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Abstract: 
     This paper introduces a relation between resultant and the Jacobian determinant  

by generalizing Sakkalis theorem from two polynomials in two variables to the case of (n) polynomials in (n) 

variables. This leads us to study the results of the type:𝑅𝑖(𝑥𝑖, 𝑢1, . . , 𝑢𝑛) =  𝑅𝑒𝑠𝑥1,…,𝑥𝑖−1,𝑥𝑖+1,…,𝑥𝑛(𝑓1 −

𝑢1, … , 𝑓𝑛 − 𝑢𝑛) ,     𝑖 = 1, . . , 𝑛 , and use this relation to taatca  the Jacobian problem. The last section shows 

our contribution to proving the conjecture.  

 

Keywords: Jacobian conjecture, polynomial map, resultant. 

 

Introduction:    
The Jacobian Conjecture can be stated as 

follows: For any integer 𝑛 ≥ 1 and polynomials 

𝑓1, … , 𝑓𝑛 ∈ ℂ[𝑋]; the polynomial map 𝐹 =
(𝑓1, … , 𝑓𝑛): ℂ

𝑛 → ℂ𝑛 is an automorphism if det 𝐽𝐹 

is a nonzero constant. 

Notation 

Throughout this paper 𝐽𝐹 is used for 

Jacobian matrix, and 𝑋 is used to denote the 

variables 𝑥1, … , 𝑥𝑛 also 𝑘𝑖 is put to be the 

deg𝑥𝑖(𝑅𝑖(𝑥𝑖 , 𝑢1, . . , 𝑢𝑛)) . 

The map  

              𝐹: ℂ𝑛 → ℂ𝑛  

               𝐹(𝑋) = (𝑓1(𝑋),… , 𝑓𝑛(𝑋)),  

is a polynomial mapping, if each 𝑓𝑖 is a 

polynomial. 

If 𝐹 is bijective, then the inverse will be 

automatically polynomial (Theorem2.1,
1
). 

It is well-known that the invertibility of  𝐹 implies 

the invertibility of  𝐽𝐹. 

Conversely, the statement of Jacobian Conjecture, 

which first formulated in 1939 by O. Keller
2
  is 

det(𝐽𝐹) ∈ ℂ
∗⟹ 𝐹  𝑖𝑠 𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒. 

In 1993, Takis Sakkalis, in his paper
3
, investigated a 

certain  connection between the zeros of a 

polynomial  𝐹: ℂ2 → ℂ2 and the Jacobian 

determinant of 𝑓 𝑎𝑛𝑑 𝑔 (where 𝑓 𝑎𝑛𝑑 𝑔 are 

nonzero polynomials in ℂ[𝑥, 𝑦]). 

Researches in this field are still ongoing; for 

example, a recent study was published in May 2020. 

For more information, see 
4
 .  

History of Jacobian Problem 

The Jacobian Conjecture is one of the most well 

Known open problems in mathematics. Keller 

formulated the problem 
2
 in 1939. In the late 1960s, 

Zariski and his student Abyankar were the main 

movers of the conjecture. Many papers have been 

published on this subject, using tools from many 

different mathematics areas, including analysis, 

algebra, and complex geometry. This section  shows 

some of the work that has been done: 

 For  n = 1, the problem is correct and is 

studied before in 
5
 

 For n = 2, the problem was tested using the 

computer for polynomials of degree 

 deg( 𝐹) = 100 ; 

deg(F) = max {deg 𝑓1 , deg 𝑓2} and is 

studied before in
6
. 

 The problem was proved for the case, 

which includes all polynomial maps whose 

coordinates have a degree of at most 2, is 

studied before in
7
. 

