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Abstract: 
  This paper introduces a relationship between the independence of polynomials associated with the 

links of the network, and the Jacobian determinant of these polynomials. Also, it presents a way to simplify a 

given communication network through an algorithm that splits the network into subnets and reintegrates 

them into a network that is a general representation or model of the studied network. This model is also 

represented through a combination of polynomial equations and uses Groebner bases to reach a new 

simplified network equivalent to the given network, which may make studying the ability to solve the 

problem of network coding less expensive and much easier. 
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Introduction: 
Communication is the exchange of 

information between individuals by different means 

of transmission. The simplest communication 

system can consist of an information source, and a 

receiver and the link between them is called a 

communication channel, which can be a wire or 

wireless or the air range in which the 

electromagnetic waves propagate between the 

source and the receiver. 

          A communications network consists of a set 

of source nodes. Each node generates a symbol or 

set of symbols taken from a finite field, as well as a 

set of downstream nodes, in addition to a set of 

internal nodes. These nodes are linked to each other 

through a set of channels so that each channel 

transmits a specific amount of data called the 

channel capacity. 

The concept of network coding emerged as an 

important field of study in the research presented by 

Ahlswede, Cai Li, and Yeung, 
1
. This paper has 

shown that it is possible to accomplish the network 

coding if and only if the coding vectors for each 

channel in the network are linearly independent. 

       Robertet al.found that it is possible to find a 

solution to the network coding problem using linear 

coding, but 
3
 R. Dougherty, C. Freiling, and K. 

Zeger proved that the linear coding was not 

sufficient to solve the problem, so nonlinear coding 

was used, and several studies have shown the 

importance of this type of coding in information 

theory. 

       Network coding is an area of research created 

in papers from the late 1990s to early the second 

millennium 
4 5

. However, the concept of network 

cipher, and especially linear network encryption, 

appeared much earlier in 1978 
6
 

        The communication network contains a set of 

source nodes so that each node generates a symbol 

from its finite field. These symbols are called data 

units, and it also includes a set of downstream 

nodes, a set of internal nodes. These nodes are 

linked with each other through a group of channels 

so that each channel transmits a specific amount of 

data called channel capacity. 

         If the communications network contains a 

single source node and a set of downstream nodes 

that are asking for data generated in this source 

node, then the connection problem over this 

network is called a multicast transmission 
7
 while, it 

is called Intersession network coding 
8
 if it contains 

two source nodes and two downstream nodes such 

that each downstream node requests the symbols 

generated in one of the source nodes. 

         The coding problem is solvable if and only if 

all the target nodes can get the message 𝑀 using 

only the information they received; otherwise, it is 

not solvable.  
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Definition 1: polynomial map 
9
 

Let 𝐾 be a field. The polynomial map is a map of 

the form 

𝐹 = (𝑓1, … , 𝑓𝑛):𝐾
𝑛 → 𝐾𝑛 

(𝑎1, … , 𝑎𝑛) ↦ (𝑓1(𝑎1, … , 𝑎𝑛), … , 𝑓𝑛(𝑎1, … , 𝑎𝑛)). 
Where each 𝑓𝑖 is an element of the ring 𝐾[𝑋] =
𝐾[𝑥1, … , 𝑥𝑛]. 
Linear maps are the simplest example of 

polynomial maps, where  

𝑓𝑖(𝑥1, … , 𝑥𝑛) = 𝑎𝑖1𝑥1 +⋯+ 𝑎𝑖𝑛𝑥𝑛  ∶ 𝑎𝑖𝑗 ∈ 𝐾. 

Definition 2: 
9
 

The Jacobian polynomial of 𝑓(𝑥, 𝑦), 𝑔(𝑥, 𝑦) with 

coefficients from a field 𝐾 is the determinant of the 

form: 

det 𝐽(𝑓, 𝑔) = |

𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦

𝜕𝑔

𝜕𝑥

𝜕𝑔

𝜕𝑦

| . 

