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Abstract:    
MDS code is a linear code that achieves equality in the Singleton bound, and projective MDS (PG-MDS) 

is MDS code with independents property of any two columns of its generator matrix.   In this paper, elementary 

methods for modifying a PG-MDS code of dimensions 2, 3, as extending and lengthening, in order to find new 

incomplete PG-MDS codes have been used over 𝐺𝐹(27). Also, two complete PG-MDS codes over 𝐺𝐹(27) of 

length 16 and 28 have been found. 
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 Introduction:  
Let 𝐹𝑞 = 𝐺𝐹(𝑞) denote the Galois field with 𝑞 

elements and let 𝑝 denote the characteristic of 𝐺𝐹(𝑞). 

An [𝑛, 𝑘]-code 𝐶 over 𝐹𝑞 is a 𝑘-dimensional subspace 

of 𝐹𝑞
𝑛. The parameter 𝑛 is called the length of 𝐶. The 

weight 𝑤𝑡(𝑥) of a vector 𝑣 ∈  𝐹𝑞
𝑛 is the number of 

non-zero coordinates of 𝑣. The minimum non-zero 

weight of all codewords in 𝐶 is called the minimum 

weight (Hamming distance) of 𝐶 and then an [𝑛, 𝑘]-
code with minimum weight 𝑑 is called an [𝑛, 𝑘, 𝑑]-
code.  From Singleton Bound Theorem, the parameter 

𝑑 has maximum value 𝑛 − 𝑘 + 1, when  𝑛 and 𝑘 are 

given (1). The linear code that achieves equality in 

the Singleton bound is called, or MDS codes for short. 

The code which has minimum weight 𝑑 that correct 𝑒 

errors that can be accrued is called 𝑒-error correcting 

code and 𝑒 = ⌊
𝑑−1

2
⌋ (⌊𝑥⌋denotes the smallest integer 

less than or equal to 𝑥, ex. ⌊
5

2
⌋ = ⌊

4

2
⌋ = 2).  

To any an [𝑛, 𝑘]-code 𝐶 over 𝐹𝑞, there is also another 

parameter 𝑟 = 𝑛 − 𝑘  called the redundancy, which 

represent the check digits added to the message to 

give protection against noise. The orthogonal 

complement of an [𝑛, 𝑘]-code 𝐶 (the set of all vectors 

which are orthogonal to every vector in 𝐶), is  called 

the dual code of 𝐶 with dimension 𝑛 − 𝑘, and 

denoted by 𝐶⊥. For more on linear codes, see (1). 

Any linear code 𝐶 over 𝐹𝑞 with the three 

fundamental parameters, its length is 𝑛, its dimension 

is 𝑘, and its redundancy 𝑟 has a natural interpretation 

of each of these parameters. There are six basic 

modification techniques to linear codes depending on 

these three parameters. Each fixes one parameter and 

increases or decreases the other two parameters 

accordingly. These techniques are partitioned into 

three pairs and each member of a pair is the inverse 

process to the other as summarized below. 

(i) Augmenting: Expurgating; Fix 𝑛; increase 𝑘; 

decrease 𝑟 : decrease 𝑘; increase 𝑟.  

(ii)  Extending: Puncturing; Fix 𝑘; increase 𝑛; 

increase 𝑟 : decrease 𝑛; decrease 𝑟.  

(iii) Lengthening: Shortening; Fix 𝑟; increase 𝑛; 

increase 𝑘 : decrease 𝑛; decrease 𝑘. 

  

Since the redundancy of a code is its "dual 

dimension," each technique also has a natural dual 

technique.  

 

The motivation of this research is based on two 

main ideas in the coding ‎theory which can be 

summarized as follows:‎ 

1- It is well known algebraically; that two linear 

codes with same parameters will have the same 

efficiency if they are linearly isomorphism 

(equivalent). 

http://dx.doi.org/10.21123/bsj.2021.18.1(Suppl.).0000
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2- The fundamental problem to find codes with two 

properties: 

(i) reasonable information content (length is big 

enough), 

(ii) reasonable error handling ability. 

A number of researchers worked on these two 

ideas recently in the sense of modification, for 

instance, see (2).  ‎Grassl (3) presented a new table 

with bounds to good codes not MDS code (small 

length 𝑛 and large minimum ‎Hamming distance 𝑑) 

for 2 ≤ 𝑞 ≤ 9. ‎Emami and Pedram (4) use punctured 

and shortened methods to construct codes (optimal 

Linear codes) with minimum value of 𝑛 for certain 

dimension 𝑘 and minimum ‎Hamming distance 𝑑. For 

further authors whose used shortening or puncturing 

structure of codes see; (5), (6) and the references 

therein. Some ‎rehtr‎ rtetarrhtr‎ rr rt eraet‎ r ‎ eht‎

et traerrie‎ t er'te‎ rt‎ a‎ s' tar‎ rret to achieve the  

singleton bound on the minimum distance; that is, 

code with maximum ability to correct errors (GM-

MDS) (7), (8), (9), (10). 

The main aim to this paper is to work with 

especial type of maximum distance separable (MDS) 

codes namely, projective MDS code (11) over 𝐹27, 

since they provide the maximum protection against 

device failure for a given amount of redundancy; that 

is, the greatest error correcting capability (since error 

correcting capability is a function of minimum 

distance).To do that, an extending (dually, 

Lengthening) technique has been used.   

