ON SOME TYPES OF ALMOST-PERIODIC POINT IN BI-TOPOLOGICAL DYNAMICS

S.H. AL-KUTAIBI * I.M. AL-NASIRI **

Date of acceptance 21/8/2004

ABSTRACT
In this paper We introduce some new types of almost bi-periodic points in topological bitransformation groups and their effects on some types of minimality in topological dynamics.

INTRODUCTION
Let X be a topological space, A be any subset of X, the sets \overline{A}, \overline{A}^c denote the interior, closure and complement of A respectively. A is called semi-open in X if $A \subseteq \overline{A}$ [10] then A is called semi-closed [6] such that every open set in X is semi-open set and every closed set in X is semi-closed set. A subset N_x of X is called a semi-neighborhood (SNbd) of a point $x \in X$ if there exists a semi-open set A in X s.t $x \in A \subseteq N_x$ [2], every nbhd is semi-nbhd. The smallest semi-closed set containing A is called the semi-closure of A (scl A) [2] s.t A is semi-closed set iff $A = \text{scl} A$ and scl $A \subseteq \overline{A}$. p $\in X$ is called a semi-limit point of A if $A \cap (U \setminus \{p\}) \neq \emptyset$ for each semi-open set $U \subseteq X$ which is containing p [2]. A family $@$ of semi-open subsets of X is called a semi-open cover of X if X is a subset of the union of elements of $@$ and X is called a semi-compact space if every semi-open cover of X containing a finite sub cover [3]. every semi-compact set is compact, X is called locally semi-compact space if for every $x \in X$ there exist a s.nbd Ux is compact set. If G is a topological group and $A \subseteq G$ then A is called a left syndatic set if there exists a compact set $K \subseteq G$ s.t. $G = AK$ and $B \subseteq G$ is called a right syndatic set if $G = KB$ [4], is called left semi-syndatic set if there exists a semi-compact set $K \subseteq G$ s.t $G = AK$, similar B is called right semi-syndatic set if $G = KB$ [1], every semi-syndatic set is syndatic. If (X, G, π) is a right topological transformation group $(0, H, X)$ is a left topological transformation group then (H, X, G) is called right-left topological bitransformation group $(T.B.G)$ if satisfy the condition: $(hx)_{x}(h, x, g)_{x}(h, (x, g))_{x} = (h, (x, g))_{x} = (h, x)_{x}$ for every $x \in X$, $h \in H, g \in G$.

Definition 1: Let (H, X, G) be a T.B.G and $A \subseteq X$ then A is called a bi-invariant set under G and H if $HAG \subseteq A$.

*Department of Mathematics-College of education-University of Tikrit
**Department of Mathematics-College of education-University of Tikrit
Definition 2: Let \((I, X, G) \) be a T.B.G. and \(x \in X \) then the set \(HxG=\{hxg|\ \ g \in G, h \in H\} \) is called the bi-orbit of \(x \) under \(G \) and \(H \), the set \(HxG \) is called the bi-orbit closure of \(x \) under \(G \) and \(H \) and \(\text{sel} \ (HxG) \) is called an bi-orbit semi-closure of \(x \) under \(G \) and \(H \).

Lemma 1: Let \((I, X, G) \) be a T.B.G., \(A \subseteq X \) and \(g \in G, h \in H \) then \(hAg = hAg \).

Proof: It is obvious.

Lemma 2: Let \((I, X, G) \) be a T.B.G., \(A \subseteq X \) and \(A \) is bi-invariant set then \(A \) is bi-invariant set.

Proof: By using lemma 1.

Proposition 1: Let \((I, X, G) \) be a T.B.G. then the following statements are true:
1) If \(x \in X \) then the bi-orbit of \(x \) is a smallest bi-invariant subset of \(X \) contain \(x \).
2) If \(x \in X \) and \(y \in IxG, \) then \(HxG=HyG \).
3) If \(x \in X \) then the bi-orbit closure of \(x \) is a smallest bi-invariant subset of \(X \) contain \(x \).
4) If \(x \in X \) and \(y \in IxG \) then \(IxG=HyG \).
5) The class of all bi-orbit closure under \(G \) and \(H \) covered \(X \).