Definition 3: 
9
 

The ideal 𝐼 of a ring ℛ is defined as a non-empty 

subset that achieves: 

1- 𝐼 is an additive subgroup of  ℛ with (+). 
2. Whatever 𝑎 ∈ 𝐼 and 𝑟 ∈ ℛ then  𝑟. 𝑎 ∈ 𝐼. 
Definition 4: 

9
 

For 𝑆 ⊆ ℛ  a non-empty subset, the ideal 𝐼 
generated by a set 𝑆 has the form: 

𝐼 = {∑ 𝑟𝑖𝑠𝑖
𝑚
1 ∶ 𝑟𝑖 ∈ ℛ, 𝑠𝑖 ∈ 𝑆 }. 

If  𝑆 = {𝑠1, … , 𝑠𝑚} is a finite set, then the ideal 𝐼 is 

finitely generated and write  𝐼 = 〈𝑠1, … , 𝑠𝑚〉. Also, 

the ideal is generated by the set 𝑆 ⊆ ℛ, which can 

be expressed as the intersection of all ideals in  ℛ. 

Each of them contains the ideal 𝐼.  
Theorem 1. (Hilbert Basis Theorem): 

9
  

Every ideal 𝐼 ⊂ 𝐾[𝑥1, … , 𝑥𝑛] has a finite generating 

set. In other words, given an ideal I, there exists a 

finite collection of polynomials 𝑔1, … , 𝑔𝑡 ∈
𝐾[𝑥1, … , 𝑥𝑛] such that 𝐼 = 〈𝑔1, … , 𝑔𝑡〉 . 
Definition 5: 

10
 

 Let 𝑓, 𝑔 ∈ 𝐾[𝑥1, … , 𝑥𝑛] be a nonzero polynomials, 

fix a monomial order and let 

 𝐿𝑇(𝑓) = 𝑐𝑥𝛼 , 𝐿𝑇(𝑔) = 𝑑𝑥𝛽  where 𝑐, 𝑑 ∈ 𝐾 and  

𝛼 = (𝛼1, … , 𝛼𝑛), 𝛽 = (𝛽1, … , 𝛽𝑛) ∶
 𝛼𝑖 , 𝛽𝑗 𝑎𝑟𝑒 positive integers ∀𝑖, 𝑗 = 1,… , 𝑛 . Let 𝑥𝛾 

be the least common multiple of 𝑥𝛼 , and 𝑥𝛽  where 

𝛾 = (𝛾1, … , 𝛾𝑛): 𝛾𝑖 positive integer, then:  

The S-polynomial of  𝑓 and 𝑔 is the polynomial 

𝑆(𝑓, 𝑔) =
𝑥𝛾

𝐿𝑇(𝑓)
. 𝑓 −

𝑥𝛾

𝐿𝑇(𝑔)
. 𝑔. 

Example 1 
9
 

Let {
𝑓 = 𝑥3𝑦2 − 𝑥2𝑦3 + 𝑥

𝑔 = 3𝑥4𝑦 + 𝑦2
  be polynomials from 

ℝ[x, y] , 𝑥 >grlex 𝑦 

grlex 𝑖𝑠 𝑡ℎ𝑒 𝐆𝐫𝐚𝐝𝐞𝐝 𝐋𝐞𝐱𝐢𝐜𝐨𝐠𝐫𝐚𝐩𝐡𝐢𝐜 𝐎𝐫𝐝𝐞𝐫 . 
Then 

𝐿𝑀(𝑓) = 𝑥3𝑦2  ,    𝐿𝑀(𝑔) = 𝑥4𝑦    ⇒    𝐿𝑐𝑚
= 𝑥4𝑦2    ⇒    𝛾 = (4,2) 

𝑆(𝑓, 𝑔) =
𝑥4𝑦2

𝑥3𝑦2
. 𝑓 −

𝑥4𝑦2

3𝑥4𝑦
. 𝑔 = 𝑥. 𝑓 −

1

3
. 𝑦. 𝑔. 