The article is organized as follows. First section 

provided basic definitions and some properties of 

MDS and finite projective geometry. In second 

section, the inequivalent, incomplete projective MDS 

codes of dimension two have been constructed. 

Finally, in last section, the inequivalent, incomplete 

(complete) projective MDS codes of dimension three 

have been constructed, and three special complete 

MDS codes of lengths 16 and 28 have been founded 

using projective conic in the projective plane.    

   

 Definitions and Basic Properties 

Any linear [𝑛, 𝑘]-code can be defined by a (𝑘 ×
𝑛) matrix 𝐺 or by a (𝑛 − 𝑘) × 𝑛 matrix 𝐻 whose 

entries from 𝐹𝑞 as defined below. 

Definition 1: (1) A generator matrix 𝐺 of an [𝑛, 𝑘]-
code 𝐶 is a 𝑘 × 𝑛 matrix whose rows form a basis for 

𝐶. The standard form of a generator matrix  𝐺 is 
[𝐼𝑘𝐴]. A linear code for which any two columns of a 

generator matrix are linearly independent is called a 

projective code (PG-code).  A linear code which 

cannot extend by adding columns to its generator 

matrix is called a complete code, otherwise it is called 

incomplete code. 

Definition 2: (1) A parity check matrix 𝐻 of an 

[𝑛, 𝑘]-code 𝐶 is a (𝑛 − 𝑘) × 𝑛 matrix whose rows 

forma basis for 𝐶⊥. The standard form of a parity 

check matrix 𝐻 is [−𝐴𝑇𝐼(𝑛−𝑘)].  

 

Theorem 1: (1) An [𝑛, 𝑘]𝑞-code 𝐶 is MDS if and 

only if the dual code 𝐶⊥, [𝑛, 𝑛 − 𝑘] is  MDS.  

 

Let 𝑃𝐺(2, 𝑞) denote the 2-dimensional projective 

space over 𝐹𝑞 (finite projective plane).  

 

Definition 3: (12) A non-singular plane quadric (form 

of degree two) in 𝑃𝐺(2, 𝑞) is called a conic.  A conic 

consists of 𝑞 + 1 points no three of which are 

collinear.  

 

During the paper, the notation PG-MDS will briefly 

refer to a projective MDS code. 

 

PG-MDS Code of Dimension 2 over 𝑭𝟐𝟕 

The technique used in this paper to check whether 

that two codes are projectively equivalent or not is as 

follows: 

The  𝑠 × 𝑟 matrices 𝐴 is called projectively equivalent 

to 𝑠 × 𝑟 matrices 𝐵, and denoted by 𝐴 ≅𝑃 𝐵 if there 

exist  a non-singular 𝑠 × 𝑠  matrix 𝑇 such that   matrix 

𝑇𝐴  transformed to 𝐵 by performing the following 

operations: 

(i) make the last position of each row of  𝑇𝐴, 0 or 1; 

(ii) a permutation of the columns on 𝑇𝐴. 

The matrix [
1 0
0 1

] is only standard matrix generate 

the PG-MDS code [2,2,1]. This matrix can be 

extended to create a PG-MDS code [3,2,2] by adding 

the column [
1
1

]. 

 The PG-MDS code [3,2,2] generated by the matrix 

𝐺 = [
1 0 1
0 1 1

] in standard form is unique up to 

equivalence since, if  𝐺̂ = [
𝑥 𝑦 𝑦

0 1 1
] is a generator 

matrix of another PG-MDS code [3,2,2], 𝑥, 𝑦, 𝑧 ∈ 𝐹𝑞, 

then there is a 2 × 2 non-singular matrix 𝑇 transform 

the matrix 𝐺 to 𝐺̂ as follows.  

Let 𝒯 = [
𝑎 𝑏
𝑐 𝑑

] ∈ 𝐺𝐿(2, 𝑞) such that 𝒯𝐺 = 𝐺̂. So, 

the following equations are deduced: 

 𝑎 = 𝜆𝑥, 𝑏 = 𝛽𝑦, 𝑐 = 𝜆, 𝑑 = 𝛽, 𝜆𝑥 + 𝑏𝛽 = 𝛾𝑧, 

𝜆 + 𝛽 = 𝛾,  
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where 𝜆, 𝛽, 𝑧 ∈ 𝐺𝐹(𝑞)\{0}. So, 𝒯 = [
𝒮𝑥 ℐ𝑦
𝒮 𝒥

], where 

𝒮 =
|
𝑧 𝑦
1 1

|

(𝑥−𝑦) 
𝛾 and 𝒥 =

|
𝑥 𝑧
1 1

|

(𝑥−𝑦) 
𝛾. 

Let 𝐺 = [
1 0 1
0 1 1

] = [ 𝐼2𝐴2×1]. The matrix 𝐺 is of 

rank 2; that is, any two columns are linearly 

independents, so this gives the incomplete PG- MDS 

code with the parameters [3,2,2]. The 2 × 3 matrix 𝐺 

can be extended in to 2 × 4 matrices, 𝐺∗
𝑖 by adding 

appropriate 25 columns [𝛼𝑖

1
] to 𝐺 from right side of 

𝐺, where 𝛼𝑖 ∈ 𝐹27, 𝑖 = 1,2, … ,25, such that the rows 

of the new matrix 𝐺∗
𝑖 still linearly independent and 

any two columns is linearly independent. So, these 25 

matrices, gives raise to 25 generated matrices 𝐺∗
𝑖 of 

PG-MDS codes. Among these 25 matrices, only 5 of 

them are non inequivalent as given the next theorem. 

