and 4 (Fig. 5 and  6) elucidate the procedure as to 

how the reduction methodology works and how the 

genetic operators would aid in extracting the minimal 

amount of test cases for every execution cycle with at 

least 75% of initial termination criterion. The final 

termination requirements are set to 50% to extract the 

best test sequence from the original test suite for 

every execution cycle. Following is the elaborative 

working of genetic operators.  

         Selection: This study deploys a random 

selection scheme to initially select two test cases from 

the test suite and perform an Ex-OR operation 

between the randomly selected test cases. The 

consequent chromosome would be analyzed on 

coverage factor, i.e., the coverage percentile of the 
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resultant chromosome would either be equal to or 

exceeds 75% (initial termination), to be in the reduced 

test sequence of the processing execution cycle. 

Within the modules, a knock-out based selection 

scheme is followed. Coverage for every test case 

would be enumerated as: 

 

      𝐶𝑜𝑣(𝑇𝑖) = 𝑆𝑐𝑜𝑣𝑒𝑟𝑒𝑑/𝑆𝑡𝑜𝑡𝑎𝑙          … (2) 

 

where Scovered = number of statements executed by the 

test case and Stotal = total number of statements in the 

processing execution cycle. 

         Crossover: If the selected pair of test cases 

would not satisfy the initial termination criterion, then 

crossover is carried out. Those two test cases' genes 

are swapped from the position where both test cases 

are covering the same statement to the point where 

neither of the two test cases covers a statement (Fig. 

7). This swapping is performed only once in between 

the genes of two test cases. 

 

        

 
                                

Figure 7. Crossover Operation 

 

         Ex-OR is performed betwixt the newly formed 

chromosomes, and coverage will be evaluated. If the 

coverage attained through the crossover mechanism 

gives unsatisfactory results, i.e., below 75%, then the 

outcome acquired through the crossover step is 

mutated. 

         Mutation: This refers to a slight change in the 

chromosome. The '0' bit is flipped to '1' according to 

the weightage assigned to the statements (single bit 

mutation). 

         Suppose the initial termination criterion is not 

satisfied by any of the three operators for the two test 

cases. In that case, from one of the two test cases, the 

test case with a low fitness value will be placed in a 

waiting queue. So, a waiting queue is maintained 

every time the pair of test cases would not satisfy the 

coverage criterion (Fig. 8). If the combination of 

randomly selected test cases fulfils the genetic loop 

coverage criteria, then those two test cases would be 

included in the processing cycle test sequence. The 

test sequences are further maintained in the final 

repository, and the selected test cases are excluded 

from the original test suite (T). Therefore for every 

execution cycle, a separate reduced test sequence is 

formed. 

         Whenever the inclusion of fitted pair of test 

cases in the reduced test sequence for a particular 

cycle occurred, the waiting queue is being inspected 

for the presence of any test case. If any test case 

exists, it will be extracted from there, and the 

procedure continues with the same extracted test case 

by pairing it with some other randomly selected test 

case from the original test suite. The last test case in 

the reduced test sequence will be fitness based only. 

If no test case satisfies the coverage criterion (initial 

termination), then the initial termination criterion 

should be dropped (relaxation). This genetic loop is 

repeated until the final termination criterion is met, 

i.e., 50%. 

 

 
Figure 8. Exemplar view of how a test case with lower fitness value shifts to waiting queue and the 

random selection of parent from the test suite after shifting procedure 
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The reduction methodology denouement will 

result in a catalogue embedded with individual test 

sequences for every specific EC, i.e., FR. Further, 

CFT scrutinizes FR to have overall one best test 

sequence among all the test sequences existing in FR, 

which would be applicable to every execution cycle, 

i.e., FMT. Every test case in their respective 

execution cycles are covering a number of statements 

and also has some random weightage value for those 

statements. CFT utilizes these particulars for the 

assessment of the cost factor of every test case 

residing test sequences of FR as: 

 

𝐶(𝑇𝑖) = ∑ {𝐶𝑉(𝑆𝑗) ×𝑊𝑗}
𝑚
𝑗=1             … (3) 

 

For example, {T5, T2, T6, T4, T1} is the sequence for 

execution cycle '1' of FR. The cost of each test case 

residing in this sequence would be computed as: 

 

𝐶(𝑇5) = (1 ∗ 0.4 + 1 ∗ 0.6 + 1 ∗ 0.5 + 1 ∗ 0.2 + 1 ∗
0.1 + 1 ∗ 0.6 + 1 ∗ 0.5 + 1 ∗ 0.4 + 1 ∗ 0.1) = 3.4   
𝐶(𝑇2) = (1 ∗ 0.4 + 1 ∗ 0.6 + 1 ∗ 0.4 + 1 ∗ 0.7 + 1 ∗
0.1 + 1 ∗ 0.6 + 1 ∗ 0.5 + 1 ∗ 0.4 + 1 ∗ 0.1)  =  3.8  