 

Definition 6: 
9
 

Let 𝐾 be a field, and let 𝑓, ℎ, 𝑓1, … , 𝑓𝑠 ∈
𝐾[𝑥1, … , 𝑥𝑛] be polynomials where  𝑓𝑖 ≠
0, (1 ≤ 𝑖 ≤ 𝑠) and  𝐹 = {𝑓1, … 𝑓𝑠}, then  𝑓 is 

reduced to ℎ (via 𝐹), and denoted by  𝑓
𝐹
→+ ℎ  if and 

only if there is a sequence of indexes  𝑖1, … , 𝑖𝑡 ∈
{1,… , 𝑠} and a sequence of polynomials 

ℎ1, … , ℎ𝑡−1 ∈ 𝐾[𝑥1, … , 𝑥𝑛] such that: 

𝑓
𝑓𝑖1
→ ℎ1

𝑓𝑖2
→ ℎ2

𝑓𝑖3
→ …

𝑓𝑖𝑡
→ ℎ 

Definition 7: 
10

 

Let 𝐼 be an ideal in polynomial ring [𝑥1, … , 𝑥𝑛], and 

𝐺 = {𝑔1, … , 𝑔𝑡} be a finite subset from 𝐼 then 𝐺 is a 

Groebner basis for 𝐼 if and only if  

〈𝐿𝑇(𝑔1), … , 𝐿𝑇(𝑔𝑡)〉 = 〈𝐿𝑇(𝐼)〉 ∶
𝐿𝑇(𝑔𝑖) 𝑖𝑠 𝑡ℎ𝑒  𝐿𝑒𝑎𝑑𝑖𝑛𝑔 𝑇𝑒𝑟𝑚 𝑜𝑓 𝑔𝑖. 

Or, equivalently 𝐺 is a Groebner basis for an ideal 𝐼 
if and only if the Leading Term of any element of 

𝐼 is divisible by one of the terms 𝐿𝑇(𝑔𝑖) ; 𝑖 =
1,… , 𝑡. 
 

Theorem 2. (Buchberger's criterion): 
9
 

Let 𝐼 be an ideal in 𝐾[𝑥1, … , 𝑥𝑛] and G =
{𝑔1, … , 𝑔𝑡} a generated set of 𝐼 then 𝐺 is a Groebner 

basis for 𝐼 if and only if (𝑔𝑖, 𝑔𝑗)
𝐺
→ 0; ∀𝑖 ≠ 𝑗. 

Definition 8. (Resultant): 
9
 

The Resultant is defined with respect to 𝑛 

homogeneous polynomials 𝐹1, … , 𝐹𝑛 in 𝑛 variables, 

of degrees 𝑙1, … , 𝑙𝑛 each polynomial being full in all 

its terms with literal coefficients 

𝐹𝑖 = ∑ 𝑢𝑖,𝛼𝑋
𝛼

|𝛼|=𝑙𝑖  for 𝑖 = 1,… , 𝑛. Then the 

Resultant of 𝑛 given homogeneous polynomials in 

𝑛 variables is a unique polynomial 𝑅𝑒𝑠 ∈ ℤ[𝑢𝑖,𝛼] 
which has the following properties: 

i. The equations 𝐹1 = ⋯ = 𝐹𝑛 = 0 have a 

non-trivial solution over ℂ if and only if  

𝑅𝑒𝑠(𝐹1, … , 𝐹𝑛) = 0. 

ii. 𝑅𝑒𝑠(𝑥1
𝑙1 , … , 𝑥𝑛

𝑙𝑛) = 1. 

iii. 𝑅𝑒𝑠 is irreducible, even when regarded as a 

polynomial in ℂ[𝑢𝑖,𝛼]. 
For more details about this polynomial see. 

11 

A mathematical model for the transmission 

problem in a communication network 

Here the network transmission problem is defined 

to be the septuplet (G, Σ, C,M, S, R, F) where 

 G = (V, E) is a directed graph. 

 Σ is a given alphabet. 

 C  is the set of capacities of communication 

channels in the network. 
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 M = (𝑚1, … ,𝑚𝑛) message from the dimension 𝑛 

on the alphabet  Σ. 
 S  is the set of sources. 

 R ⊆ V is the set of receivers. 

 F = (𝑓1, … , 𝑓|𝐸|) is the set of encoding functions 

associated with each link. 

Graph 𝐺 represents a communications network 

where routers or computers are represented by 

nodes, and communication channels are represented 

by links. 

