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Abstract:

MDS code is a linear code that achieves equality in the Singleton bound, and projective MDS (PG-MDS)

is MDS code with independents property of any two columns of its generator matrix.

In this paper, elementary

methods for modifying a PG-MDS code of dimensions 2, 3, as extending and lengthening, in order to find new
incomplete PG-MDS codes have been used over GF(27). Also, two complete PG-MDS codes over GF (27) of

length 16 and 28 have been found.
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Introduction:

Let F; = GF(q) denote the Galois field with q
elements and let p denote the characteristic of GF(q).
An [n, k]-code C over F; is a k-dimensional subspace
of F*. The parameter n is called the length of C. The
weight wt(x) of a vector v € F}' is the number of
non-zero coordinates of v. The minimum non-zero
weight of all codewords in C is called the minimum
weight (Hamming distance) of C and then an [n, k]-
code with minimum weight d is called an [n, k,d]-
code. From Singleton Bound Theorem, the parameter
d has maximum value n — k + 1, when n and k are
given (1). The linear code that achieves equality in
the Singleton bound is called, or MDS codes for short.
The code which has minimum weight d that correct e
errors that can be accrued is called e-error correcting

code and e = [%J (Lx]denotes the smallest integer

less than or equal to x, ex. EJ = EJ = 2).

To any an [n, k]-code C over F,, there is also another
parameter r = n — k called the redundancy, which
represent the check digits added to the message to
give protection against noise. The orthogonal
complement of an [n, k]-code C (the set of all vectors
which are orthogonal to every vector in C), is called
the dual code of C with dimension n—k, and
denoted by C*+. For more on linear codes, see (1).

Any linear code C over F, with the three
fundamental parameters, its length is n, its dimension
is k, and its redundancy r has a natural interpretation
of each of these parameters. There are six basic
modification techniques to linear codes depending on
these three parameters. Each fixes one parameter and
increases or decreases the other two parameters
accordingly. These techniques are partitioned into
three pairs and each member of a pair is the inverse
process to the other as summarized below.

(i) Augmenting: Expurgating; Fix n; increase k;
decrease r : decrease k; increase r.
(i)  Extending: Puncturing; Fix k; increase n;
increase r : decrease n; decrease r.
(iii) Lengthening: Shortening; Fix r; increase n;
increase k : decrease n; decrease k.

Since the redundancy of a code is its "dual
dimension,” each technique also has a natural dual
technique.

The motivation of this research is based on two

main ideas in the coding theory which can be
summarized as follows:
1- It is well known algebraically; that two linear
codes with same parameters will have the same
efficiency if they are linearly isomorphism
(equivalent).

1125


http://dx.doi.org/10.21123/bsj.2021.18.1(Suppl.).0000
mailto:e.b.abdulkareem@uomustansiriyah.edu.iq
https://orcid.org/0000-0001-6415-1930
https://creativecommons.org/licenses/by/4.0/

Open Access
2021, Vol. 18 No.2 (Suppl. June)

Baghdad Science Journal

P-1SSN: 2078-8665
E-ISSN: 2411-7986

2- The fundamental problem to find codes with two
properties:

(i) reasonable information content (length is big
enough),

(ii) reasonable error handling ability.

A number of researchers worked on these two
ideas recently in the sense of modification, for
instance, see (2). Grassl (3) presented a new table
with bounds to good codes not MDS code (small
length n and large minimum Hamming distance d)
for 2 < g < 9.Emami and Pedram (4) use punctured
and shortened methods to construct codes (optimal
Linear codes) with minimum value of n for certain
dimension k and minimum Hamming distance d. For
further authors whose used shortening or puncturing
structure of codes see; (5), (6) and the references
therein. Some other researcher concentrate on the
generator's entries of a linear code to achieve the
singleton bound on the minimum distance; that is,
code with maximum ability to correct errors (GM-
MDS) (7), (8), (9), (10).