 It was demonstrated that if the conjecture 

was correct in the special case for 

polynomial maps of degree deg𝐹 ≤ 3, then 

it is correct in the general case, is studied 

before in
2
. 
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Definition 1: Resultant 
8
 

     The Resultant is defined with respect to 𝑛 

homogeneous polynomials 𝐹1, … , 𝐹𝑛 in 𝑛 variables, 

of degrees 𝑙1, … , 𝑙𝑛 each polynomial being full in all 

its terms with literal coefficients  𝐹𝑖 =
∑ 𝑢𝑖,𝛼𝑋

𝛼
|𝛼|=𝑙𝑖  , for 𝑖 = 1,… , 𝑛. Then the Resultant 

of 𝑛 given homogeneous polynomials in 𝑛 variables 

is a unique polynomial 𝑅𝑒𝑠 ∈ ℤ[𝑢𝑖,𝛼] which has the 

following properties: 

i. The equations 𝐹1 = ⋯ = 𝐹𝑛 = 0 have a 

non-trivial solution over ℂ if and only if  

𝑅𝑒𝑠(𝐹1, … , 𝐹𝑛) = 0. 

ii. 𝑅𝑒𝑠(𝑥1
𝑙1 , … , 𝑥𝑛

𝑙𝑛) = 1. 

iii. 𝑅𝑒𝑠 is irreducible, even when regarded as a 

polynomial in ℂ[𝑢𝑖,𝛼]. 

     Moreover, the Resultant of 𝑛 fixed 

nonhomogeneous polynomials in 𝑛 − 1 variables is 

the Resultant of the corresponding homogeneous 

polynomials of the same degrees gotten by 

presenting a variable 𝑥0 of consistency. 

For more details, see
8
.  

 

A Relation Between Resultant And The Jacobian 

Determinant  

This section gives a generalization of Sakkalis 

(Theorem 1,
3
). 

Definition 2  

     Let 𝑓 = ∑ 𝑐𝛼𝑋
𝛼

𝛼 ∈ ℂ[𝑥0, 𝑥1, … , 𝑥𝑛] be a 

nonzero polynomial with total degree 𝑛. Then 𝑓 is a 

strong quasi-regular in 𝑥1, … , 𝑥𝑛 if the coefficients 

of all monomials of the form 𝑥1
𝛼1 …𝑥𝑛

𝛼𝑛 which have 

a total degree 𝑛 in 𝑓(𝑥0, 𝑥1, … , 𝑥𝑛) are nonzero 

constant. 

Remark 1  

     Let 𝑓1, … , 𝑓𝑛 ∈ ℂ[𝑥1, … , 𝑥𝑛] be a strong quasi-

regular in 𝑥1, … , 𝑥𝑛−1 and let 𝑢1, … , 𝑢𝑛 be new 

indeterminates. Consider  
𝑅𝑒𝑠𝑥1,…,𝑥𝑛−1(𝑓1 − 𝑢1, … , 𝑓𝑛 − 𝑢𝑛) = 𝑅(𝑥𝑛 , 𝑢1, … , 𝑢𝑛)  

                                                                
= 𝑅𝑘𝑛(𝑢1, … , 𝑢𝑛)𝑥𝑛

𝑘𝑛 +⋯+ 𝑅0(𝑢1, … , 𝑢𝑛). 
Then  

𝑅0(𝑢1, … , 𝑢𝑛) = 𝑅𝑒𝑠𝑥1,…,𝑥𝑛−1(𝑓1 − 𝑢1, … , 𝑓𝑛 − 𝑢𝑛)|𝑥𝑛=0
  

                         = 𝑅𝑒𝑠𝑥1,…,𝑥𝑛−1(𝑓1(𝑥1, … , 𝑥𝑛−1, 0) −

𝑢1, … , 𝑓𝑛(𝑥1, … , 𝑥𝑛−1, 0) − 𝑢𝑛) ≠ 0.  
Remark 2  

 There exist some polynomials 𝑔1, … , 𝑔𝑛 ∈
ℂ[𝑥1, … , 𝑥𝑛, 𝑢1, … , 𝑢𝑛] such that   

                               𝑅(𝑥𝑛, 𝑢1, … , 𝑢𝑛) =
                               𝑔1(𝑓1 − 𝑢1) + ⋯+ 𝑔𝑛(𝑓𝑛 − 𝑢𝑛) ,

  

which means that  𝑅(𝑥𝑛, 𝑓1, … , 𝑓𝑛) = 0 . 