Theorem 2: Over 𝐹27, there are only five 

inequivalent, incomplete PG-MDS codes with 

parameters [4,2,3] and error correcting 𝑒 = 1.    

Proof: By searching for a non-singular 2 × 2 matrix, 

the equivalents generator matrices have been 

identified as given below.  

𝐺∗
𝑖 ≅𝑃 𝐺∗

𝑗 𝑟𝑜𝑤 1, 𝑟𝑜𝑤 2 of    𝑇 

𝐺∗
1 ≅𝑃 𝐺∗

2 𝛼12 1, 0     1 

𝐺∗
1 ≅𝑃 𝐺∗

10 𝛼23 𝛼10, 0 1 

𝐺∗
1 ≅𝑃 𝐺∗

16 𝛼23 𝛼10, 0 1 

𝐺∗
1 ≅𝑃 𝐺∗

24 𝛼10 𝛼24, 0 1 

𝐺∗
1 ≅𝑃 𝐺∗

25 𝛼25 0, 0   1 

𝐺∗
3 ≅𝑃 𝐺∗

4 𝛼17 𝛼4, 0   1 

𝐺∗
3 ≅𝑃 𝐺∗

6 𝛼13 1, 0     1 

𝐺∗
3 ≅𝑃 𝐺∗

20 𝛼4 𝛼20, 0 1 

𝐺∗
3 ≅𝑃 𝐺∗

22 𝛼13 1, 0  1 

𝐺∗
3 ≅𝑃 𝐺∗

23 𝛼23 0, 0   1 

𝐺∗
5 ≅𝑃 𝐺∗

7 𝛼13 1, 0   1 

𝐺∗
5 ≅𝑃 𝐺∗

11 𝛼19 𝛼11, 0 1 

𝐺∗
5 ≅𝑃 𝐺∗

15 𝛼8 1, 0 1 

𝐺∗
5 ≅𝑃 𝐺∗

19 𝛼6 𝛼19, 0 1 

𝐺∗
5 ≅𝑃 𝐺∗

21 𝛼21 1, 0 1 

𝐺∗
8 ≅𝑃 𝐺∗

9 𝛼14 𝛼9, 0 1 

𝐺∗
8 ≅𝑃 𝐺∗

12 𝛼13 1, 0 1 

𝐺∗
8 ≅𝑃 𝐺∗

14 𝛼 𝛼14, 0 1 

𝐺∗
8 ≅𝑃 𝐺∗

17 𝛼5    1, 0 1 

𝐺∗
8 ≅𝑃 𝐺∗

18 𝛼18  1, 0 1 

 

Therefore, the only inequivalent ones are summarized 

below. 

 

 

 

 

 

𝐺𝑖 Row 1 Row 2 

𝐺1  1 0 1 𝛼13 0 1 1 1  

𝐺2     1 0 1 𝛼 0 1 1 1  

𝐺3     1 0 1 𝛼3 0 1 1 1  

𝐺4  1 0 1 𝛼5 0 1 1 1  

𝐺5 1 0 1 𝛼8 0 1 1 1  

  ∎ 

To extend each matrix 𝐺𝑖, an appropriate column [𝛼𝑗

1
] 

is added to 𝐺𝑖 for which  𝛼𝑗 does not belong to the 

first row of 𝐺𝑖. So, there are (𝑞 − 3) possibilities for 

[𝛼𝑗

1
]; that is,  24 possibility. Therefore, by this way,  

5(𝑞 − 3) = 120 cods can be constructed.  This 

procedure will be used to extend the codes in this 

paper. 

In the next theorems, only the inequivalent codes are 

presented.  

 Theorem 3: Over 𝐹27, there are eight inequivalent 

PG-MDS codes with parameters [5,2,4] and error 

correcting 𝑒 = 2. These codes are given below.  

Μ𝑖 Row 1 Row 2 

Μ1    1 0 1 𝛼13 𝛼 0 1 1 1 1 

Μ2  1 0 1 𝛼     𝛼2 0 1 1 1 1 

Μ3  1 0 1 𝛼     𝛼3 0 1 1 1 1 

Μ4  1 0 1 𝛼     𝛼6 0 1 1 1 1 

Μ5  1 0 1 𝛼     𝛼7 0 1 1 1 1 

Μ6 1 0 1 𝛼     𝛼12 0 1 1 1 1 

Μ7   1 0 1 𝛼3   𝛼7 0 1 1 1 1 

Μ8  1 0 1 𝛼3   𝛼9 0 1 1 1 1 

  ∎ 

From the eight  Μ𝑖 PG-MDS codes,   8(𝑞 − 4) =
184 projective cods can be constructed. These codes 

are given in the next theorem. 

Theorem 4: Over 𝐹27, there are 34 inequivalent, 

incomplete PG-MDS codes with parameters [6,2,5] 
and error correcting 𝑒 = 2 as given in Table 1.  