The main aim to this paper is to work with
especial type of maximum distance separable (MDS)
codes namely, projective MDS code (11) over F,-,
since they provide the maximum protection against
device failure for a given amount of redundancy; that
is, the greatest error correcting capability (since error
correcting capability is a function of minimum
distance).To do that, an extending (dually,
Lengthening) technique has been used.

The article is organized as follows. First section
provided basic definitions and some properties of
MDS and finite projective geometry. In second
section, the inequivalent, incomplete projective MDS
codes of dimension two have been constructed.
Finally, in last section, the inequivalent, incomplete
(complete) projective MDS codes of dimension three
have been constructed, and three special complete
MDS codes of lengths 16 and 28 have been founded
using projective conic in the projective plane.

Definitions and Basic Properties

Any linear [n,k]-code can be defined by a (k X
n) matrix G or by a (n—k) Xxn matrix H whose
entries from F, as defined below.

Definition 1: (1) A generator matrix G of an [n, k]-
code C is a k X n matrix whose rows form a basis for
C. The standard form of a generator matrix G is
[IA]. A linear code for which any two columns of a
generator matrix are linearly independent is called a
projective code (PG-code). A linear code which
cannot extend by adding columns to its generator

matrix is called a complete code, otherwise it is called
incomplete code.

Definition 2: (1) A parity check matrix H of an
[n, k]-code C is a (n—k) X n matrix whose rows
forma basis for C*. The standard form of a parity
check matrix H is [—AT Iy

Theorem 1: (1) An [n,k],-code C is MDS if and
only if the dual code C*, [n,n — k] is MDS.

Let PG(2,q) denote the 2-dimensional projective
space over F, (finite projective plane).

Definition 3: (12) A non-singular plane quadric (form
of degree two) in PG(2,q) is called a conic. A conic
consists of g+ 1 points no three of which are
collinear.

During the paper, the notation PG-MDS will briefly
refer to a projective MDS code.

PG-MDS Code of Dimension 2 over Fo

The technigque used in this paper to check whether
that two codes are projectively equivalent or not is as
follows:

The s x r matrices A is called projectively equivalent
to s X r matrices B, and denoted by A =, B if there
exist a non-singular s X s matrix T such that matrix
TA transformed to B by performing the following
operations:

(i) make the last position of each row of TA, O or 1,
(ii) a permutation of the columns on TA.

The matrix [(1) (1)] is only standard matrix generate

the PG-MDS code [2,2,1]. This matrix can be
extended to create a PG-MDS code [3,2,2] by adding

the column [ﬂ

The PG-MDS code [3,2,2] generated by the matrix

G = [1 0 1 in standard form is unique up to

0 1 1
equivalence since, if G = [J(; }1, 311 is a generator

matrix of another PG-MDS code [3,2,2], x,y,z € F,
then there is a 2 X 2 non-singular matrix T transform
the matrix G to G as follows.

Let 7= [ ﬂeGMZ@smhmm76=GSQ

the following equations are deduced:
a=Ax, b=y, c=1, d=, Ax+bf =yz,
A+B =y,
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where A, 8,z € GF(q)\{0}. So, T = [{Sx 73’] where

|z y |x z
111 11 1

- (x—y)ly ar(')d ‘71 !V

Let G = [0 1 1] = [I,A;41]. The matrix G is of

rank 2; that is, any two columns are linearly
independents, so this gives the incomplete PG- MDS
code with the parameters [3,2,2]. The 2 X 3 matrix G
can be extended in to 2 x 4 matrices, G*; by adding

appropriate 25 columns [Oﬂ to G from right side of

G, where a' € F,,, i = 1,2,...,25, such that the rows
of the new matrix G*; still linearly independent and
any two columns is linearly independent. So, these 25
matrices, gives raise to 25 generated matrices G*; of
PG-MDS codes. Among these 25 matrices, only 5 of
them are non inequivalent as given the next theorem.
Theorem 2: Over F,,, there are only five
inequivalent, incomplete PG-MDS codes with
parameters [4,2,3] and error correcting e = 1.