Lemma 1 

Consider  

𝑅𝑒𝑠𝑥1,…,𝑥𝑛−1(𝑓1 − 𝑢1, … , 𝑓𝑛 − 𝑢𝑛)

= 𝑅(𝑥𝑛, 𝑢1, … , 𝑢𝑛), 
                          𝑅𝑒𝑠𝑥2,…,𝑥𝑛(𝑓1 − 𝑢1, … , 𝑓𝑛 −

𝑢𝑛) = 𝑅(𝑥1, 𝑢1, … , 𝑢𝑛),  
     ⋮

 
                              𝑅𝑒𝑠𝑥1,…,𝑥𝑛−2,𝑥𝑛(𝑓1 − 𝑢1, … , 𝑓𝑛 −

𝑢𝑛) = 𝑅(𝑥𝑛−1, 𝑢1, … , 𝑢𝑛),  
and write 

𝑅(𝑥𝑛, 𝑢1, … , 𝑢𝑛) = 𝑅𝑘𝑛(𝑢1, … , 𝑢𝑛)𝑥𝑛
𝑘𝑛 +⋯+

𝑅0(𝑢1, … , 𝑢𝑛). 
Let 𝑓1, … , 𝑓𝑛 ∈ ℂ[𝑥1, … , 𝑥𝑛] be a strong quasi-

regular in 𝑥1, … , 𝑥𝑛−1 as well as in 

𝑥1, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑛 for each 𝑖 ∈ {1,… , 𝑛 − 1}, 
then the following conditions are equivalent: 

i. 𝑘𝑛 = 0. 

ii. ∃ ℎ(𝑢1, … , 𝑢𝑛) ∈ ℂ[𝑢1, … , 𝑢𝑛],      
               ℎ ≠ 0, with ℎ(𝑓1, … , 𝑓𝑛) = 0. 

iii. det 𝐽𝐹 = 0. 

Proof  

𝐢 ⇒ 𝐢𝐢. 
If 𝑘𝑛 = 0  then  

 𝑅(𝑥𝑛, 𝑢1, … , 𝑢𝑛) = 𝑅𝑒𝑠𝑥1,…,𝑥𝑛−1(𝑓1 −

𝑢1, … , 𝑓𝑛 − 𝑢𝑛) = 𝑅0(𝑢1, … , 𝑢𝑛) 
∈ ℂ[𝑢1, … , 𝑢𝑛]. 

          (Remark 1) impels that 𝑅0(𝑢1, … , 𝑢𝑛) ≠ 0, 

and (Remark 2) gives that 𝑅0(𝑓1, … , 𝑓𝑛) = 0. 

𝐢𝐢 ⇒ 𝐢𝐢𝐢 . 
Let ℎ(𝑢1, … , 𝑢𝑛) be of minimal positive 

degree such that ℎ(𝑓1, … , 𝑓𝑛) = 0. Then 

calculating partial derivatives of  

ℎ(𝑓1, … , 𝑓𝑛) gives that: 
𝜕

𝜕𝑥1
ℎ(𝑓1, … , 𝑓𝑛) =

𝜕ℎ

𝜕𝑢1

𝜕𝑓1
𝜕𝑥1

+⋯+
𝜕ℎ

𝜕𝑢𝑛

𝜕𝑓𝑛
𝜕𝑥1

, 

    ⋮ 
𝜕

𝜕𝑥𝑛
ℎ(𝑓1, … , 𝑓𝑛) =

𝜕ℎ

𝜕𝑢1

𝜕𝑓1

𝜕𝑥𝑛
+⋯+

𝜕𝑓𝑛

𝜕𝑥𝑛
 
𝜕ℎ

𝜕𝑢𝑛
, 

Then the matrix form of this system can be 

written as follows   

                                           

(

 

𝜕𝑓1

𝜕𝑥1
…

𝜕𝑓𝑛

𝜕𝑥1

⋮ ⋱ ⋮
𝜕𝑓1

𝜕𝑥𝑛
…

𝜕𝑓𝑛

𝜕𝑥𝑛)

 

(

 

𝜕ℎ

𝜕𝑢1

⋮
𝜕ℎ

𝜕𝑢𝑛)

 = (
0
⋮
0
). 

Then the minimal property implies that 
𝜕ℎ

𝜕𝑢𝑖
(𝑓1, … , 𝑓𝑛) ≠ 0   𝑓𝑜𝑟 𝑠𝑜𝑚𝑒  1 ≤ 𝑖 ≤ 𝑛 , 

thus det  𝐽𝐹 = 0 .  