𝐶(𝑇6) = (1 ∗ 0.4 + 1 ∗ 0.6 + 1 ∗ 0.5 + 1 ∗ 0.2 + 1 ∗
0.6 + 1 ∗ 0.5 + 1 ∗ 0.4 + 1 ∗ 0.1 ) =  3.3  

𝐶(𝑇4) = (1 ∗ 0.4 + 1 ∗ 0.6 + 1 ∗ 0.4 + 1 ∗ 0.7 + 1 ∗
0.5 + 1 ∗ 0.3 + 1 ∗ 0.6 + 1 ∗ 0.5 + 1 ∗ 0.4 + 1 ∗
0.1) =  4.5  

𝐶(𝑇1) = (1 ∗ 0.4 + 1 ∗ 0.6 + 1 ∗ 0.5 + 1 ∗ 0.2 + 1 ∗
0.6 + 1 ∗ 0.5 + 1 ∗ 0.4 + 1 ∗ 0.1)  =  3.3  

 

Table 4.  Displaying the cost estimation by CFT 

for each test case of individual sequences which 

are located in FR 

 Test cases/cost 

Cycle 1 

 

T5 T2 T6 T4 T1 

3.4 3.8 3.3 4.5 3.3 

Cycle 2 

 

T8 T1 T5 T3 T4 

3.8 4.3 3.8 4.3 3.8 

Cycle 3 

 

T5 T6 T2 T8 T4 

4.2 3.1 3.6 4.2 3.6 

Cycle 4 

 

T3 T8 T2 T5 T4 

3.6 3.8 3.8 4.2 3.8 

Cycle 5 

 

T5 T1 T10 T2 T4 

4.2 4.9 4.2 4.9 4.9 

  

         This stage concludes by demystifying every test 

case's final cost, associated with FR, through the 

aggregation of individual cost of test cases in every 

particular execution cycle. This cost evaluation 

indicates each test case's importance as it is directly 

associated with the weight factor values allocated at 

the time of structuring the initial population. The 

higher the cost, the most consequential the test case 

is. For example, the final cost of T5 would be: 

 

𝑇5  =  3.4 + 3.8 + 4.2 + 4.2 + 4.2 =  19.8   (Data 

from Table 4) 

 

Final termination criterion and highly valued test 

cases from final cost are being considered together for 

procuring FMT (Fig.9). 

 

 
Figure 9.  Outcome of the case study considered 

for reduction mechanism (FMT) 

 

         If the final cost of any test case collides with 

some other test case while selecting it in a finally 

minimized test suite, then the occurrence factor is 

considered for those two test cases. The occurrence of 

a specific test case would be computed by summation 

of the position of that test case in every execution 

cycle. If two test cases had the same final cost while 

selecting, then the test case with the highest 

occurrence value would be preferable.  

         The test cases in FMT would result in high 

coverage compared to the test cases in the test 

sequences residing in FR. Through the reduction 

methodology of this proposed approach, the test cases 

got lessened. Still, the lessened test cases' 

prioritization would re-order them into a sequence 

that would be more optimal in detecting more faults at 

an earlier phase. 

 

Prioritization mechanism for lessened test cases: 

         The prioritization structure would incorporate 

some indispensable features and the test cases that got 

minimized due to the reduction mechanism. These 

aspects would be the coverage, cost, DU-pair, 

requirement covered by the test cases, including the 

historical data that would exploit the same features 

during the prioritization mechanism, i.e., eight 

features as a whole. Test cases coverage precisely 

relies on Scovered being elucidated in equation (2) while 
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cost computation of test cases for prioritization is 

devised as: 

 

𝐶𝑜𝑠𝑡(𝑇𝑖) = {𝐶(𝑇𝑖)} × 10          … (4) 

 

where C(Ti) is effectively defined in equation (3), to 

be utilized in equation (4), for simplification in 

calculating decimals, equation (4) is multiplied by 10. 

         DU-pair is the abbreviation of Definition-Use 

pair, a dataflow-dependent adequacy criterion, 

utilizing either predicate-use or computational-use of 

variable, in a manner that there would have had at 

least one definition clear path in between the 

definition and the use of the variable. For instance, let 

say variable 'a' has a DU-pair [2,6], which would 

elucidate that '2' in the pair is the statement number 

defining the variable 'a' and '6' in the pair is the 

statement number using the variable 'a' (the use could 

be either p-use or c-use). 