 

Table 1. Inequivalent, incomplete PG-MDS codes‎‎  
𝐍𝐢 6 ‎tgnel ‎o 

N𝑖 Row 1 Row 2 

N1  1 0 1 𝛼13 𝛼 𝛼2 0 1 1 1 1 1 

N2  1 0 1 𝛼13 𝛼 𝛼3 0 1 1 1 1 1 

N3  1 0 1 𝛼13 𝛼 𝛼4 0 1 1 1 1 1 

N4  1 0 1 𝛼13 𝛼 𝛼5 0 1 1 1 1 1 

N5  1 0 1 𝛼13 𝛼 𝛼6 0 1 1 1 1 1 

N6  1 0 1 𝛼13 𝛼 𝛼7 0 1 1 1 1 1 

N7  1 0 1 𝛼13 𝛼 𝛼8 0 1 1 1 1 1 

N8  1 0 1 𝛼13 𝛼 𝛼11 0 1 1 1 1 1 

N9  1 0 1 𝛼13 𝛼 𝛼12 0 1 1 1 1 1 

N10  1 0 1 𝛼13 𝛼 𝛼14 0 1 1 1 1 1 

N11  1 0 1 𝛼13 𝛼 𝛼15 0 1 1 1 1 1 

N12  1 0 1 𝛼13 𝛼 𝛼16 0 1 1 1 1 1 

N13  1 0 1 𝛼13 𝛼 𝛼19 0 1 1 1 1 1 
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N14  1 0 1 𝛼13 𝛼 𝛼22 0 1 1 1 1 1 

N15  1 0 1 𝛼13 𝛼 𝛼24 0 1 1 1 1 1 

N16  1 0 1 𝛼13 𝛼 𝛼25 0 1 1 1 1 1 

N17  1 0 1 𝛼    𝛼2 𝛼3 0 1 1 1 1 1 

N18  1 0 1 𝛼    𝛼2 𝛼4 0 1 1 1 1 1 

N19   1 0 1 𝛼 𝛼2 𝛼7 0 1 1 1 1 1 

N20   1 0 1 𝛼 𝛼2 𝛼9 0 1 1 1 1 1 

N21  1 0 1 𝛼 𝛼2 𝛼10 0 1 1 1 1 1 

N22   1 0 1 𝛼 𝛼2 𝛼11 0 1 1 1 1 1 

N23    1 0 1 𝛼 𝛼3 𝛼4 0 1 1 1 1 1 

N24    1 0 1 𝛼 𝛼3 𝛼6 0 1 1 1 1 1 

N25     1 0 1 𝛼 𝛼3 𝛼7 0 1 1 1 1 1 

N26   1 0 1 𝛼 𝛼3 𝛼12 0 1 1 1 1 1 

N27     1 0 1 𝛼 𝛼6 𝛼7 0 1 1 1 1 1 

N28   1 0 1 𝛼 𝛼6 𝛼11 0 1 1 1 1 1 

N29   1 0 1 𝛼 𝛼6 𝛼20 0 1 1 1 1 1 

N30     1 0 1 𝛼 𝛼7 𝛼8 0 1 1 1 1 1 

N31   1 0 1 𝛼 𝛼7 𝛼12 0 1 1 1 1 1 

N32   1 0 1 𝛼 𝛼7 𝛼15 0 1 1 1 1 1 

N33   1 0 1 𝛼 𝛼7 𝛼19 0 1 1 1 1 1 

N34  1 0 1 𝛼3 𝛼9 𝛼12 0 1 1 1 1 1 

                                                               

New inequivalent, incomplete PG-MDS codes for 

fixed dimension 𝑘 = 2 and length 7 ≤ 𝑛 ≤ 14 over 

𝐹27 can be constructed by means of a combinatorial 

computer search, and using the same technique in 

Theorem 2, 3 and 4. In the next theorem, the full 

details about these codes are given. 

Let ∗𝑛 denote the number of all codes with 

length 𝑛 and #𝑛 denote the number of inequivalent 

ones. 

Theorem 5: Over 𝐹27, for fixed 𝑘 = 2 the  

inequivalent, incomplete PG-MDS codes with 

parameters given below exist.  

 

∗𝑛= #𝑛−1(𝑞 − (𝑛 − 2)) #𝑛 𝑛 𝑘 𝑑 𝑒 

748 73 7 2 6 2 

1533 196 8 2 7 3 

3920 382 9 2 8 3 

7258 745 10 2 9 4 

13410 1142 11 2 10 4 

19414 1665 12 2 11 5 

26640 1976 13 2 12 5 

29640 2170 14 2 13 6 

                                                                                                                            

∎ 

Example 1: In this example, PG-MDS codes are 

given for each length 𝑛,  8 ≤ 𝑛 ≤ 14. 

(i) PG-MDS code with parameters  [7,2,6] and 𝑒 = 2. 

𝒦7 = [
1 0 1   𝛼13 𝛼 𝛼2 𝛼3

0 1       1    1   1   1        1    
] 

= [𝑁1 |𝛼
3

1
]. 

 

(ii) PG-MDS code with parameters  [8,2,7] and 𝑒 =
3. 

𝒦8 = [
1 0 1   𝛼13 𝛼 𝛼2 𝛼3 𝛼6

0 1 1       1   1   1    1 1
] =

[𝒦7 |𝛼
6

1
]. 

(iii) PG-MDS code with parameters  [9,2,8] and 

𝑒 = 4. 

𝒦9 = [
1 0 1  𝛼13 𝛼 𝛼2 𝛼3 𝛼6 𝛼8

0 1 1  1   1    1    1  1    1
]  

= [𝒦8 |𝛼
8

1
]. 