Proof: By searching for a non-singular 2 x 2 matrix,
the equivalents generator matrices have been
identified as given below.

G =p G; rowl,row2of T
G*l =p G*z (llz 1, 0 1
G*y =p G*1o a® a0 1
G*y =p G'yg a® al®, 0 1
Gy =p G*yy al® a?*, 0 1
Gy =p G*ys a®> 0, 0 1
G*s =p G*, al” at, 0 1
G*3 Ep G*6 0(13 1, 0 1
G*3 =p Gy a* a®%, 0 1
G*s =p G*yy a® 1, 0 1
G*s =p G*ys a® 0, 0 1
G*s =p G*7 a3 1, 0 1
G*s =p G*14 a'® all, 0 1
G's =p Gy a® 1, 0 1
G*s =p G*1g a® a'®, 0 1
G*s =p G*sy a?t 1, 0 1
G*g Ep 6*9 (X14 a’, 0 1
Gy =p Gy, a® 1, 0 1
G*s =p G*14 a at, 0 1
G'g=p G*17 a® 1, 0 1
G*s =p G*1g at® 1, 0 1

Therefore, the only inequivalent ones are summarized
below.

G; Rowl Row 2
Gy 1 0 1 ot 01 1 1
G, 1 01 «a 01 1 1
Gs 1 0 1 a3 0111
G, 1 0 1 o° 01 1 1
Gs 1 0 1 qof 01 1 1
]

. . J
To extend each matrix G;, an appropriate column [0‘1 ]

is added to G; for which a’ does not belong to the
first row of G;. So, there are (g — 3) possibilities for

[“lj]; that is, 24 possibility. Therefore, by this way,

5(q —3) =120 cods can be constructed. This
procedure will be used to extend the codes in this
paper.

In the next theorems, only the inequivalent codes are
presented.

Theorem 3: Over F,,, there are eight inequivalent
PG-MDS codes with parameters [5,2,4] and error
correcting e = 2. These codes are given below.

M; Rowl Row 2

M; 1 0 1 g3 ¢« 01 1 1 1
M, 1 0 1 ¢« a’ 01 1 1 1
M; 1 0 1 ¢« a3 01 1 1 1
M, 1 0 1 ¢« a® 01 1 1 1
M; 1 0 1 ¢« a’ 01 1 1 1
Mg 1 0 1 ¢« al? 01 1 1 1
M, 1 0 1 a3 aof 01 1 1 1
Mg 1 0 1 g3 @o° 0 1 1 1 1
|

From the eight M; PG-MDS codes, 8(q—4) =
184 projective cods can be constructed. These codes
are given in the next theorem.

Theorem 4: Qver F,,, there are 34 inequivalent,
incomplete PG-MDS codes with parameters [6,2,5]
and error correcting e = 2 as given in Table 1.