         Another aspect is the requirement data, being 

prepared by the desideratum coverage of every test 

case. For instance, the features could be depicted for a 

certain code in consideration as: 

 

Coverage Matrix (Statement coverage) =   

 

𝑻𝟏
𝑻𝟐
𝑻𝟒
𝑻𝟓
𝑻𝟖

  

[
 
 
 
 
𝟏 𝟎 𝟎 𝟏 𝟏 𝟎 𝟎
𝟏 𝟏 𝟏 𝟏 𝟎 𝟎 𝟎
𝟏 𝟎 𝟏 𝟎 𝟏 𝟏 𝟎
𝟏 𝟎 𝟎 𝟏 𝟏 𝟏 𝟏
𝟏 𝟏 𝟏 𝟎 𝟏 𝟎 𝟏]

 
 
 
 

         

 

  Cost Matrix =  

𝑻𝟏
𝑻𝟐
𝑻𝟒
𝑻𝟓
𝑻𝟖

 

[
 
 
 
 
𝟏𝟏
𝟐𝟑
𝟐𝟓
𝟐𝟏
𝟐𝟗]
 
 
 
 

 

                       

History Coverage Matrix = 

   

𝑻𝟏
𝑻𝟐
𝑻𝟒
𝑻𝟓
𝑻𝟖

    

[
 
 
 
 
𝟏 𝟎 𝟎 𝟎 𝟎 𝟏 𝟎
𝟏 𝟏 𝟎 𝟎 𝟏 𝟎 𝟎
𝟏 𝟎 𝟏 𝟏 𝟏 𝟎 𝟎
𝟏 𝟏 𝟏 𝟏 𝟎 𝟎 𝟎
𝟏 𝟎 𝟏 𝟏 𝟏 𝟏 𝟏]

 
 
 
 

                 

History Cost Matrix =   

𝑻𝟏
𝑻𝟐
𝑻𝟒
𝑻𝟓
𝑻𝟖

 

[
 
 
 
 
𝟏𝟕
𝟏𝟑
𝟏𝟕
𝟏𝟔
𝟑𝟑]
 
 
 
 

    

History du-pair coverage Matrix =  

𝑻𝟏
𝑻𝟐
𝑻𝟒
𝑻𝟓
𝑻𝟖

 

[
 
 
 
 
𝟐/𝟖
𝟐/𝟖
𝟑/𝟖
𝟒/𝟖
𝟔/𝟖]

 
 
 
 

                            

History Requirement Matrix =   

𝑻𝟏
𝑻𝟐
𝑻𝟒
𝑻𝟓
𝑻𝟖

 

[
 
 
 
 
𝟏𝟏
𝟐𝟏
𝟐𝟒
𝟐𝟗
𝟒𝟖]
 
 
 
 

     

DU-pair Matrix =  

𝑻𝟏
𝑻𝟐
𝑻𝟒
𝑻𝟓
𝑻𝟖

 

[
 
 
 
 
𝟒/𝟏𝟔
𝟖/𝟏𝟔
𝟐/𝟏𝟔
𝟔/𝟏𝟔
𝟏𝟎/𝟏𝟔]

 
 
 
 

                                                              

Requirement Matrix =    

𝑻𝟏
𝑻𝟐
𝑻𝟒
𝑻𝟓
𝑻𝟖

 

[
 
 
 
 
𝟑𝟎
𝟒𝟒
𝟒𝟔
𝟓𝟐
𝟒𝟗]
 
 
 
 

 

 

         The FMT test cases acquired five different 

positions; therefore, every test case in the FMT would 

have five positions to be re-ordered. Every position 

possesses some threshold value, which is being fixed 

at the time of re-ordering the test cases. These 

threshold values will help during the evaluation, as of 

which test case would be best suited for which 

particular possie. These test cases could be arranged 

in 'n' number of sequences. That is, there could be 'n' 

combinations regarding the test cases in FMT, but this 

methodology targets at achieving an optimal outcome 

that incorporates a highly preferable sequence of test 

cases with a high possibility of earlier fault detection. 

 

 

 

 

 

 

 

 

 



Open Access      Baghdad Science Journal                         P-ISSN: 2078-8665 

2021, Vol. 18 No.2 (Suppl. June)                                                                    E-ISSN: 2411-7986         

 

1066 

Table 5.  Threshold percentile fixed for every possie for the five test cases. 
Feature threshold in 

percentile 
Positions of test cases 

1st position 2nd position 3rd position 4th position 5th position 

Coverage 

Cost 

His. coverage 

His. cost 

His. Du-pair 

His. requirement 

DU-pair 

Requirement 

65 

25 

60 

25 

60 

26 

51 

45 

85 

33 

75 

34 

81 

49 

75 

70 

90 

34 

81 

35 

82 

50 

75 

71 

91 

35 

82 

35 

83 

51 

80 

72 

92 

37 

90 

35 

90 

59 

85 

73 

             

         Table 5 delineates the percentile depiction fixed 

for the five positions. Variation within the threshold 

values of diverse parameters (present in Table 5) is 

notable for every time the test case evaluation is done 

for every specific possie. Different positions would 

have a distinct or slight equal threshold for every 

aspect being considered for assessment. This 

variability in threshold percentile indicates that the 

significant information from previously ordered test 

cases is weighed to find out more optimal test cases at 

subsequent positions. Then, while reckoning a test 

case for succeeding positions, percentile varies from 

previous ones. 