Proof:
(1) Let \(IxG \) be the bi-orbit of \(x \) then \(HIXG=HXG \) i.e. \(HxG \) is bi-invariant set. Let \(A \subseteq HxG \) and \(\text{A is bi-invariant set} \). s.t. \(x \in A \), let \(a \in HxG - A \) then there exist a \(g \in G \) s.t. \(a=thxg \) but this contradiction.
(2) Since \(y \in IxG \) then there exist a \(g \in G \) s.t. \(y=hxg \) i.e. \(x^{-1}g^{-1}x \) this means \(x \in IxG \) and \(HxG \subseteq IxG \) then \(HxG=HyG \).
(3) Since \(HxG \subseteq IxG \) then \(HxG \) is a smallest closed set contain \(x \) and the closed of bi-invariant set is bi-invariant set then \(HxG \) is smallest closed bi-invariant set contain \(x \).
(4) It is obvious.

(5) Let \(a=[HxG|\ x \in X] \) then \(X=\cup HxG \subseteq IxG=Ua \).

Definition 3: Let \((I, X, G) \) be a T.B.G. and \(M \subseteq X \) then \(M \) is called a \(b_1 \)-minimal set \((b_1 \)-minimal set) in \(T.B.G \) if satisfy the following conditions:
1) \(M \neq \emptyset \), \(M \) is closed \{semi-closed\} bi-invariant set.
2) \(M \) is not containing closed \{semi-closed\} bi-invariant subset.

Proposition 2: Let \((I, X, G) \) be a T.B.G. and \(M \subseteq X \) then the following statements are equivalent:
(1) \(M \) is \(b_1 \)-minimal set.
(2) \(M \neq \emptyset \), \(M \) is \(IxG \) for every \(x \in M \).
(3) \(M \neq \emptyset \), \(M \) is closed and \(M \subseteq IxG \) for every nonempty open subset \(U \) of \(M \).

Proof:
(1)\(\Rightarrow \) (2) Since \(M \) is \(b_1 \)-minimal set then \(M \) is \(b_1 \)-invariant set and closed, this means \(HxG \subseteq M \) and \(IxG \subseteq M \), if \(HxG \neq M \) means \(M \) is not \(b_1 \)-minimal set then \(HxG=M \).\(\Rightarrow \) (1) Since \(M \neq \emptyset \) and \(M \neq IxG \) then \(M \) is \(b_1 \)-invariant set if \(A \subseteq M \) closed \(b_1 \)-invariant then there exist a \(e \in A \) s.t. \(M \subseteq HxG \), this lead to \(M \subseteq A \) i.e. \(M \subseteq A \).
(4)\(\Rightarrow \) (1) \(M \) is \(b_1 \)-invariant set \((\exists M G=HxG \subseteq IxG) \). Let \(A \subseteq M \) and \(A \neq \emptyset \). closed and \(b_1 \)-invariant set, then \(M \subseteq A \) is open set in \(M \) and \(M \subseteq A \).
(4)\(\Rightarrow \) (1) \(M \) is \(b_1 \)-minimal set and \(U \subseteq M \) nonempty open set, then \(HUG \subseteq IMG=IxG \) and \(M \subseteq HUG \subseteq IxG \) closed set. If \(x \in M-IxG \) and \(g \in G \), \(h \in H \) s.t. \(hxg \subseteq IxG \) then \(HxG \subseteq IxG \) this means \(M \) is contain \(IxG \) \(b_1 \)-minimal set but this contradiction then \(M \subseteq IxG \).

Lemma 3: Let \((I, X, G) \) be a T.B.G., \(A, B, C \subseteq X \) are compact sets then \(ABC \) is compact subset of \(X \).
Proof: Since 0:1x(χxG)p →X is continuous map and since A, B, C are compact sets and 0(χxAB) = CAB is compact set under continuous map.

Remark: We can use the above proposition to b2-minimal set with take difference of b1-minimal.

Definition 4: Let (I, X, G) be a T, B, G and x ∈X then x is called b1-almost periodic point (b1) if for every nbh U of x there exist a left syndatic set A ⊆G and right syndatic set B ⊆H s.t. BxAG ⊆U.

Proposition 3: Let (I, X, G) be a T, B, G space and x ∈X then x is b1 ill HxG is b1-minimal compact subset of X.