 

 

𝐢𝐢𝐢 ⇒ 𝐢𝐢 . 
By contradiction, note that 𝑅(𝑥𝑖, 𝑓1, … , 𝑓𝑛) = 0  for 
𝑖 = 1,… , 𝑛. Then there exist polynomials 

𝐵𝑖(𝑥𝑖, 𝑢1, … , 𝑢𝑛)  of minimal positive degrees in 
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𝑥1, … , 𝑥𝑛 respectively, such that 𝐵1(𝑥1, 𝑓1, … , 𝑓𝑛) =

⋯ = 𝐵𝑛(𝑥𝑛, 𝑓1, … , 𝑓𝑛) = 0. Then  

(

 
 

𝜕𝐵1
𝜕𝑢1

(𝑥1, 𝑓1, … , 𝑓𝑛) …
𝜕𝐵1
𝜕𝑢𝑛

(𝑥1, 𝑓1, … , 𝑓𝑛)

⋮ ⋱ ⋮
𝜕𝐵𝑛
𝜕𝑢1

(𝑥𝑛, 𝑓1, … , 𝑓𝑛) …
𝜕𝐵𝑛
𝜕𝑢𝑛

(𝑥𝑛, 𝑓1, … , 𝑓𝑛))

 
 

 

(

 

𝜕𝑓1

𝜕𝑥1
…

𝜕𝑓1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓1

𝜕𝑥𝑛
…

𝜕𝑓𝑛

𝜕𝑥𝑛)

 =  

(

 

−
𝜕𝐵1

𝜕𝑥1
(𝑥1, 𝑓1, … , 𝑓𝑛) 0

⋱

0 −
𝜕𝐵𝑛

𝜕𝑥𝑛
(𝑥𝑛, 𝑓1, … , 𝑓𝑛))

 

 . 
But minimal property implies that 

∏
𝜕𝐵𝑖

𝜕𝑥𝑖
(𝑥𝑖 , 𝑓1, … , 𝑓𝑛) ≠ 0𝑖  , and thus  det 𝐽𝐹 ≠ 0. 

𝐢𝐢𝐢 ⇒ 𝐢 . 
Assume that  𝑘𝑛 ≥ 1 . Pick (𝑎1, … , 𝑎𝑛) ∈ ℂ

𝑛 

such that 𝑅𝑘𝑛(𝑎1, … , 𝑎𝑛) 𝑅0(𝑎1, … , 𝑎𝑛) ≠ 0 

and let  𝑏𝑛 ∈ ℂ
  be such that  𝑅(𝑏𝑛, 𝑎1, … , 𝑎𝑛) =

0 then (Theorem (5.15),
8
) ensure that there is  

(𝑏1, … , 𝑏𝑛) ∈ ℂ
𝑛−1 such that : 

𝑓1(𝑏1, … , 𝑏𝑛) − 𝑎1 = ⋯ = 𝑓𝑛(𝑏1, … , 𝑏𝑛) −

𝑎𝑛 = 0. 
Furthermore, the polynomials 

𝑓1(𝑥1, … , 𝑥𝑛) − 𝑎1, … , 𝑓𝑛(𝑥1, … , 𝑥𝑛) − 𝑎𝑛, have 

no shared factor of positive degree in 

𝑥1, … , 𝑥𝑛−1 for otherwise the shared factor 

𝑔(𝑥1, … , 𝑥𝑛) has a positive degree in 𝑥1, … , 𝑥𝑛−1 

and 𝑅(𝑥𝑛, 𝑎1, … , 𝑎𝑛) = 0 contradicting 

𝑅0(𝑎1, … , 𝑎𝑛) ≠ 0. Put 

𝑓1̅(𝑥1, … , 𝑥𝑛) = 𝑓1(𝑥1 + 𝑏1, … , 𝑥𝑛 + 𝑏𝑛) − 𝑎1 , 
⋮ 

𝑓�̅�(𝑥1, … , 𝑥𝑛) = 𝑓𝑛(𝑥1 + 𝑏1, … , 𝑥𝑛 + 𝑏𝑛) −

𝑎𝑛, 
Then 𝑓1̅(0,… ,0) = ⋯ = 𝑓�̅�(0,… ,0) = 0 , and  

det  𝐽(𝑓1̅,…,�̅�𝑛) = 0 .  