The du-pair and requirement feature could be 

estimated through: 

 

𝐷(𝑇𝑖) = 𝑑𝑐𝑜𝑣𝑒𝑟𝑒𝑑/𝑑𝑡𝑜𝑡𝑎𝑙                      … (5) 

𝑅(𝑇𝑖) = ∑ {𝐶𝑉(𝑆𝑗) × 𝑟𝑗}
𝑚
𝑗=1                   … (6) 

 

         D(Ti) in equation (5) reveals DU-pair Matrix 

particulars, where dcovered is the number of du-pair 

covered by that test case, and dtotal is the total number 

of du-pair. For practicable demonstration, dcovered 

details are taken into account. In equation (6), R(Ti) 

denotes the test case requirement calculation, and rj is 

the requirement value attained by every statement of 

the cycle in execution. 

 

 

 

 
Figure 10. Algorithm 5: Test Case Prioritization (Prioritizing the test case at position 1) 

 



Open Access      Baghdad Science Journal                         P-ISSN: 2078-8665 

2021, Vol. 18 No.2 (Suppl. June)                                                                    E-ISSN: 2411-7986         

 

1067 

 
Figure 11. Grid representation of features plotted for prioritizing appropriate test case at position '1'. 
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         Algorithm 5 (Fig. 10) reveals the best-suited test 

case for position '1' while Fig. 11 depicts the eight 

features being plotted for position '1', with considered 

test sequence {T1, T2, T4, T5, T8}. The red-colour-

highlighted plots elucidate that those test cases satisfy 

the threshold criteria, which is being set for the first 

position. Test case T8 satiated all the aspects and 

extracted as common among all the test cases meeting 

the threshold of the features. After being prioritized at 

the very first, T8 would then be used as the previous 

test case for all other Ti's left in 'n' sequences where 

all ['n' sequences – {T8}] would be served as input for 

the second iteration of the prioritization procedure.  

For this mechanism, this study took '5' sequences into 

consideration; therefore, every data of test case T8 

would be utilized for every feature in prioritizing the 

test cases being left in the sequences, at the specific 

position. The computational procedure for every 

aspect present in Table 5 would be updated for the 

test case being prioritized at the next position to T8. 

The equations of the features to be utilized at 

succeeding positions would be: 

 

𝐶𝑜𝑣(𝑇𝑖) = 𝑆𝑐𝑜𝑣𝑒𝑟𝑒𝑑(𝑇𝑖−1) + 𝑇𝑖𝑛(𝑠𝑡)                 … (7) 

𝐶𝑜𝑠𝑡(𝑇𝑖) = 𝐶𝑜𝑠𝑡(𝑇𝑖−1) + 𝐶𝑜𝑠𝑡(𝑇𝑖𝑛(𝑠𝑡))           …(8)                                                              

𝐷(𝑇𝑖) = 𝑑𝑐𝑜𝑣𝑒𝑟𝑒𝑑(𝑇𝑖−1) + 𝑇𝑖𝑛(𝑑)                      … (9) 

𝑅(𝑇𝑖) = 𝑅(𝑇𝑖−1) + 𝑅(𝑇𝑖𝑛(𝑠𝑡))                        … (10) 

 

where Ti is the test case in processing, (Ti-1) is the 

previously selected test case; Tin(st) is the number of 

additional new statement covered by the processing 

test case concerning the coverage of the previously 

selected test case, and Tin(d) is the number of 

additional du-pair covered by the processing test case 

pertaining to the previously selected test case.  

         History features will utilize the same equations, 

i.e., 7-10, for evaluating the integrated features in it. 

The five sequences would assess all the features 

respectively, and the test case that is found to be 

frequent in all the sequences would acquire the 

succeeding position with reference to the former test 

case. Some amount of relaxation in the threshold will 

be expected if the commonality notion is not satiated. 

This whole procedure for prioritizing the test cases 

continues until a final optimal sequence of '5' test 

cases is procured. 

         The graphs for the sequence {T1, T2, T4, T5} are 

portrayed precisely in Fig. 12 that reveals T5 as the 

test case to be prioritized at position '2'. Similarly, the 

three different sequences considered for the study, i.e. 

{T2, T4, T5, T1}, {T4, T5, T1, T2}, {T5, T1, T2, T4} 

would be plotted, the fourth sequence comes out to be 

identical to the first sequence and the common test 

cases from these sequences extracted. From those 

extracted test cases, from every sequence, the 

commonality notion is preferable to have a test case 

for that processing possie. After affixing test case T5 

at possie '2', test cases T8 and T5 would be considered 

as previous test cases for evaluating the aspects of left 

test cases (i.e., {T1, T2, T4}) in order to prioritize them 

at succeeding positions.  