(iv) PG-MDS code with parameters  [10,2,9] and 

𝑒 = 4. 

𝒦10 =

[
1 0 1  𝛼13 𝛼 𝛼2 𝛼3 𝛼6 𝛼8 𝛼9

0 1 1  1   1    1    1  1    1 1
] =

[𝒦9 |𝛼
9

1
].   

(v) PG-MDS code with parameters  [11,2,10] and 

𝑒 = 5. 

𝒦11

= [
1 0 1  𝛼13 𝛼 𝛼2 𝛼3 𝛼6 𝛼8 𝛼9 𝛼14

0 1 1  1   1    1    1  1    1     1    1
]

= [𝒦10 |𝛼
14

1
]. 

(vi) PG-MDS code with parameters  [12,2,11] and 

𝑒 = 5. 

𝒦12 = [
1 0 1  𝛼13 𝛼 𝛼2

0 1 1  1   1    1    
 

𝛼3 𝛼6 𝛼8 𝛼9 𝛼14 𝛼5

1  1   1    1    1  1    
] = [𝒦11 |𝛼

5

1
]. 

(vii) PG-MDS code with parameters  [13,2,12] and 

𝑒 = 6. 
𝒦13 =

[
1 0 1  𝛼13 𝛼 𝛼2 𝛼3 𝛼6 𝛼8 𝛼9 𝛼14 𝛼5 𝛼7

0 1 1  1   1    1    1  1    1   1   1   1     1
] 

= [𝒦12 |𝛼
7

1
]. 

(viii) PG-MDS code with parameters  [14,2,13] and 

𝑒 = 6. 
𝒦14

= [
1 0 1  𝛼13 𝛼 𝛼2 𝛼3 𝛼6 𝛼8 𝛼9 𝛼14 𝛼5 𝛼7 𝛼10

0 1 1  1   1    1    1  1    1   1  1    1   1      1
] 

        = [𝒦13 |𝛼
10

1
]. 

 Corollary 1: Over 𝐹27, for fixed 𝑘 = 2 the  

inequivalent, incomplete PG-MDS codes with length 

15 ≤ 𝑛 ≤ 26 exist.   

Proof: 

The first row of each generator matrix 𝒬 of a PG-

MDS code 𝐶, [𝑛′, 𝑘] except the first element which is 

1, in Theorems 2,3,4, and 5 has distinct elements 

from the base field 𝐹27. So, the matrix  
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ℋ = [
𝛼𝑖1   𝛼𝑖2  … 𝛼

𝑖
(28−𝑛′)

1 1      …          1
], 

where 𝛼𝑖𝑗 belong to the complement of the first row 

of the generator matrix 𝒬, forming a generator matrix 

of a PG-MDS codes, [28 − 𝑛′, 2], 2 ≤ 𝑛′ ≤ 14. 

Therefore, the inequivalent, incomplete PG-MDS 

codes of the following parameters exist.  

   

#𝑛 𝑛 𝑘 𝑑 𝑒 

 1976   15 2 14 6 

1665  16 2 15 7 

1142  17 2 16 7 

745 18 2 17 8 

382 19 2 18 8 

196 20 2 19 9 

73 21 2 20 9 

34 22 2 21 10 

8 23 2 22 10 

5 24 2 23 11 

1 25 2 24 11 

1 26 2 25 12 

 

Corollary 2: Over 𝐹27 for fixed distance 𝑑 = 3 and 

𝑒 = 1, the  inequivalent PG-MDS codes with 

parameters given below exist. 

#𝑛 𝑛 𝑘 𝑑 𝑒 

5 4 2 3 1 

8 5 3 3 1 

34 6 4 3 1 

73 7 5 3 1 

196 8 6 3 1 

382 9 7 3 1 

745 10 8 3 1 

1142 11 9 3 1 

1665 12 10 3 1 

1976 13 11 3 1 

2170 14 12 3 1 

1976 15 13 3 1 

1665 16 14 3 1 

1142 17 15 3 1 

745 18 16 3 1 

382 19 17 3 1 

196 20 18 3 1 

73 21 19 3 1 

34 22 20 3 1 

8 23 21 3 1 

5 24 22 3 1 

1 25 23 3 1 

1 26 24 3 1 

      

Proof: 

From Theorem 1, the dual code 𝐶⊥ of each code 𝐶  in 

Theorem 5 is also inequivalent PG-MDS. Since each 

generator matrix  𝒬 of a PG-MDS code 𝐶, [𝑛, 𝑘] in 

Theorems 2,3,4,5 is in standard form; that is,  𝒬 =

[𝐼2 𝐴2×(𝑛−2)], 4 ≤ 𝑛 ≤ 26, where 

𝐴 = [
1       𝛼𝑖1  … 𝛼𝑖(𝑛−3)

1 1    …  1
], so the parity-check 

matrix is 𝐻 = [−𝐴𝑇
(𝑛−2)×2𝐼(𝑛−2) ]. So, for any 

𝑎, 𝑏 ∈ 𝐺𝐹(27)\{0}, if −𝑎(1, 𝛼𝑖1 , … , 𝛼𝑖(𝑛−3)) ±

𝑏(1,1, … ,1) = 0, then    𝑎 + 𝑏 = 0 and −𝑎𝛼𝑖𝑗 − 𝑏 =

0, 1 ≤ 𝑗 ≤ (𝑛 − 3). Thus, 𝑏𝛼𝑖𝑗 − 𝑏 = 𝑏(𝛼𝑖𝑗 − 1) =

0. But 𝑏 ≠ 0; that is, 𝛼𝑖𝑗 = 1 for all 𝑗 which is 

contradicted with that each 𝛼𝑖𝑗 are distinct. Therefore, 

any two columns are linearly independent; that is,  𝐶⊥ 

is PG-code.   ∎                                                                                                                                        

It clear that, each code, [𝑛, 𝑛 − 𝑘, 3]   in Corollary 1 

is a sub code of [𝑛 + 1, (𝑛 + 1) − 𝑘, 3]  , 𝑛 > 𝑘. 