The message 𝑀 is generated in the source 𝑆 and 

must be transferred to all target nodes in 𝑅. 

Also an encoding function 𝑓𝑒 related to link 

𝑒 = (𝑣, 𝑢) is defined as follows: 

𝑓𝑒 = {
𝛴|𝑀|→ 𝛴 , 𝑖𝑓 𝑣 = 𝑆

𝛴|𝐸𝐼(𝑣)|→ 𝛴 , 𝑖𝑓 𝑣 ≠ 𝑆
. 

Where 𝐸𝐼(𝑣)  is the set of links entering the node 𝑣. 

Put (𝑆𝑖, 𝑅𝑗) ;1 ≤  𝑖 ≤  ℎ, the ℎ edge-disjoint paths 

from the sources to receiver 𝑅𝑗, 1 ≤  𝑗 ≤  𝑁. Links 

will be carrying linear combinations of their father 

node inputs, and the set {𝛼 𝑘} denotes the 

coefficients used in these linear combinations. Put 

𝜌𝑖
𝑗
 to refer to the symbol on the last link of the path 

(𝑆𝑖, 𝑅𝑗). Therefore, receiver 𝑅𝑗 has to solve the 

following system of equations: 

[
𝜌1
𝑗

⋮

𝜌ℎ
𝑗
] = 𝐶𝑗 [

𝜎1
⋮
𝜎ℎ
]. 

 

Where 𝐶𝑗 are ℎ ×  ℎ matrices which are the 

receiver transfer matrices 
12

. 

Note that the elements of 𝐶𝑗 are polynomials in 

{𝛼 𝑘}. 
 

Example 2: 
12

  

Consider a network with two sources and three 

receivers, as in (Fig. 1). Note that there is two edge 

disjoint paths from the sources to each receiver 

(Fig. 1a). 

Therefore, each receiver can receive the information 

from both sources when using the 

network alone. However, when all three receivers 

use the network at the same time, then the 

intersections between paths at BD and GH have to 

be resolved. In (Fig. 1b), the nodes linearly 

combine their inputs at BD and GH, and the 

receivers observe linear combinations of the source 

symbols determined by matrices 𝐶𝑖. 

 
Figure 1.a 

 
Figure 1.b 
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The main theorem in network coding 
12

 

Theorem 3: 

Consider a directed graph without circles 

with unit-capacity edges, ℎ unit-rate information 

sources and N receivers, such that there are ℎ edge-

disjoint paths from the sources to all receivers. Then 

there exists a multicast transmission scheme over a 

large enough finite field 𝐹𝑞 , in which intermediate 

network nodes linearly combine their incoming 

information symbols over 𝐹𝑞, that delivers the 

information from the sources simultaneously to 

each receiver at a rate equal to ℎ. 

 

An equivalent expression of the main theorem:  

The source 𝑆𝑖 transmits symbol 𝜎𝑖 , which is an 

element of some finite field 𝐹𝑞. Since each node can 

linearly combine its inputs, each network link 

carries a linear combination of its father node 

inputs. So, links carry linear combinations of source 

symbols 𝜎𝑖, and a receiver can recapture the source 

information if the ℎ links it observes carry 

independent linear combinations of the 𝜎𝑖.  
 

Theorems 

      This paragraph presents our contributions to 

find the necessary and sufficient conditions under 

which the nodes can combine their inputs which 

guarantee the ability to solve the problem of 

multicast transmission. 

 

 

Theorem 4: 

Let 𝐾 be a finite field, and let 𝑓1, … , 𝑓𝑛 ∈
𝐾[𝑥1, … , 𝑥𝑛] be of positive degrees in variables 

𝑥1, … , 𝑥𝑛−1, then the following are equivalent: 

1. det(J(f1, . . , fn)) = 0. 

2. There is a nonzero polynomial 

ℎ(𝑢1, … , 𝑢𝑛) ∈ 𝐾[𝑢1, … , 𝑢𝑛] such that 

ℎ(𝑓1, … , 𝑓𝑛) = 0. 