         Evaluation of left test cases depicts a tie among 

them for the succeeding positions. Hence, the tied test 

cases are prioritized further by allocating priority or 

preference to each considered feature. According to 

the priority-levels, the individual value of every 

feature corresponding to the tied test cases is 

examined. The test case, which would have higher 

figures for the features, is extracted among the tied 

test cases and is re-ordered at the appropriate position.   
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Figure 12. Grid representation of features plotted for prioritizing appropriate test case at position '2'.  
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Table 6.  Preference and feature evaluation for 

tied test cases.                                           
Preference 

allotted 

(Priority) 

Features in accordance 

with the priority 

assigned 

Test cases to be 

prioritized 

T1 T2 T4 

I  

II  

III 

IV 

V 

VI 

VII 

VIII 

Cost 

History Requirement 

History Coverage 

History Cost 

History du-pair 

Coverage 

Requirement 

DU-pair 

11 

11 

 2 

17 

 2 

 3 

30 

 4 

23 

21 

 3 

13 

 2 

 4 

44 

 8 

25 

24 

 4 

17 

 3 

 4 

46 

 2 

                                                                                 

Table 6 explains that T4 is the test case consisting of 

at most five features to be high valued while two 

features with equal value compared with test cases T1 

and T2, consequently prioritizing T4 at the third 

position. A similar strategy would be applicable for 

the two test cases, i.e., for T1 and T2. The final 

optimal outcome, i.e., the prioritized sequence of test 

cases, would be: 

 
Figure 13.  Final outcome of the proposed 

methodology 

 

The test cases acquiring at first in Fig. 13 are 

coverage effective, i.e., more faults would be revealed 

earlier, and the least coverage effectual test cases are 

at last in Fig. 13, deducing a notion that more fault 

detection would be procured at earlier phase only. 

 

Results and Discussion: 
Experimental evaluation of the proposed Test 

Case Minimization methodology: 

         To validate the significance of the strategy 

proposed in this study for lessening of test cases, the 

proposed system was compared with some previously 

stated and existing algorithms and processes from the 

studies, i.e., rule-based methodology and 

conventional genetic algorithm. For experimentation 

analysis, few benchmark exemplar codes were taken 

and inspected for the parameters, such as the number 

of test cases reduced and statements covered by the 

respective algorithm. The altered version of GA 

(proposed algorithm) attained up to 80% (maximum 

percentile) statement coverage, with only 50 % of test 

cases (Maximum reduction achieved) during analysis 

(Table 7). 

 

Table 7.  Results of experimental analysis for proposed reduction scheme in this study. 

Exemplar code for 

examination 

Techniques/Algorithms 

used 

Test cases left after 

reduction (Out of 10 test 

cases) 

Number of statements 

covered (in percentage) 

Finding maximum among 

three integers 

Rule-based optimization 

strategy 
7 70% 

GA 6 75% 

Proposed Algorithm 5 75% 

Identification of Prime 

number 

Rule-based optimization 

strategy 
7 70% 

GA 8 80% 

Proposed Algorithm 5 80% 

Finding a minimum 

among three integers 

Rule-based optimization 

strategy 
7 80% 

GA 6 70% 

Proposed Algorithm 5 75% 

Factorial code using 

recursion 

Rule-based optimization 

strategy 
7 75% 

GA 7 78% 

Proposed Algorithm 5 80% 

Program to implement 

Binary Search Algorithm 

Rule-based optimization 

strategy 
7 67% 

GA 6 65% 

Proposed Algorithm 5 80% 
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Comparative corroboration within the proposed 

Test Case Minimization methodology: 

         The test case sequence attained after the 

reduction procedure (i.e., FMT) (Fig. 9) was 

compared with the test sequences for the five 

execution cycles (i.e., with (FR)). According to the 

case study considered in this research, the embedded 

test sequences in FR and their graphical comparison 

are presented in Fig. 14. Three out of five cases have 

shown promising results regarding the proposed 

reduction methodology. The outcomes of the 

comparison between FMT and test sequences of FR 

comes out to be either higher or equal in three cases 

for FMT (in terms of cost) (Fig. 14). 

                                     

  

Figure 14.  Validation of FMT over FR through graphical representation. 

 

Performance analysis of the proposed Test Case 

Prioritization scheme:     

         The prioritized test cases (Fig. 13) were collated 

with a randomly generated sequence of these '5' test 

cases, i.e. {T2, T1, T5, T4, T8}. This was done to 

scrutinize the accuracy of prioritized test cases at their 

specific position, following the threshold set in Table 

5. The prioritized test sequence proved to be more 

scrupulous exact, i.e., highly accurate when collated 

with a random sequence. The graph below delineates 

the performance analysis of the two sequences (Fig. 