All the PG-codes in Theorems 2,3,4,5 are embedded 

in the complete PG-MDS code [28,2,27]  which is 

generated by the matrix  

𝔇 = [ 
1 𝛽𝑖1

⋯ 𝛽𝑖27

0 1  ⋯ 1  
], 

where all 𝛽𝑖𝑗
∈ 𝐹27 are distinct. Therefore, all PG-

codes in Theorems 2,3,4,5 are incomplete codes. 

PG- MDS Code of Dimension 3 over 𝐹27 

 In this section, PG-MDS codes are constructed from 

these ones in section two by transferring the generator 

matrices into other matrices which each one formed a 

generator matrix to a PG-MDS code [𝑛, 3, 𝑛 − 2] , 

3 ≤ 𝑛 ≤ 28.   

If 𝒲 = [𝑐1 … 𝑐𝑛] = [
1 0 ⋯ 𝜃
0 1 ⋯ 1

] is PG-MDS 

code [𝑛, 2, 𝑛 − 1] , where 𝑐𝑖 are the columns of 𝒲, 

then it could transfer to a PG-code [𝑛, 3, 𝑛 − 2]  with 

generator matrix 𝒲+ = [𝑐1
+ … 𝑐𝑛

+] using the  

one to one map, 𝑇∗ as follows: 
𝑐𝑖

𝑇

= [𝑥, 𝑦]
𝑇∗

→ { 
𝑐𝑖

+ = [(𝑥/𝑦)2 − 𝛼14(𝑥/𝑦), 𝛼10(1 − 𝛼12𝑥/𝑦), 𝛼16𝑥/𝑦] 𝑖𝑓 𝑦 ≠ 0

 𝑐𝑖
+ = [1,0,0] 𝑖𝑓 𝑦 = 0

 

 

Therefore, the generator matrix 𝐺 = [
1 0 1
0 1 1

] of the 

unique PG-MDS code [3,2,2]  transfer to the matrix 

𝐺+ = [

𝑟1

𝑟3

𝑟3

] = [𝑐1𝑐2𝑐3] = [
1 0 𝛼19

0 1 𝛼2

0 0 1

]. It is not 

difficult to prove that the rows  𝑟1, 𝑟2 and 𝑟3 are 

linearly independents and the columns 𝑐𝑖,𝑐𝑗 are also 

linearly independents. Here, 𝑑=1, Since,  𝑤(𝑟1) =
𝑤(𝑟2) = 1. So, 𝐺+ formed generator matrix of the 

unique PG-MDS code [3,3,1] .  

Theorem 6: Over 𝐹27, the inequivalent PG-MDS 

codes with parameters in Table 2 are exists.  

 

Table 2. PG- MDS Code of parameter [𝒏, 𝟑, 𝒏 − 𝟐]    
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#𝑛 𝑛 𝑘 𝑑 𝑒 

1 4 3 2 0 

8 5 3 3 1 

34 6 3 4 1 

73 7 3 5 2 

196 8 3 6 2 

382 9 3 7 3 

745 10 3 8 3 

1142 11 3 9 4 

1665 12 3 10 4 

1976 13 3 11 5 

2170 14 3 12 5 

1976 15 3 13 6 

1665 16 3 14 6 

1142 17 3 15 7 

745 18 3 16 7 

382 19 3 17 8 

196 20 3 18 8 

73 21 3 19 9 

34 22 3 20 9 

8 23 3 21 10 

1 24 3 22 10 

1 25 3 23 11 

1 26 3 24 11 

Proof: 

 𝑛 = 4: From Theorem 2, five 3 × 4 matrices, 𝐺𝑖
+ are 

constructed by transferring the generator matrix 

𝐺𝑖 , 𝑖 = 1,2, … ,5 using the map 𝑇∗ as given below. 

 
 𝑇∗ 

𝐺𝑖
+ Row1 Row2 Row3 

𝐺1
+ 10𝛼19𝛼13 01𝛼2𝛼9 0011 

𝐺2
+ 10𝛼19𝛼24 01𝛼2𝛼6 0011 

𝐺3
+ 10𝛼19𝛼6 012𝛼12 0011 

 𝐺4
+ 10𝛼19𝛼3 01𝛼2𝛼7 0011 

𝐺5
+ 10𝛼19𝛼15 01𝛼2 𝛼16 0011 

 

But 𝐺𝑖
+ ≅𝑃 𝐺𝑗

+, for each 1 ≤ 𝑖 ≠ 𝑗 ≤ 5 as shown 

below. 