Table 1. Inequivalent, incomplete PG-MDS codes
N; of length 6

N; Rowl Row 2

N, 1 01 o ¢ g2 01 1 1 1 1
N, 1 01 a® ¢ 3 01 1 1 1 1
N, 1 01 o ¢ g+ 0 1 1 1 1 1
N4 1 0 1 (Z13 a as 01 11 1 1
Ng 1 01 o g g8 0 1 1 1 1 1
Ng 1 01 a® ¢ 7?7 01 1 1 1 1
N, 1 0 1 a® g 8 01 11 1 1
Ng 1 0 1 o 4 g2 0 1 1 1 1 1
Ng 1 0 1 a®® g 2 01 1 1 1 1
No 1 01 o g g 0 1 1 1 1 1
Nll 1 0 1 a13 a a,lS 0 1 1 1 1 1
N, 1 0 1 o8 4 g 0 1 1 1 1 1
N3y 1 01 g o g 01 11 1 1
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N, 1 0 1 a® 4 22 01 1 1 1 1
Ne 1 0 1 a3 g # 01 1 1 1 1
N16 101(113aa25011111
N, 1 0 1 a o « 01 11 1 1
Ng 1 01 a g2 @+ 01 1 1 1 1
No 1 01 a o2 ¢° 01 11 1 1
Ny 1 0 1 a@ 2 ¢° 01 1 1 1 1
Nyy 1 01 a@ o2 ¢© 01 1 1 1 1
Nyy 1 01 @ 2 * 01 1 1 1 1
Ny 1 01 @ @ e+ 01 1 1 1 1
Nyy 1 01 @ o3 @8 01 1 1 1 1
Nos 1 01 @ 3 o” 01 1 1 1 1
Nye 1 0 1 @ o 2 01 1 1 1 1
Njy 101 @ a6 o7 01 1 1 1 1
Nygy 1 0 1 @ a6 ' 0 1 1 1 1 1
Nog 1 01 a @° 20 0 1 1 1 1 1
Ny 1 01 a@ o” @8 01 1 1 1 1
Nay 1 01 @ o 2 01 11 1 1
Niy 1 0 1 @ o7 % 0 1 1 1 1 1
Naz 1 0 1 @ o 9 01 11 1 1
Nag 1 0 1 a® g9 2 01 1 1 1 1

New inequivalent, incomplete PG-MDS codes for
fixed dimension k = 2 and length 7 < n < 14 over
F,, can be constructed by means of a combinatorial
computer search, and using the same technique in
Theorem 2, 3 and 4. In the next theorem, the full
details about these codes are given.

Let %, denote the number of all codes with
length n and #, denote the number of inequivalent
ones.

Theorem 5: Over F,,, for fixed k=2 the
inequivalent, incomplete PG-MDS codes with
parameters given below exist.
*n= #n—l(q — (Tl — 2)) #n n_k d e
748 73 7 2 6 2
1533 196 8 2 7 3
3920 382 9 2 8 3
7258 745 100 2 9 4
13410 1142 11 2 10 4
19414 1665 12 2 11 5
26640 1976 13 2 12 5
29640 2170 14 2 13 6

[ ]
Example 1: In this example, PG-MDS codes are
given for each lengthn, 8 <n < 14.

(i) PG-MDS code with parameters [7,2,6] and e = 2.

K7=(1)(£ 11 ‘ilglaoiz a13 ]
=[m |%]

(if) PG-MDS code with parameters [8,2,7] and e =
3.

7(8:[1 0 1 a13 a (12 a3 a6:| —
0 1 1 1 1 1 1 1

6

a
oo |5 )
(iii) PG-MDS code with parameters [9,2,8] and
e =4.
Ko = 1 0 1 a13 a (lz (,Z3 (;(6 a8]
>lo1 11 1 1 1 1 1

8

=% 5]
(iv) PG-MDS code with parameters [10,2,9] and
e =4.
Kio =
101 a¥® a «a a3a6a8a9]:
01 1 1 1 1 1 1 1 1
% |4]
[ o 11
(v) PG-MDS code with parameters [11,2,10] and
e =>5.
K11

_[1 01 a® a a® a® a® ad 9 o1t
o011 1 1 1 1 1 1 1 1

14

=[%0 [}

(vi) PG-MDS code with parameters [12,2,11] and
e=2>5.

7(12 _ 1 0 1 a13 (04 az

o111 1 1
3 ,.,6 8

a’ a® a® @ 14 a5]_ |a5]
) = |xu ‘|

11 1 1 1
(vii) PG-MDS code with parameters [13,2,12] and

e = 6.

Kz =

[1 0 1 a*® a a? a® a® a® a® ql% ,5 a7]

01 1 1 1 1 1 1 1 1 1 1 1
a7

=[ [%]

(viii) PG-MDS code with parameters [14,2,13] and

e = 6.

j(14

_[1 01 a® a a* a® a® a® a® o' o5 o7 am]

“lo111 1 1 1 1 1 11 1 1

10

=[ea |7

Corollary 1: Over F,;, for fixed k=2 the

inequivalent, incomplete PG-MDS codes with length
15 < n < 26 exist.