Proof 

2 → 1  

Let ℎ(𝑢1, … , 𝑢𝑛) be of smallest possible 

positive degree so that ℎ(𝑓1, … , 𝑓𝑛) = 0. 

Then calculating partial derivatives of  

ℎ(𝑓1, … , 𝑓𝑛) gives that 

 
𝜕

𝜕𝑥1
ℎ(𝑓1, … , 𝑓𝑛) =

𝜕ℎ

𝜕𝑢1

𝜕𝑓1

𝜕𝑥1
+⋯+

𝜕ℎ

𝜕𝑢𝑛

𝜕𝑓𝑛

𝜕𝑥1
 , 

 ⋮ 
𝜕

𝜕𝑥𝑛
ℎ(𝑓1, … , 𝑓𝑛) =

𝜕ℎ

𝜕𝑢1

𝜕𝑓1

𝜕𝑥𝑛
+⋯+

𝜕𝑓𝑛

𝜕𝑥𝑛
 
𝜕ℎ

𝜕𝑢𝑛
 , 

 the matrix form of this system is 

(

 
 

𝜕𝑓1
𝜕𝑥1

…
𝜕𝑓𝑛
𝜕𝑥1

⋮ ⋱ ⋮
𝜕𝑓1
𝜕𝑥𝑛

…
𝜕𝑓𝑛
𝜕𝑥𝑛)

 
 

(

 
 

𝜕ℎ

𝜕𝑢1
⋮
𝜕ℎ

𝜕𝑢𝑛)

 
 
= (

0
⋮
0
). 

Then the minimality property implies that 
𝜕ℎ

𝜕𝑢𝑖
(𝑓1, … , 𝑓𝑛) ≠ 0   𝑓𝑜𝑟 𝑠𝑜𝑚𝑒  1 ≤ 𝑖 ≤ 𝑛, thus 

det(𝐽(𝑓1, . . , 𝑓𝑛)) = 0 . 

 

𝟏 → 𝟐  

By contradiction, for 𝑖 = 1,… , 𝑛 the resultant 

(𝑥𝑖, 𝑓1, … , 𝑓𝑛) = 0 .
 

Where
  

𝑅𝑒𝑠𝑥1,…,𝑥𝑖−1,𝑥𝑖+1,…,𝑥𝑛(𝑓1 − 𝑢1, … , 𝑓𝑛 − 𝑢𝑛) =

𝑅(𝑥𝑖, 𝑢1, … , 𝑢𝑛)  
                                                                                            =
𝑅𝑘𝑖(𝑢1, … , 𝑢𝑛)𝑥𝑖

𝑘𝑖 +⋯+ 𝑅0(𝑢1, … , 𝑢𝑛). 

See that there exist polynomials 𝐵𝑖(𝑥𝑖, 𝑢1, … , 𝑢𝑛)  
of smallest possible positive degrees in 𝑥1, … , 𝑥𝑛 

respectively, so that 𝐵1(𝑥1, 𝑓1, … , 𝑓𝑛) = ⋯ =
𝐵𝑛(𝑥𝑛, 𝑓1, … , 𝑓𝑛) = 0 then  

 

(

 

𝜕𝐵1

𝜕𝑢1
(𝑥1, 𝑓1, … , 𝑓𝑛) …

𝜕𝐵1

𝜕𝑢𝑛
(𝑥1, 𝑓1, … , 𝑓𝑛)

⋮ ⋱ ⋮
𝜕𝐵𝑛

𝜕𝑢1
(𝑥𝑛 , 𝑓1, … , 𝑓𝑛) …

𝜕𝐵𝑛

𝜕𝑢𝑛
(𝑥𝑛, 𝑓1, … , 𝑓𝑛))

 

(

 

𝜕𝑓1

𝜕𝑥1
…

𝜕𝑓1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓1

𝜕𝑥𝑛
…

𝜕𝑓𝑛

𝜕𝑥𝑛)

  

, 

=

(

 

−
𝜕𝐵1

𝜕𝑥1
(𝑥1, 𝑓1, … , 𝑓𝑛) 0

⋱

0 −
𝜕𝐵𝑛

𝜕𝑥𝑛
(𝑥𝑛 , 𝑓1, … , 𝑓𝑛))

  . 