𝐺+
𝑖 ≅𝑃 𝐺+

𝑗      𝑟𝑜𝑤 1, 𝑟𝑜𝑤 2, 𝑟𝑜𝑤3 of    𝑇 

𝐺+
1 ≅𝑃 𝐺+

2 𝛼30𝛼15, 0𝛼15𝛼23, 001  

𝐺+
1 ≅𝑃 𝐺+

3 𝛼90𝛼7, 0𝛼19𝛼13, 001   

𝐺+
1 ≅𝑃 𝐺+

4 𝛼200𝛼23, 0𝛼2𝛼13
, 001 

𝐺+
1 ≅𝑃 𝐺+

5 𝛼250𝛼21, 0𝛼4𝛼22, 001,  

Therefore, there is unique PG- MDS code parameters  

[4,3,2]   with generator matrix  𝐺+:       

𝐺+ = [
1 0 𝛼19 𝛼13

0 1 𝛼2 𝛼9

0 0 1 1

]. 

Also, this means that there is a unique  PG-MDS code 

parameters with parameters  [24,3,22]  

 𝑛 = 5: From Theorem 3, the eight generators M𝑖 are 

transformed by 𝑇∗ into the following matrices M𝑖
+ 

of rank 3 as shown below: 

 

M𝑖
+ Row1 Row2 Row3 

M1
+ 10𝛼19𝛼13𝛼24  01𝛼2𝛼9𝛼6  00111 

M2
+ 10𝛼19𝛼24𝛼20  01𝛼2𝛼6𝛼 00111 

M3
+ 10𝛼19𝛼24𝛼6  01𝛼2𝛼6𝛼12 00111 

M4
+ 10𝛼19𝛼24𝛼2 01𝛼2𝛼6𝛼5 00111 

M5
+ 10𝛼19𝛼24𝛼22  01𝛼2𝛼6𝛼24 00111 

M6
+ 10𝛼19𝛼24𝛼21  01𝛼2𝛼6𝛼18 00111 

M7
+ 10𝛼19𝛼6𝛼22  01𝛼2𝛼12𝛼24 00111 

M8
+ 10𝛼19𝛼61 01𝛼2𝛼121 00111 

These matrices, M𝑖
+ can be transformed into the  

matrices ℒ𝑖
+of rank 3 as in Table 3. 

 

Table 3. Equivalent matrices 
 ℒ𝑖

+ 

M𝑖
+ ≅𝑃 ℒ𝑖

+ 
[𝐺+ |

𝑥
𝑦
𝑧

] 

M1
+ ≅𝑃 ℒ1

+ 
[𝐺+ |

0
0
1

] 

M2
+ ≅𝑃 ℒ2

+ 
[𝐺+ |

0
𝛼
1

] 

M3
+ ≅𝑃 ℒ3

+ 
[𝐺+ |

𝛼2

𝛼14

1

] 

M4
+ ≅𝑃 ℒ4

+ 
[𝐺+ |

𝛼
𝛼16

1

] 

M5
+ ≅𝑃 ℒ5

+ 
[𝐺+ |

𝛼18

𝛼23

1

] 

M6
+ ≅𝑃 ℒ6

+ 
[𝐺+ |

𝛼7

𝛼7

1

] 

M7
+ ≅𝑃 ℒ7

+ 
[𝐺+ |

𝛼5

0
1

] 

M8
+ ≅𝑃 ℒ8

+ 
[𝐺+ |

𝛼8

𝛼12

1

] 

 

Therefore, there are eight unique PG-MDS code with 

parameters  [5,3,3]  and generator matrix  ℒ𝑖
+. 

By using the same technique the other results will 

deduce.                                          ∎ 

Theorem 7:  There is a unique, complete PG-MDS 

code 𝒞∗ with parameters [28,3,26] over  𝐹27. 

Proof: 

The 28 × 3 matrix 𝑀𝒞∗ with following rows has rank 

three and satisfies the projective conic 𝑋𝑌 + 𝛼6𝑋𝑍 +
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𝛼24𝑌𝑍;  that is, the rows of 𝑀𝒞∗ formed  complete arc 

of degree 2 with 28 points which is Segre bound. 

Therefore, 𝒞∗ has 𝑑 = 𝑛 − 𝑘 + 1 = 26. 
𝑀𝒞∗ Matrix 

𝐶(1)  𝐶(2) 𝐶(3) 𝐶(4) 𝐶(5) 𝐶(6) 𝐶(7) 
1
0
0

 
0
1
0

 
0
0
1

 
𝛼14

𝛼13

1

 
𝛼3

𝛼7

1

 
𝛼8

𝛼23

1

 
𝛼13

𝛼9

1

 

𝐶(8) 𝐶(9) 𝐶(10) 𝐶(11)  𝐶(12) 𝐶(13) 𝐶(14) 

𝛼10

𝛼3

1

 
𝛼12

𝛼17

1

 
𝛼21

𝛼18

1

 
𝛼24

𝛼6

1

 
𝛼18

𝛼8

1

 
𝛼20

𝛼
1

 

𝛼
𝛼21

1
 

𝐶(15) 𝐶(16) 𝐶(17) 𝐶(18) 𝐶(19) 𝐶(20) 𝐶(21) 

𝛼7

𝛼25

1

 
𝛼23

𝛼10

1

 
𝛼19

𝛼2

1

 
𝛼5

𝛼22

1

 
𝛼6

𝛼12

1

 
𝛼2

𝛼5

1

 
𝛼25

𝛼11

1

 

𝐶(22) 𝐶(23) 𝐶(24) 𝐶(25) 𝐶(26) 𝐶(27) 𝐶(28) 

𝛼17

𝛼15

1

 

1
1
1

 
𝛼15

𝛼16

1

 
𝛼9

𝛼20

1

 
𝛼22

𝛼24

1

 
𝛼16

𝛼4

1

 
𝛼4

𝛼14

1

 

 

Corollary 3: All the codes in Theorem 6 are 

incomplete. 