By (ii) there is ℎ(𝑢1, … , 𝑢𝑛) of minimal 

positive degree such that ℎ(𝑓1̅, … , 𝑓�̅�) = 0.  

Moreover, ℎ(𝑢1, … , 𝑢𝑛) has no constant term 

since ℎ(0,… ,0) = 0. In this case, the 𝑓1̅, … , 𝑓�̅� 

have a shared factor of positive degree, say 

𝑑(𝑥1, … , 𝑥𝑛). This implies that 

 𝑑(𝑥1 − 𝑏1, … , 𝑥𝑛 − 𝑏𝑛) is a shared factor of 

positive degree of  

  𝑓1(𝑥1, … , 𝑥𝑛) − 𝑎1, … , 𝑓𝑛(𝑥1, … , 𝑥𝑛) − 𝑎𝑛,  

which is a contradiction. 

 

In 
9
 Peretz uses The Jacobian criterion satisfied by 

the map 𝐹 = (𝑓, 𝑔), (of degree 𝑑 or less) in a way 

to construct an ideal (called the Jacobian ideal). He 

considers the two relative resultants polynomials of 

the map 𝐹 (one with respect to 𝑥 and the second 

with respect to y). 

The key theorem he proved is that: 

The Jacobian Conjecture is true for 𝐹 if and only if 

the leading coefficients of these two resultants 

belong to the Jacobian ideal. 

He calls this result the resultant reformulation of the 

Jacobian Conjecture. 

Using the Groebner bases technique, he builds an 

algorithm, and it was programmed and used to 

prove the 2-dimensional Jacobian Conjecture up to 

degree 15. 

The theoretical importance of Peretz research is to 

show that conjecture is a decidable problem. The 

following result is obtained in his study. 

 Let 𝑓1(𝑥, 𝑦 ), 𝑓2(𝑥, 𝑦 ) ∈ ℂ[𝑥, 𝑦 ] be a Jacobian pair. 

Let 𝛼 and 𝛽 be indeterminates. 

 If 𝑅𝑒𝑠 (𝑓1(𝑥, 𝑦 ) −  𝛼, 𝑓2(𝑥, 𝑦 ) −  𝛽, 𝑦 ) =  𝑅1𝑥 +
 𝑅0(𝛼, 𝛽),          𝑅1  ∈  ℂ

∗,  
then 𝐹(𝑥, 𝑦 ) = (𝑓1(𝑥, 𝑦 ), 𝑓2(𝑥, 𝑦 )) is onto ℂ2. 

 

Proof of the Jacobian Conjecture  

Depending on (Lemma 1), this paragraph introduces 

our contribution to proving the Jacobian problem. 

Recall the problem: 

For any integer 𝑛 ≥ 1 and polynomials 𝑓1, … , 𝑓𝑛 ∈
ℂ[𝑋], the polynomial map  

𝐹 = (𝑓1, … , 𝑓𝑛): ℂ
𝑛 → ℂ𝑛 is an automorphism if 

det(𝐽𝐹) is a nonzero constant.   

Note that two affine varieties 𝐴 and 𝐵 are 

isomorphic if and only if their affine coordinate 

rings are isomorphic as 𝐾 − algebras. Note that 

𝐴 = 𝐵 = ℂ𝑛. Therefore 𝕀(ℂ𝑛) = 〈0〉. 
So the problem transformed to study the 

isomorphism between the rings ℂ[𝑥1, … , 𝑥𝑛] and 

ℂ[𝑦1, … , 𝑦𝑛]. To do this, let us define the map 

 

     Φ:ℂ[𝑦1, … , 𝑦𝑛] → ℂ[𝑥1, … , 𝑥𝑛]  

      𝑦𝑖 ↦ 𝑓𝑖 .  

It is a homomorphism, and his kernel is given in the 

following form: 

𝐾𝑒𝑟 Φ = {ℎ ∈

ℂ[𝑦1, … , 𝑦𝑛]  ∶ ℎ(𝑓1, … , 𝑓𝑛) = 0} . 