15): 
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Figure 15. {T8, T5, T4, T2, T1} v/s {T2, T1, T5, T4, T8} 

 

Experimental evaluation of the proposed Test 

Case Prioritization scheme: 

         Effort calculated during this phase of the 

analysis showed that the test sequence that was 

achieved as an outcome (Fig. 13) required only 60% 

of exertion. In comparison, the test sequence that was 

generated by randomly shuffling the tied test cases 

with the remaining test cases requires 100% effort 

(Fig. 15). To understand this nature and verify the 

system's robustness, an analysis was performed with 

ten benchmark exemplar codes (Table 8). 

 

Table 8.  Results of experimental analysis for proposed prioritization scheme in this study. 

Exemplar code for examination 
Effort required through 

the proposed system 

Effort needed for 

random approach 

Coverage attained through 

the proposed system 

Finding maximum among three numbers 60% 100% 85% 

Factorial program using recursion 80% 100% 80% 

Fibonacci series 60% 100% 90% 

String reverse code 60% 100% 80% 

Finding a minimum among three 

numbers 
60% 100% 85% 

Calculating Permutation and 

combination of 2 numbers 
80% 100% 90% 

Identification of Prime number 80% 100% 85% 

Verifying whether a string is palindrome 

or not 
60% 100% 75% 

Program to implement Binary Search 

Algorithm 
80% 100% 90% 

Finding the area of a parallelogram 60% 100% 75% 

 

         The presented results and analysis suggest the 

significance of reduction and prioritization 

methodologies proposed in this study. Earlier studies 

demonstrated relevant findings regarding the test case 

optimization problem but lack an appropriate strategic 

solution for handling the tied test case problem 

together with optimizing them. Although this current 

study proposes an optimal solution for test case 
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reduction and re-ordering problem, there are certain 

threats to validity. 

         Earlier detection of fault revealing test cases 

reduces the cost and effort required for the testing 

process. For this, the current study suggests an 

algorithmic framework; however, with increased 

complexity, supervised machine learning models such 

as Support Vector Machine (SVM) should be 

practiced for full automation. These models with 

kindred algorithms will provide a strong 

mathematical base (separating hyperplane) to classify 

faulty and non-faulty test cases. Further, unsupervised 

machine learning tasks such as clustering will aid in 

forming the clusters of those test cases that will be 

going to collide on the same position while 

prioritizing and hence will provide a futuristic view of 

test case tie. 

         An increment in the line of codes will directly 

affect the length of the population generated; that is, it 

will increase drastically. Therefore more intelligent 

optimization methods such as Particle Swarm 

Optimization (PSO), Grey-Wolf Optimization must 

be exercised to reduce population or to handle 

independent paths. Moreover, this study was 

evaluated with a limited number of programs and can 

be examined with much more complicated codes to 

get better insights. 

 

Conclusion: 
         This paper exhibits a novel strategic approach 

towards regression test case optimization with certain 

predetermined objectives. This study proposes an 

algorithmic rule (basic structure) for processing data 

obtained from the test case execution history at the 

earliest stage of the technique. Refinement of this data 

gives a visual illustration of the existence of 

relationships among different test cases. These test 

cases proceed at the reduction stage, where genetic 

operators are merged with factors that uncover fault 

and dependency ratios, further, on obtaining the 

reduced repository, the filtration stage aids in 

procuring the most favourable test cases. 

         Additionally, to effectuate this study's objective, 

the prioritization stage is initiated that discloses the 

optimal order for the filtered test cases. Analysis 

records clarified the effectiveness of the proposed 

system as compared to the randomly generated test 

sequence.  

         For future work, the multifactor algorithm 

propounded in this research can be collated with the 

concept of artificial intelligence for robustness and 

can be evaluated with many programs. 

Authors' declaration: 
- Conflicts of Interest: None. 

- We hereby confirm that all the Figures and Tables 

in the manuscript are mine ours. Besides, the 

Figures and images, which are not mine ours, have 

been given the permission for re-publication 

attached with the manuscript. 

- Ethical Clearance: The project was approved by 

the local ethical committee in SRMIST -201204, 

Delhi-NCR Campus. 

 

References: 
1. Pradhan D, Wang S, Ali S, Yue T, Liaaen M. REMAP: 

Using Rule Mining and Multi-Objective Search for 

Dynamic Test Case Prioritization. In 2018 IEEE 11th 

ICST; 2018; Vasteras. p. 46-57. 

2. Gupta N, Sharma A, Pachariya MK. An Insight Into 

Test Case Optimization: Ideas and Trends With Future 

Perspectives. IEEE Access. 2019; 7: 22310-22327. 

3. Alian M, Suleiman D, Shaout A. Test Case Reduction 

Techniques - Survey. Int J Adv Comput Sci Appl. 2016 

Jun; 7(5): 264-275. 