Proof:

The first row of each generator matrix Q of a PG-
MDS code C, [n', k] except the first element which is
1, in Theorems 2,3,4, and 5 has distinct elements
from the base field F,-. So, the matrix
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ail aiz ai(zs—n’)
1 1 1
where a'i belong to the complement of the first row
of the generator matrix Q, forming a generator matrix
of a PG-MDS codes, [28-—n',2], 2 <n'<14.
Therefore, the inequivalent, incomplete PG-MDS
codes of the following parameters exist.

#, n k d e
1976 15 2 14 6
1665 16 2 15 7
1142 17 2 16 7
745 18 2 17 8
382 19 2 18 8
196 20 2 19 9
73 21 2 20 9
34 22 2 21 10
8 23 2 22 10
5 24 2 23 11
1 25 2 24 11
1 26 2 25 12

Corollary 2: Over F,, for fixed distance d = 3 and
e =1, the inequivalent PG-MDS codes with
parameters given below exist.

#, n k d

5

8

34
73
196
382
745 10
1142 11
1665 12 10
1976 13 11
2170 14 12
1976 15 13
1665 16 14
1142 17 15
745 18 16
382 19 17
196 20 18
73 21 19
34 22 20
8 23 21

©O© oo ~NO 01~

— = = e e e e = = = e R R R R R R R R RR R

WWWWWWWwWwWwWwWwWwWwwWwWwwWwwwwwwww

5 24 22
1 25 23
1 26 24

[12 Azx(n—z)], 4 <n<26, where
. i _
= E “111 “1( 3)], so the parity-check

matrix is H = [-AT (—2)x2lm-2y]. So, for any
ab € GFQM\{0}, if —a(lab, .. ale-)+
b(1,1,..,1) =0,then a+b=0and —aa’ — b =
0, 1<j<(m-3). Thus, bay —b=b(ai—1) =
0. But b # 0; that is, a =1 for all j which is
contradicted with that each %/ are distinct. Therefore,
any two columns are linearly independent; that is, C*
is PG-code. m
It clear that, each code, [n,n — k,3] in Corollary 1
isasubcodeof [n+1,(n+1)—k,3] ,n>k.

All the PG-codes in Theorems 2,3,4,5 are embedded
in the complete PG-MDS code [28,2,27] which is
generated by the matrix
D= 1 181'1 'Biz7
0 1 e 1
where all B;, € F,; are distinct. Therefore, all PG-
codes in Theorems 2,3,4,5 are incomplete codes.

PG- MDS Code of Dimension 3 over F,,

In this section, PG-MDS codes are constructed from
these ones in section two by transferring the generator
matrices into other matrices which each one formed a
generator matrix to a PG-MDS code [n,3,n —2] ,
3<n<28.

If W = [c1 cn]=[(1) (1’ - f] is PG-MDS

code [n,2,n— 1] , where ¢; are the columns of W,
then it could transfer to a PG-code [n,3,n — 2] with
generator matrix Wt = [¢;* cn,T] using the
one to one map, T™* as follows:

T

ol

13

Proof:

From Theorem 1, the dual code C* of each code C in
Theorem 5 is also inequivalent PG-MDS. Since each
generator matrix Q of a PG-MDS code C, [n, k] in
Theorems 2,3,4,5 is in standard form; that is, Q =

= [x,y]

r { at =[(x/y)? —a™(x/y),a™ (1 - a'®x/y),ax/y] if y#0
Ci+ = [1,0,0] I_f y = 0

Therefore, the generator matrix ¢ = [01\ 0 ﬂ of the

unique PG-MDS code [3,2,2] transfer to the matrix
41 1 0 ab°

G+=[T3 !o 1 azl. It is not
3

0 0 1
difficult to prove that the rows r;, 7, and 73 are

linearly independents and the columns c¢; ¢; are also
linearly independents. Here, d=1, Since, w(r)) =
w(r,) = 1. So, G* formed generator matrix of the
unique PG-MDS code [3,3,1]

Theorem 6: Over F,,, the inequivalent PG-MDS
codes with parameters in Table 2 are exists.