Proof: → Let x be a b1 point. Ux be a nbh of x then there exist a left syndatic set A ⊆G and right syndatic set B ⊆G s.t. BxAG ⊆U. Since A, B are syndatic set this means there exist two compact set K ⊆G, J ⊆H s.t. G = AK, H = JB and HxG = BxAK ⊆K, J. By Lemma (3) for any K, J U, K is compact subset of T2-space then it is closed set. Hence, HxG ⊆K, J and HxG is compact.

If y ∈HxG then HxG ⊆HxG i.e. y ∈Ux, K this means there exists k ∈K and j ∈J s.t. y = jy, k ∈Ux then HxG ∩Ux = ∅, hence, x is a limit point of HxG and x ∈HxG then HxG is b1-minimal compact subset of X.

←Let HxG be a b1-minimal compact subset of X. Let Ux be a nbh of x in X. Since HxG ⊆HxG ⊆U then there exist a finite sets F ⊆G, F ⊆H s.t. HxGF ⊆F. Hence, HGF is an open cover HxG then it contains a finite subcover F.

For every g ∈G and h ∈H there exist a u ∈U, f ∈F and e ∈F s.t. hgx = Fue.

Let A = {g | hgx ∈U}, B = {h | hgx ∈U} we prove A and B are right, left syndatic sets respectively. Since hgx = Fue this leads to Fhgx = F−1 then Fhgx = F−1 ∈U and g ∈A, and h ∈FB then G = AB, H = FB. Since E and F are finite set then A is left syndatic set and B is right syndatic set.

Then x is b1-almost periodic point.

Definition 5: Let (I, X, G) be a T, B, G and x ∈X then x is called b2-almost periodic point (b2) if for every nbh U of x there exist a left semi-syndatic set A ⊆G and right semi-syndatic set B ⊆H s.t. BxA ⊆U.

Proposition 4: Let (I, X, G) be a T, B, G space and x ∈X is b2 point then sel(HxG) is b2-minimal semi-compact subset of X.

Proof: Similarly of first part of proposition 3 by supposing x ∈X is a b2 point and using the statement “every nbh is semi-nbh and change compact set by semi-compact”.

Proposition 5: Let (I, X, G) be a T, B, G, and sel(HxG) is b2-minimal semi-compact subset of X, then x ∈X is b2.

Proof: Similarly of second part of proposition 3.

Definition 6: Let (I, X, G) be a T, B, G and x ∈X then x is called b3-almost periodic point (b3) if for every nbh U of x there exist a left semi-syndatic set A ⊆G and right syndatic set B ⊆H s.t. BxA ⊆U.

Proposition 6: Let (I, X, G) be a T, B, G space and x ∈X is b3 point then HxG is b3-minimal compact subset of X.

Proof: Similarly of first parts of proposition 3 by use the statement in introduction “every semi-syndatic set is syndatic”.

Proposition 7: Let (I, X, G) be a T, B, G, and sel(HxG) is b2-minimal semi-compact subset of X, then x ∈X is b2.
Proof: Similarly of second part of proposition 3 by use the statement "every open set is semi-open". The definition of b_1 point (b_1-almost periodic point) is similar of b_1 point by suppose A is left sydadic set and B is right semi-syndadic set and we can satisfy propositions 6.7 by use it.

Definition 7: Let (H, X, G) be a T.B.G and $x \in X$ then x is called b_2-almost periodic point (b_2) if for every semi-nbhb U of x there exist a left semi-syndadic set $A \subseteq G$ and right semi-syndadic set $B \subseteq H$ s.t. $B \times A \subseteq U$.

Proposition 8: Let (H, X, G) be a T.B.G. X is T_2 locally semi-compact space and $x \in X$ is b_3 point then $sc(HxG)$ is b_3-minimal semi-compact subset of X.

Proof: Similarly of first parts of proposition 3.

Proposition 9: Let (H, X, G) be a T.B.G. and $sc(HxG)$ is b_2-minimal semi-compact subset of X then $x \in X$ is b_2.

Proof: Similarly of second part of proposition 3 by suppose $sc(HxG)$ is a b_2-minimal semi-compact subset of X and let U be a semi-nbhb of x in X.

Definition 8: Let (H, X, G) be a T.B.G and $x \in X$ then x is called b_3-almost periodic point (b_3) if for every semi-nbhb U of x there exist a left syndadic set $A \subseteq G$ and right syndadic set $B \subseteq H$ s.t. $B \times A \subseteq U$.