4. Mohapatra SK, Pradhan M. Finding Representative 

Test Suit for Test Case Reduction in Regression 

Technique. In 2015 IEEE IC4; 2015; Indore. p. 1-6. 

5. Harris P, Raju N. A Greedy Approach for Coverage-

Based Test Suite Reduction. Int Arab J Inf Technol. 

2015 Jan; 12(1): 17-23. 

6. Lin CT, Tang KW, Wang JS, Kapfhammer GM. 

Empirically evaluating Greedy-based test suite 

reduction methods at different levels of test suite 

complexity. Sci Comput Program. 2017 Dec; 150: 1-

25. 

7. Vahabzadeh A, Stocco A, Mesbah A. Fine-Grained 

Test Minimization. In 2018 ACM/IEEE 40th Int Conf 

Softw Eng; 2018; Gothenburg. p. 210- 221. 

8. Jeffrey D, Gupta N. Improving Fault Detection 

Capability by Selectively Retaining Test Cases during 

Test Suite Reduction. IEEE Trans Softw Eng. 2007 

Feb; 33(2): 108-123. 

9. Agrawal AP, Choudhary A, Kaur A, Pandey HM. Fault 

coverage-based test suite optimization method for 

regression testing: learning from mistakes-based 

approach. Neural Comput Appl. 2020 Jun; 32: 7769–

7784. 

10. Singh L, Singh SN, Dawra S, Tuli R. A New 

Technique for Test Suite Minimization in Regression 

Testing. SSRN Electron J. 2019 Jan. 

11. Lawanna A. Test case design based technique for the 

improvement of test case selection in software 

maintenance. In 2016 55th Annu Conf SICE Jpn; 2016; 

Tsukuba. p. 345-350. 

12. Lawanna A. Filtering test case selection for increasing 

the performance of regression testing. Int J Appl Sci  



Open Access      Baghdad Science Journal                         P-ISSN: 2078-8665 

2021, Vol. 18 No.2 (Suppl. June)                                                                    E-ISSN: 2411-7986         

 

1074 

Technol. 2016; 9(1): 19-25. 

13. Panda S, Mohapatra DP. Regression test suite 

minimization using integer linear programming model. 

Softw Pract Exp. 2017 Nov; 47(11): 1539-1560. 

14. Kazmi R, Jawawi DNA, Mohamad R, Ghani I, Younas 

M. A Test Case Selection Framework and Technique: 

Weighted Average Scoring Method. J Telecommun 

Electron Comput Eng. 2017; 9: 15-22. 

15. Marchetto A, Scanniello G, Susi A. Combining Code 

and Requirements Coverage with Execution Cost for 

Test Suite Reduction. IEEE Trans Softw Eng. 2019 

Apr; 45(4): 363-390. 

16. Mukherjee R, Patnaik KS. A Survey on Different 

Approaches for Software Test Case Prioritization. J 

King Saud Univ - Comput Inf Sci. 2018 Oct. 

17. Beena R, Sarala S. Code coverage based test case 

selection and prioritization. Int J Softw Eng Appl. 

2013; 4(6): 39-49. 

18. Zhou J, Hao D. Impact of Static and Dynamic 

Coverage on Test-Case Prioritization: An Empirical 

Study. In 2017 IEEE ICST Workshops; 2017; Tokyo. 

p. 392-394. 

19. Mirarab S, Tahvildari L. A Prioritization Approach for 

Software Test Cases Based on Bayesian Networks. 

Fundam Approaches Softw Eng. 2007; 4422: 276-290. 

20. Carlson R, Do H, Denton A. A clustering approach to 

improving test case prioritization: An industrial case 

study. In 2011 27th IEEE ICSM; 2011; Williamsburg. 

p. 382-391. 

21. Zhao X, Wang Z, Fan X, Wang Z. A Clustering-

Bayesian Network Based Approach for Test Case 

Prioritization. In 2015 IEEE 39th Annu Int Comput 

Softw Appl Conf; 2015; Taichung. p. 542-547. 

22. Mahmood MH, Hosain MS. Improving Test Case 

Prioritization Based on Practical Priority Factors. In 

2017 8th IEEE ICSESS; 2017; Beijing. p. 899-902. 

23. Khalilian A, Azgomi MA, Fazlalizadeh Y. An 

improved method for test case prioritization by 

incorporating historical test case data. Sci Comput 

Program. 2012; 78(1): 93-116. 

24. Gupta A, Mishra N, Tripathi A, Vardhan M, Kushwaha 

DS. An Improved History-Based Test Prioritization 

Technique Technique Using Code Coverage. Adv 

Comput Commun Eng Technol. 2015 Nov; 315: 437-

448. 

25. Anderson J, Salem S, Do H. Improving the 

effectiveness of test suite through mining historical 

data. In MSR 2014: Proc 11th Work Conf Min Softw 

Repos; 2014. p. 142-151. 

