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Abstract: 
Homomorphic encryption became popular and powerful cryptographic primitive for various cloud 

computing applications. In the recent decades several developments has been made. Few schemes based on 

coding theory have been proposed but none of them support unlimited operations with security.   We propose 

a modified Reed-Muller Code based symmetric key fully homomorphic encryption to improve its security by 

using message expansion technique. Message expansion with prepended random fixed length string provides 

one-to-many mapping between message and codeword, thus one-to many mapping between plaintext and 

ciphertext. The proposed scheme supports both (MOD 2) additive and multiplication operations unlimitedly.   

We make an effort to prove the security of the scheme under indistinguishability under chosen-plaintext 

attack (IND-CPA) through a game-based security proof. The security proof gives a mathematical analysis 

and its complexity of hardness. Also, it presents security analysis against all the known attacks with respect 

to the message expansion and homomorphic operations. 

 

Key words: Chosen Plaintext Attack, Homomorphic Encryption, Random Permutation, Reed-Muller Code, 

Sparse Subset Sum.  

 

Introduction: 
There has been a continuous shift towards 

cloud computing and it has provided as a means of 

public storage and related services (1, 2). At the 

same time, data stored in the public cloud are more 

vulnerable to unauthorized access as well as attacks. 

Adding security to the data using encryption will 

give problem to public access (3). Homomorphic 

encryption helps in providing public access and 

security on the data in a single step. Homomorphic 

encryption schemes satisfy an important property 

that, given two ciphertexts say 𝑐1 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑘(𝑚1) 

and 𝑐2 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑘(𝑚2)  where 𝑚1, 𝑚2 are 

plaintexts and 𝑘 is the key, one can compute 

𝑐 = 𝑐1𝑜 𝑐2 =  𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑘(𝑚1𝑜 𝑚2) for some 

operation 𝑜  such that     𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑘(𝑐) =  𝑚1𝑜 𝑚2. 
For example, the text book RSA encryption scheme 

is multiplicatively homomorphic (4). If 𝑜 

corresponds to only a single operation like addition 

or multiplication, such a scheme is called partially 

homomorphic. Several partially homomorphic 

encryption schemes were proposed and successfully 

used in the applications such as oblivious 

polynomial evaluation, electronic voting, multiparty 

computation, private information retrieval, Deep 

Learning systems, Big data systems, medical 

applications and so on (5-8). However, in order to 

perform arbitrary computations over the encrypted 

data so that the scheme is suitable for any 

application in general, it must support both addition 

and multiplication operations over the ciphertexts 

unlimitedly. Such an encryption scheme that 

supports unlimited additions and multiplications 

and thus, allows arbitrary computations over the 

encrypted data, is called as Fully Homomorphic 

Encryption (FHE) scheme. The problem of 

constructing an FHE scheme has been a dream of 

cryptographers, which was first theoretically solved 

in a pioneering work by Craig Gentry using an 

innovative construction method (9, 10). 

Because of time complexities of Gentry’s 

generic blueprint, most of the later work tried to 

bring Gentry’s scheme close to practicality or used 

different security assumptions to create an FHE 

with practical time complexities (11-17). Even 
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though all of these have shown progressive 

improvements one over the other, none of them 

could qualify for practical implementation. The 

design of an FHE scheme with implementation 

model is still a challenge. 

HE schemes based on coding theory are of 

interest because of the availability of alternative 

security assumptions in solving multivariate 

equations over a finite field and simplicity in 

decoding operation (18, 19) Because of simplicity 

of the linear mapping in decoding function, 

homomorphic operations can be supported by 

encryption schemes based on coding theory (18). 

Schemes based on Reed-Muller codes, McEliece 

codes and Goppa code based on McEliece have also 

not been homomorphic in nature (19-25). Hence, 

these schemes do not support computation of 

arbitrary functions over the encrypted data.  

Another McEliece code-based scheme supports 

homomorphic addition and does not support 

homomorphic multiplication operation (26). 

Armknecht et al. (2011) presented a first 

code-based Somewhat Homomorphic Encryption 

(SHE) scheme using Reed-Muller codes. The 

computation complexities of this scheme stands at 

𝑂(𝑛2) and  𝑂(𝑛)  for encryption and decryption 

respectively and at 𝑂(𝑛)  for the homomorphic 

addition and multiplication operations. Anew Reed-

Muller Code (RMC)-based FHE scheme, based on 

the scheme presented by Armknecht et al. (2011), 

has been proposed with a de-noising step which 

nullifies the error terms produced during each 

homomorphic multiplication (27). This is, in one 

way, the ciphertext refreshing or post-processing 

idea similar to bootstrapping step in the Gentry’s 

blueprint (9). 

The RMC-based FHE scheme (27) may 

have vulnerability owing to one-to-one mapping 

between message (plaintext) and codeword. The 

underlying codeword in the ciphertext at the fixed 

positions, as specified by the secret key, might be 

computed through Chosen Plaintext Attack (CPA). 

Present work is the modification to the RMC-based 

FHE scheme (27) by padding mechanism in order to 

give one-to-many mapping between message and 

codeword which will improve its security against 

CPA. The scheme is proved CPA secure and is 

thoroughly analyzed with respect to the changes and 

new techniques suggested to show that the proposed 

scheme is secure against all the known attacks. 

The proposed scheme with its security proof and 

security analysis is presented in the subsequent 

sections of the paper. The proposed modified RMC-

based symmetric key FHE scheme is detailed in the 

section Modified RMC-based symmetric key FHE 

Scheme. Game based security proof in 

mathematical expression is provided in section The 

proposition is CPA secure. Security analysis against 

the known attacks is discussed and work is 

concluded in last section. 