Proposition 10: Let (H, X, G) be a T.B.G. X is T_2 locally semi-compact space and $x \in X$ is b_3 point then $sc(HxG)$ is b_3-minimal semi-compact subset of X.

Proof: Let x be a b_3 point, U be a semi-nbhb semi-compact of x then there exist a left syndadic set $A \subseteq G$ and right syndadic set $B \subseteq H$ s.t. $B \times A \subseteq U$. Since A, B are syndadic set this means there exist two compact set $K \subseteq G$, $J \subseteq H$ s.t. $G = AK$, $H = JB$ and $HxG = JB \times AK \subseteq UxK$. By Lemma (3) UxK is compact subset of T_2-space then it is closed set. Hence, $sc(HxG) \subseteq U \times K$ and $sc(HxG)$ is semi-compact.

If $y \in sc(HxG)$ then $sc(HyG) \subseteq sc(HxG)$ i.e. $y \in UxK$ this means there exist $u \in U$ and $j \in J$ s.t. $y = j \times UxK$ and $u = j \times y \in UxK$, then $HyG \subseteq U \times J$ hence, x is a semi-limit points of HyG and $x \in sc(HyG)$ then $sc(HxG)$ is b_2-minimal semi-compact subset of X.

Proposition 11: Let (H, X, G) be a T.B.G. and $sc(HxG)$ is b_2-minimal semi-compact subset of X then $x \in X$ is b_2.

Proof: Let $sc(HxG)$ be a b_2-minimal semi-compact subset of X. Let U be a semi-nbhb of x in X.

Since $HxG \subseteq sc(HxG) \subseteq HUG$ then there exist a finite sets $E \subseteq G$, $F \subseteq H$ s.t. $HxG \subseteq FU$E. Hence, HUG is an semi-open cover of $sc(HxG)$ then its contain a finite subcover FUE.

For every $g \in G$ and $h \in H$ there exist a $u \in U$, $f \in F$ and $e \in E$ s.t. $hxg = fu$. Let $A = \{g \times x \in G\}$, $B = \{hx \times e \in U\}$ we prove A and B are right, left semi-syndadic sets respectively. Since $hxg = fu$ this leads to $f \times hxg^{-1} = u$ then $f \times hxg^{-1} \in U'$ and $g \in AE$ and $h \in FB$ then $G = AE$. $H = FB$. Since E and F are finite set then A is left semi-syndadic set and B is right semi syndadic set.

Then x is b_3-almost periodic point.

Definition 9: Let (H, X, G) be a T.B.G and $x \in X$ then x is called b_4-almost periodic point (b_4) if for every semi-nbhb U of x there exist a left semi-syndadic set $A \subseteq G$ and right syndadic set $B \subseteq H$ s.t. $B \times A \subseteq U$.

Proposition 12: Let (H, X, G) be a T.B.G. X is T_2 locally semi-compact space and $x \in X$ is b_3 point then $sc(HxG)$ is b_3-minimal semi-compact subset of X.
REFERENCES

Proof. Similarly, if the first part of the definition of semi compact set is not satisfied by any semi-syndetic set, any semi compact set must contain a minimal semi compact subset. Then if we suppose A is a semi-compact set and B is a semi-syndetic set, then by proposition 11, we can find a semi-compact subset of X which contains a minimal semi-compact subset of B. Then if we suppose A is a semi-compact set and B is a semi-syndetic set, then by proposition 11, we can find a semi-compact subset of X which contains a minimal semi-compact subset of B.

Proposition 13: Let \((X, \mathcal{A}) \) be a semi compact set and \(\mathcal{A} \) a minimal semi compact subset of \(X \). Then \(\mathcal{A} \) is semi-compact.

Proof. Similarly, if the first part of the definition of semi-compact set is not satisfied by any semi-syndetic set, any semi-compact set must contain a minimal semi-compact subset. Then if we suppose A is a semi-compact set and B is a semi-syndetic set, then by proposition 11, we can find a semi-compact subset of X which contains a minimal semi-compact subset of B. Then if we suppose A is a semi-compact set and B is a semi-syndetic set, then by proposition 11, we can find a semi-compact subset of X which contains a minimal semi-compact subset of B.