= [c1e63] =

Table 2. PG- MDS Code of parameter [n,3,n — 2]
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en = 5: From Theorem 3, the eight generators M; are
transformed by T* into the following matrices M;*
of rank 3 as shown below:

M;* Rowl Row2 Row3

M;" 10a'a®3a?* 01a?a’a® 00111

M,* 10a'a?*a?® 01a?aba 00111
M;* 10a'a?*a® 0la?abal? 00111
Mt 10at%a?*a? 0la?aa’® 00111
Ms* 10a'a?*a®? 0la’aba®* 00111
Mt 10at%a?*a?! 01a?aba’® 00111
M,* 10a'®a®a?? 0la’a'?a?* 00111
Mg* 10aa’1  0la2a’?1 00111

#, n k d e
1 4 3 2 0

8 5 3 3 1
34 6 3 4 1
73 7 3 5 2
196 8 3 6 2
382 9 3 7 3
745 10 3 8 3
1142 11 3 9 4
1665 12 3 10 4
1976 13 3 11 5
2170 14 3 12 5
1976 15 3 13 6
1665 16 3 14 6
1142 17 3 15 7
745 18 3 16 7
382 19 3 17 8
196 20 3 18 8
73 21 3 19 9
34 22 3 20 9

8 23 3 21 10

1 24 3 22 10

1 25 3 23 11

1 26 3 24 11

Proof:

n = 4: From Theorem 2, five 3 X 4 matrices, G;* are
constructed by transferring the generator matrix
G;,i =1,2,...,5 using the map T* as given below.

T
G;* Rowl Row?2 Row3
G,* 10a%a®®  01la?a® 0011
G, 10a¥a?*  0la?a® 0011
G, 10a®a® 012a'? 0011
Gyt 10a*%a® 0la?a’ 0011
Gs* 10a*®a®®  0la?al® 0011

But G;* =p G;*, for each 1 <i#j<5 as shown
below.

G* =p G+j row 1, row 2,row3of T

+ ~ o+

+ ~ o+

a30a’®, 0al5a?3, 001
a®0a’, 0a'a®, 001
G*'1=pGry a200a®3, 0a2*”, 001

G*y=p G*s  a?%0a?!, 0a*a??, 001,

Therefore, there is unique PG- MDS code parameters
[4,3,2] with generator matrix G*:

1 0 @19 13
G+ = [0 1 az ag ]

0 0 1 1

Also, this means that there is a unique PG-MDS code
parameters with parameters [24,3,22]

These matrices, M;" can be transformed into the
matrices £;*of rank 3 as in Table 3.

Table 3. Equivalent matrices

L*
Mi+ EP £i+ [G+ §:|
Z
v e
1
M,* =, L,* 0
Gt a
I 1 |
M,* =, £t [ a?]
Gt |al4
| 1
M," =, L,* [ a |
Gt |gle
L 11
M5+ =, L5+ i al8]
Gt |q?3
i 1
Mg* =p Lt [ a7]
G* a7
1
1\/[7+ = L7+ [G+ 065]
1
M8+ =, L8+ [ asl
G+ a,12
1

Therefore, there are eight unique PG-MDS code with
parameters [5,3,3] and generator matrix £;.

By using the same technique the other results will
deduce. ]

Theorem 7: There is a unique, complete PG-MDS
code C* with parameters [28,3,26] over F,,.

Proof:

The 28 x 3 matrix M+ with following rows has rank
three and satisfies the projective conic XY + a®XZ +
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a?*YZ; that is, the rows of M.~ formed complete arc
of degree 2 with 28 points which is Segre bound.
Therefore, C*hasd =n—k + 1 = 26.