But the minimality property implies that  

∏
𝜕𝐵𝑖

𝜕𝑥𝑖
(𝑥𝑖, 𝑓1, … , 𝑓𝑛) ≠ 0𝑖  , and thus  

det(𝐽(𝑓1, . . , 𝑓𝑛)) ≠ 0. 

Theorem 5: 

Let 𝐾 be a finite field, and 𝑓1, … , 𝑓𝑛 ∈ 𝐾[𝑥1, … , 𝑥𝑛] 
of positive degrees in variables 𝑥1, … , 𝑥𝑛−1 Then 

the polynomials 𝑓1, … , 𝑓𝑛 are algebraically 

independent over the field 𝐾 if  det(𝐽(𝑓1, . . , 𝑓𝑛)) ≠
0. 

Proof 
Since

 

det 𝐽 (𝑓1, … , 𝑓𝑛) ≠ 0   the polynomials that 

define the map 𝐹 = (𝑓1, … , 𝑓𝑛) are algebraically 

independent over 𝐾 . Because in the power series 

ring since the Jacobian determinant does not vanish, 

the opposite of 𝐹 exists and is uniquely determined, 

 i.e.  there is 𝐺 ∈ 𝐾[[𝑋]]
𝑛
; 𝑋 = (𝑥1, … , 𝑥𝑛) where 

𝐺 = (𝑔1, … , 𝑔𝑛): 𝑔𝑖 ∈ 𝐾[[𝑋]] for 1 ≤ 𝑖 ≤ 𝑛: 

𝑓𝑖(𝐺) = 𝑥𝑖. For every 1 ≤ 𝑖 ≤ 𝑛, which means that 

𝐺 is the opposite of  𝐹 (not necessarily polynomial 

in the general case). 

To prove the independence, suppose as in (theorem 

4 ) the existence of  ℎ ∈ 𝐾[𝑋] such that 

ℎ(𝑓1, … , 𝑓𝑛) = 0. Then 0 = ℎ(𝑓1(𝐺),… , 𝑓𝑛(𝐺)) =
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ℎ(𝑥1, … , 𝑥𝑛) = ℎ, which means that the 

polynomials 𝑓1, . . , 𝑓𝑛 are algebraically independent 

of 𝐾. 

 

Simplify communications network 

      The source sends a copy of the data.  It 

generates to each of the downstream nodes. (Fig. 2) 

shows the transmission of the symbols 𝑏1, 𝑏2  from 

the source nodes to the target node 𝑅1, 𝑅2 

 
Figure 2 

 

Construction algorithm 

1- Choose the channels so that the same amount of 

data will flow through them 

2- Form partial networks so that the flow through 

the channels of each sub network is the same 

amount of data 

3- Represent every partial network by two nodes, 

and a channel whose capacity is the available 

capacity of the channels of the considered sub-

network 

4- Call the node at the beginning of the channel, a 

distributor (HOP). 

Note: assume that every HOP distributor receives 

messages from the source node and can process and 

forward the messages. 

5- Represent the set of channels in the original 

network that connects a node from one subnet to a 

node from another subnet, with a channel from the 

node in the first subnet to the distributor in the 

second subnet (and that is in the new network). 

 

Application 1: 

Applying the algorithm to the previous network in 

(Fig. 2), gives the network that is shown in (Fig. 3). 

  
Figure 3 

 

Representation of the new network by a set of 

polynomial equations: 

      This paragraph introduces an algorithm for 

representing the network through a set of 

polynomial equations: 

1- For each node 𝑣𝑖 put a variable 𝑥𝑖. 
2- Each HOP (denote it by 𝐻𝑖) has a 

polynomial form 

ℎ𝑖 = 𝑥1
𝑎1𝑥2

𝑎2 …𝑥𝑛
𝑎𝑛 − 𝑥1

𝑏1𝑥2
𝑏2 …𝑥𝑛

𝑏𝑛  ∶ 𝑛 = |𝑉|. 
Where 

𝑎𝑖 = {
𝑤 ((𝑣𝑖 , 𝐻𝑗))  𝑖𝑓  (𝑣𝑖 , 𝐻𝑗) ∈ 𝐸 

0         𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑏𝑖 = {
𝑤 ((𝐻𝑗, 𝑣𝑖))  𝑖𝑓  (𝐻𝑗, 𝑣𝑖) ∈ 𝐸 

0         𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑤 ((𝑣𝑖, 𝐻𝑗)) Link weight representing the capacity 

of the channel (𝑣𝑖 , 𝐻𝑗). 