Proof: 

Each generator matrix of the code in Theorem 6 is 

projectively equivalent to a sub matrix of  𝑀𝒞∗ , and 

this done by computer computation. For example,  

𝐺+ = [𝐶(1) 𝐶(2) 𝐶(17) 𝐶(7)], ℒ1
+ =

[𝐶(1) 𝐶(2) 𝐶(17) 𝐶(7) 𝐶(3)]. ∎ 

Theorem 8: There are two inequivalent, complete 

PG-MDS codes over 𝐹27 with parameters [16,3,14]. 
Proof: By choosing appropriated 15 columns of the 

matrix 𝑀𝒞∗ in Theorem 7, the following two  3 × 16  

matrices 𝔘1 and 𝔘2 have been got: 

Columns of 𝔘1: 

𝐶(1) 𝐶(2) 𝐶(3) 𝐶(4) 𝐶(5) 𝐶(6) 𝐶(7) 𝐶(8) 

1
0
0

 
0
1
0

 
𝛼3

𝛼7

1

 
𝛼13

𝛼9

1

 
𝛼24

𝛼6

1

 
𝛼18

𝛼8

1

 
𝛼11

𝛼19

1

 
𝛼
𝛼21

1

 

𝐶(9) 𝐶(10) 𝐶(11) 𝐶(12) 𝐶(13) 𝐶(14) 𝐶(15) 𝐶(16) 

𝛼7

𝛼25

1

 
𝛼6

𝛼12

1

 
𝛼25

𝛼11

1

 
𝛼17

𝛼15

1

 
1
1
1

 
𝛼22

𝛼24

1

 
𝛼16

𝛼4

1

 
𝛼4

𝛼14

1

 

 

 

 

 

 

 

 

Columns of 𝔘2: 

𝐶(1)  𝐶(2) 𝐶(3) 𝐶(4) 𝐶(5) 𝐶(6) 𝐶(7) 𝐶(8) 
1
0
0

 
0
1
0

 
0
0
1

 
𝛼14

𝛼13

1

 
𝛼8

𝛼23

1

 
𝛼10

𝛼3

1

 
𝛼12

𝛼17

1

 
𝛼21

𝛼18

1

 

𝐶(9) 𝐶(10) 𝐶(11) 𝐶(12)  𝐶(13) 𝐶(14) 𝐶(15) 𝐶(16) 

𝛼11

𝛼19

1

 
𝛼20

𝛼
1

 
𝛼23

𝛼10

1

 
𝛼19

𝛼2

1

 
𝛼5

𝛼22

1

 
𝛼2

𝛼5

1

 
𝛼15

𝛼16

1

 
𝛼9

𝛼20

1

 

 

From Theorem 7, any two columns are linearly 

independents. So, it is enough to prove the 

completeness for 𝔘1(𝔘2). To do this a computer 

program has been used to prove that each extra 

column, 𝑐 = [𝑎, 𝑏, 1] to  𝔘1(𝔘2)  will be linearly 

dependent with other two columns of 𝔘1(𝔘2).  So, 

the rank of 𝔘1(𝔘2) will be less than 3. ∎ 

 

Conclusion: 
In this paper the extending and lengthening are 

used to conclude the existence of incomplete, 

projective MDS codes of dimension two and three 

over the finite field of order twenty-seven. Where if 

𝑘 = 2, codes of length 𝑛, 4 ≤ 𝑛 ≤ 26 and distance 𝑑, 

3 ≤ 𝑑 ≤ 25 are founded. Also, if 𝑘 =3, codes of 

length 𝑛, 4 ≤ 𝑛 ≤ 26 and distance 𝑑, 2 ≤ 𝑑 ≤ 24 are 

founded. Two complete, projective MDS have been 

computed of dimension three and length sixteen. 
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 𝑮𝑭(𝟐𝟕)الأسقاطية على   MDSترميزات 

 
 عماد بكر عبدالكريم الزنكنة

 
 قسم الرياضيات, كلية العلوم, الجامعة المستنصرية, بغداد, العراق

 

 الخلاصة:
مع خاصية  MDS   هو ترميز (PG-MDS)الاسقاطي  MDSو  في القيد المفرد, هو الترمز الخطي الذي يحقق المساواة   MDS الترميز  

,  3,  2للأبعاد  PG-MDS في هذه البحث, تم استخدام الطرق الأولية لتعديل الترمز .الاستقلالية لأي عمودين من المصفوفة المولدة الخاصة به

أيضا , تم ايجاد   اثنين من  . 𝐺𝐹(27)معرفة على الحقل جديدة غير مكتملة  PG-MDS مثل الامتداد والاطالة , من أجل ايجاد  ترميزات

 .28و  16بطول   𝐺𝐹(27)  الحقل  كاملة على PG-MDS الترميزات

 

   .ترميزات المسافة القصوى القابلة للفصلالمخروط, الحقل المنتهي, المستوي الاسقاطية المنتهية, الكلمات المفتاحية: 
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