M+ Matrix

c) €@ 3 W e co O
1 0 0 1 3

al* ad al at

0 1 0 al3 a’ a3 o
0 0 1 1 1 1 1
C(8) C(9) C(10) C(11) C(12) C(13) C(14)
al[] alz a21 a24 a18 aZO a
a3 a17 a18 a6 a8 a 0(21
1 1 1 1 1 1 1
C(15) C(16) C(17) C(18) C(19) C(20) C(21)
s PEE T a5 b o? 25
225 10 o2 a2 qi? b et
1 1 1 1 1 1 1
C(22) C(23) C(24) C(25) C(26) C(27) C(28)
a7 1 et s 22 16 ot
15 1 Q6 g2 g2t ot v
1 1 1 1 1 1 1

Columns of U,:

C(1) C(2) €C(3) C(4) €(5) €(6) C(7) €8

1 0 0 al* 8 10 al2 a2l
0 1 0 al? g3 ad al? al8
0 0 1 1 1 1 1 1
C(9) C(10; c(11) €(12) €(13) C(14) C(15) C(16)
all @20 @2 g9 45 a? als a?
al® ald g2 22 o a6 20
1 1 1 1 1 1 1 1

Corollary 3: All the codes in Theorem 6 are
incomplete.

Proof:

Each generator matrix of the code in Theorem 6 is
projectively equivalent to a sub matrix of M-, and
this done by computer computation. For example,
Gt=[Cc(1) Cc2) Cc@A7) c)], Lt =
[c(1) c2) c@a7) C(7) CA)] =

Theorem 8: There are two inequivalent, complete
PG-MDS codes over F,, with parameters [16,3,14].
Proof: By choosing appropriated 15 columns of the
matrix M- in Theorem 7, the following two 3 x 16
matrices U; and U, have been got:

Columns of U;:

CA CR2) €B) CMH CB) C6) 7)) (CB)

1 0 0!3 a,13 a,24— a18 11

a a
0 1 0!7 a9 a,6 aB a,19 a21
0 0 1 1 1 1 1 1
€(9) C(10) C(11) C(12) C(13) C(14) C(15) C(16)
a7 a6 (ZZS a,17 1 a22 a16 a4-
a25 a12 a,ll a,lS 1 a24- (X4 0!14
1 1 1 1 1 1 1 1

From Theorem 7, any two columns are linearly
independents. So, it is enough to prove the
completeness for U;(U,). To do this a computer
program has been used to prove that each extra
column, ¢ =[a,b,1] to U;(U,) will be linearly
dependent with other two columns of U; (). So,
the rank of U, (U,) will be less than 3. m

Conclusion:

In this paper the extending and lengthening are
used to conclude the existence of incomplete,
projective MDS codes of dimension two and three
over the finite field of order twenty-seven. Where if
k = 2, codes of length n, 4 < n < 26 and distance d,
3 <d <25 are founded. Also, if k =3, codes of
lengthn, 4 <n <26 anddistance d, 2 < d < 24 are
founded. Two complete, projective MDS have been
computed of dimension three and length sixteen.
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GF(27) s bl MDS @) jua i

L3y S S5 dles

Gl alarn Ay patiual) dxalall ‘e)l:.“ S bl ) ‘:.»é

sdadal)

Lald xe MDS x5 54 (PG-MDS) LlwYI MDS 5 caiall all 8 3l slusall Bing (2 i) 50530l 58 MDS e il
¢3¢ 2 A3 PG-MDS el aaeil 20 5¥1 G5kl aladia) & cunll oda (8, 4 daalaldl 5 gall 48 ghiaal) (o (3 gee Y AdDELY)

e ol

dag) & ¢ L GF(27) dial) Lo 48 e AaiSa ye 333 PG-MDS @ e i alag) dal (e ¢ ALYy dlxial) Jie
28 516 dsh: GF(27) Jiall e S PG-MDS < e il
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