Application 2: 

Consider the network as in (Fig. 4) 
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Figure 4 

  

The set of polynomials that express the distributor 

node are as follows 

𝐹 = {𝑥1 − 𝑥3, 𝑥2 − 𝑥4, 𝑥3𝑥4 − 𝑥5, 𝑥5 − 𝑥6, 𝑥5 −
𝑥7, 𝑥6 − 𝑥8, 𝑥7 − 𝑥8, 𝑥8 − 𝑥1𝑥2}. 

Calculating the corresponding Groebner basis 

gives the set 

𝐺 = {𝑥1 − 𝑥3, 𝑥2 − 𝑥4, 𝑥3𝑥4 − 𝑥8, 𝑥5 − 𝑥8, 𝑥6 −
𝑥8, 𝑥7 − 𝑥8}. 

(Theorem 6 proves that this basis always has this 

shape). 

The new network corresponding to the Groebner 

basis will be as in (Fig. 5). 

 
Figure 5 

 

Theorem 6: 

Assuming that 𝐹 is a set of polynomials of the form 

𝑓𝑖 = 𝑚𝑖
1 −𝑚𝑖

2 where 𝑚𝑖
1,𝑚𝑖

2 are monomials, then 

the polynomials in Groebner basis of  𝐹 for some 

monomials order will have the same form. 

Proof: 

This proof shows that the polynomials obtained by 

computing Groebner basis for 𝐹 are of the form 

𝑓𝑖 = 𝑚𝑖
1 −𝑚𝑖

2 where 𝑚𝑖
1,𝑚𝑖

2 are monomials. 

Lets take the S - polynomials of the pairs 𝑓𝑖, 𝑓𝑗 

𝑆(𝑓1, 𝑓2) = 𝑢1. (𝑚𝑖
1 −𝑚𝑖

2) − 𝑢2. (𝑚𝑗
1 −𝑚𝑗

2). 

Where 𝑢1.𝑚𝑖
1 = 𝑢2.𝑚𝑗

2 then 𝑆(𝑓1, 𝑓2) = −𝑢1.𝑚𝑖
1 +

𝑢2.𝑚𝑗
2. 

Which is either a zero polynomial or from the 

desired form, also the reduction maintains this form, 

this is a direct consequence because reduction 

through polynomials of the desired form is similar 

to the computation of S - polynomials where u1 =
1.  This ends the proof. 

 

 

 

The main result 

Theorem 7: 

It is now possible to define the equivalence between 

two communication networks as follows. The 

communication network 𝑁1 is equivalent to the 

network 𝑁2 if and only if the ideal 𝐼1 generated by 

polynomials that define the distributor nodes in 𝑁1, 

equal to 𝐼2 which is the ideal generated by the 

polynomials that define the distributor nodes in 𝑁2 . 

Proof - Depending on the properties of Groebner 

basis 

Assuming 𝐺1 is the reduced Groebner basis 

corresponding to the ideal 𝐼1 is generated by 

polynomials that define the distributor nodes of the 

network 𝑁1. And 𝐺2 be the reduced Groebner basis 

corresponding to the ideal 𝐼2 generated by 

polynomials that define the distributor nodes of the 

network 𝑁2. 

According to the properties of Groebner basis 
3
 the 

ideals 𝐼1 and 𝐼2 are equal if and only if  

𝐺1 = 𝐺2. 

Thus, the equivalence between communications 

networks can be easily studied. 
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Conclusion: 
This paper introduces a very important 

application to the solvability problem of network 

coding using tools from algebraic geometry by 

building a simplified network using Groebner basis. 
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 :الخلاصة
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