Notice that the homomorphism Φ is injective, since 

from the definition of 𝐾𝑒𝑟 Φ, if there is a nonzero 

polynomial ℎ ∈ ℂ[𝑦1, … , 𝑦𝑛] such that 

ℎ(𝑓1, … , 𝑓𝑛) = 0, this will lead us to det  𝐽𝐹 = 0 

(Lemma 1), and this is a contradiction with the 

hypotheses which is det  𝐽𝐹 ∈ ℂ
∗. 
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Note that a linear transformation of coordinate can 

make the polynomials 𝑓1, … , 𝑓𝑛 strong quasi-regular 

in  𝑥1, … , 𝑥𝑛−1 .   

Currently arise an important question; if the 

homomorphism Φ is injective, is it true that also 𝐹 

is injective? 

Suppose that 𝐹 is not an injective polynomial map, 

then there exist 𝑎, 𝑏 ∈ ℂ𝑛 where 𝑎 ≠ 𝑏 and 

𝐹(𝑎) = 𝐹(𝑏).  

which means that (𝑓1(𝑎),… , 𝑓𝑛(𝑎)) =

(𝑓1(𝑏),… , 𝑓𝑛(𝑏)) and since Φ(𝑦𝑖) = 𝑓𝑖 for each 

𝑖 ∈ {1,… , 𝑛}. Note that 

(Φ(𝑦1)(𝑎), … ,Φ(𝑦𝑛)(𝑎)) =
(Φ(𝑦1)(𝑏), … ,Φ(𝑦𝑛)(𝑏)), and this implies that the 

compounds are equal, so Φ(𝑦𝑖)(𝑎) = Φ(𝑦𝑖)(𝑏) for 

each 𝑖, but the map Φ is injective so 𝑦𝑖(𝑎) = 𝑦𝑖(𝑏) 
for each 𝑖 ∈ {1,… , 𝑛} this shows that 𝑎𝑖 = 𝑏𝑖 for 

each 𝑖 ∈ {1,… , 𝑛} which implies that  𝑎 = 𝑏 which 

means that 𝐹 must be injective. 

Using the results from
10

, it can be seen that 𝐹 is 

invertible, and this completes our proof. 

 

Conclusion: 
This paper presents some previous studies 

on the conjecture and introduces an attempt to solve 

this open question about the validity of Jacobian 

conjecture through the Resultant theory. This study 

transforms the problem to consider a particular 

isomorphism between the rings ℂ[𝑥1, … , 𝑥𝑛] and 

ℂ[𝑦1, … , 𝑦𝑛] to prove that the polynomial map 

𝐹 = (𝑓1, … , 𝑓𝑛): ℂ
𝑛 → ℂ𝑛  is an automorphism. 
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 محاولة حل مسألة اليعقوبي باستخدام نظرية الناتج

 
علاء وليد جوني

*1
شوقي محمد الراشد                 

2 

 
1

 .سوريا ، جامعة دمشق،كلية العلوم ،قسم الرياضيات
2

 أستاذ مشارك في الجامعة العربية الدولية ، عضو هيئة تدريس في قسم الرياضيات ، كلية العلوم ، جامعة دمشق سوريا.

 

 :الخلاصة
من حالة   Sakkalis  تعميم نظرية للباحث طريق تقُدم علاقة بين كثير الحدود الناتج ومحدد اليعقوبي وذلك عن في هذا البحث

وسوف نستخدم كثير الحدود الناتج من  .وفي نطاق البحث عن حل لمسألة اليعقوبي متحول nكثير حدود بـ  nكثيري حدود بمتحولين إلى حاله 

,𝑅𝑖(𝑥𝑖 الشكل التالي 𝑢1, . . , 𝑢𝑛) =  𝑅𝑒𝑠𝑥1,…,𝑥𝑖−1,𝑥𝑖+1,…,𝑥𝑛(𝑓1 − 𝑢1, … , 𝑓𝑛 − 𝑢𝑛) ; 𝑖 = 1, . . , 𝑛  في القسم الأخير من هذا البحث

 نقُدم محاولتنا لحل مسألة اليعقوبي.

 
 .الناتج  ،تطبيق كثير الحدود  ،تخمين اليعقوبي الكلمات مفتاحية:

https://www.semanticscholar.org/author/W.-Garland/4016499