26. Noor TB, Hemmati H. A similarity- based approach for 

test case prioritization using historical failure data. In 

2015 IEEE 26th ISSRE; 2015; Gaithersbury, MD. p. 

58-68. 

27. Goyal S, Mishra P, Lamichhane A, Gandhi P. Software 

Test Case Optimization Using Genetic Algorithm. Int J 

Sci Eng Sci. 2018; 1(12): 69-73. 

28. Bhawna, Kumar G, Bhatia PK. Software Test Case 

Reduction using Genetic Algorithm: A Modified 

Approach. Int J Innov Sci Eng Technol. 2016 May; 

3(5): 349-354. 

29. Priyanka, Kumar R, Nipur. Generation of optimized 

and effective test case : A proposed model. Int J Eng 

Sci Math. 2017 Jul; 6(3): 115-123. 

30. Mateen A, Nazir M, Awan SA. Optimization of Test 

Case Generation using Genetic Algorithm (GA). Int J 

Comput Appl. 2016 Oct; 151(7): 6-14. 

31. Akour M, Abuwardih L, Alhindawi N, Alshboul A. 

Test Case Minimization using Genetic Algorithm: Pilot 

Study. In 2018 8th Int Conf CSIT; 2018. p. 66-70. 

32. Serdyukov KE, Avdeenko TV. Using genetic algorithm 

for generating optimal data sets to automatic testing the 

program code. Inf Technol Nanotechnol. 2019 Jan;: 

173-182. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Open Access      Baghdad Science Journal                         P-ISSN: 2078-8665 

2021, Vol. 18 No.2 (Suppl. June)                                                                    E-ISSN: 2411-7986         

 

1075 

 وترتيبهاخوارزمية متعددة العوامل لاختيار الحالة 
 

 راجندرا براساد ماهاباترا        أتوليا جوبتا
 

 

 إن سي آر ، غازي أباد ، يو بي ، الهند-، حرم دلهي SRMIST -201204قسم علوم وهندسة الكمبيوتر ، 

 

 : الخلاصة
تحديد مجموعة مصغرة أو ختبار الانحدار باهظ التكلفة ، وهو مفهوم التحسين المطلوب. عادةً ما ينتج عن تحسين حالات الاختبار ا

اسات مجموعة فرعية من حالات الاختبار أو إعطاء الأولوية لحالات الاختبار لاكتشاف الأخطاء المحتملة في مرحلة سابقة. كشفت العديد من الدر

ياتها. ومع ذلك ، فقد حُرمت تلك السابقة عن آلية تعتمد على الكشف عن مجريات الأمور للوصول إلى الأمثل مع تقليل حالات الاختبار أو تحديد أولو

ية الجينية الدراسات من إجراءات منهجية لإدارة قضية حالات الاختبار المقيدة. علاوة على ذلك ، غالباً ما تساعد الخوارزميات التطورية مثل العمل

ك ، عند فحص قدرة الكشف عن الخطأ مع في استنفاد حالات الاختبار ، جنباً إلى جنب مع انخفاض متزامن في وقت التشغيل الحسابي. ومع ذل

وميزات  المعلمات الأخرى ، فإن الطريقة تقصر. يقترح البحث الحالي ، بدافع من هذا المفهوم ، خوارزمية متعددة العوامل مدمجة مع عوامل وراثية

د الأولويات المستند إلى العوامل من أجل المعالجة السليمة لحالات الا ختبار المقيدة التي ظهرت أثناء تنفيذ إعادة الطلب. إلى قوية. يتم تقديم مُحدِّ

( في الدراسة للكشف عن حالات الاختبار المستقرة للمعالجة. يتم تشريح فعالية CFTجانب ذلك ، تم تضمين جهاز ضبط دقيق يعتمد على التكلفة )

إرشادية محددة )قائمة على القواعد( ومنهجية وراثية قياسية. يتم  النتيجة التي يتم الحصول عليها من خلال نهج التقليل المقترح ومقارنتها بطريقة

الاختبار الذي إجراء التحقق الداخلي للنتيجة المحققة من إجراء التخفيض بيانياً. قارنت هذه الدراسة التسلسلات التي تم إنشاؤها عشوائياً مع تسلسل 

حديد الأولويات المقترحة. كشف التحليل التجريبي أن النظام المقترح نجح بشكل كبير في أكواد معيارية لخطة ت 10تم شراؤه المعاد ترتيبه لأكثر من 

 ٪ في جهد الاختبار من خلال تحديد وتنفيذ حالات اختبار فعالة ومستقرة للتغطية في مرحلة مبكرة. 40-35تحقيق انخفاض بنسبة 

 

 .تصغير حالة الاختبار ، تحديد أولويات حالة الاختبار ، اختبار الانحدار ، حالات الاختبار ، GA :المفتاحية:الكلمات 