 

Modified RMC-Based Symmetric Key FHE 

Scheme: 

Notations 

The symbols and their meaning used in this work 

are given as follows 

1. 𝐹 is an arbitrary finite field 

2. Vectors have been denoted by small case bold 

letters e.g. 𝑣 

3. ′ + ′ denotes addition operation over GF(2) 

fields 

4. ′. ′denotesmultiplication operation over GF(2) 

fields 

5. An integer is denoted as a lower-case italic 

letter eg.𝑥 

6. [𝑛], integer set, contains values {1, 2, … , 𝑛} 

 

Proposed Fully Homomorphic Encryption 

scheme 

In the proposed scheme, Reed Muller 

encoding and decoding operations have been used. 

The decoding algorithm used here is similar to the 

decoding used in the RMC-based FHE scheme (27). 

In encryption step, the novel method is adopted to 

expand the message by prepending a random binary 

string of zeros and ones in order to generate a new 

(nondeterministic) codeword for same message if 

the same message encoded multiple times, which 

will provide one-many mapping between message 

and codeword.  

 

Overview of the scheme 

Like any other FHE scheme, KeyGen, 

Encrypt, Decrypt, and Evaluate algorithms have 

been used for the proposed scheme.  

In the Keygen algorithm, given the security 

parameter𝑝 (˂𝑘), the RM parameters(𝑟, 𝑚) are 

chosen, which determine the length of the 

codewords and the maximum length of the message 

that can be encoded. The actual plaintext chosen for 

encryption will be smaller than the maximum 

length𝑘of the message that can be encoded by the 

RM(r,m). This enhances security. Precisely, the 

length of the actual plaintext to be encrypted is 

limited to the parameter𝑝. Upon choosing the RM 

parameters(𝑟, 𝑚), the length of the codeword𝑛, 

dimension 𝑘, the generator matrix 𝐺𝑀𝑟,𝑚 for the 

code RM(r, m) and the length of the ciphertext𝑙 are 

computed. A secret key𝐾 is chosen as a random 

subset of the set of integers {1, 2, … , 𝑙}. The key 𝐾 

represents set of bit positions, random in nature, 

within a binary string of length𝑙.It means 𝐾is set of 
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locationsat which each bit of the codewordare to be 

embedded during encryption. The parameters 

𝑟, 𝑚, 𝑛, 𝑘,  the generator matrix𝐺𝑀, and the key 𝐾 

all are kept secret. 

The Encrypt algorithm takes the plaintext 

vector 𝑝 of length≤ 𝑝, the generator matrix𝐺𝑀𝑟,𝑚, 

maximum length of the message𝑘, and the key𝐾 as 

inputs and produces ciphertext vector𝑐of length 𝑙as 

an output. Before encryption, the given plain text 

𝑝 is expanded to a message of length𝑘 by 

prepending a zero vector0 to make the message to 

the length 𝑝, and then prepending a random bit 

vector𝑟of appropriate lengthto 𝑝. For easy recovery 

of the plaintext 𝑝 at decryption stage, it is 

recommended to choose𝑟 of length(𝑘 − 𝑝). In fact, 

appending the vector0is optional, which can be 

done only when the given plaintext 𝑝is short of the 

length 𝑝.  

The generator matrix𝐺𝑀𝑟,𝑚 can be used to 

transform the expanded plaintext message 𝑚 ∈  𝐹2
𝑘 

into an𝑛-bit codeword 𝑤. Then, the code word 𝑤 is 

used to generate the ciphertext𝑐. To achieve this, 

bits of 𝑤 are embedded in𝑐 (a𝑙-bit random vector) at 

locations specified by𝐾. 

 Decrypt algorithm takes secretkey 𝐾 and 

ciphertext 𝑐, it recovers codeword 𝑤 from 𝑐by 

collecting the bits from the locations specified by 𝐾. 

Then the recovered 𝑤is decoded to produce the 

expanded plaintext message 𝑚 from which the 

actual plaintext 𝑝is recovered by discarding the first 

(𝑘 − 𝑝) bits followed by discarding the zero bits till 

the first non-zero bit is encountered. 

The procedure, H.Add has been used to 

perform homomorphic addition operation and the 

procedure H.Mul has been used to perform 

homomorphic multiplication to construct the 

Evaluatealgorithm. A homomorphic component 

wise 𝑚𝑜𝑑 2 addition can be performed because of 

structure of ciphertexts. But same thing doesn’t hold 

true for homomorphic component wise𝑚𝑜𝑑 2 

multiplication. To overcome this problem, one more 

step of de-noising has been added to multiplication 

operation to nullify the error introduced as 

discussed in the RMC-based FHE scheme (27). 
 

Algorithms 

The algorithms describing the construction 

of the proposed scheme are presented as follows: 

 

𝐾𝑒𝑦𝐺𝑒𝑛(1𝑝) → (𝐺𝑀, 𝐾, 𝑙): Upon input of 

the parameter 𝑝, 

 

1. Choose the 𝑟, 𝑚values such that 𝑘 ≥ 2𝑝 and 

𝑛 ≥ 2𝑘 

where  𝑘 = 1 +  (
𝑚

1
) + (

𝑚

2
) + ⋯ +

(
𝑚

𝑟
) and 𝑛 = 2𝑚 

2. Construct generator matrix 𝐺𝑀 for 𝑅𝑀(𝑟, 𝑚) 

  𝐺𝑀 =  [

𝑣0
𝑣1

⋮

𝑣𝑘−1

] 

3. Choose 𝑙 ≥ 𝑛2 

4. Select a random subset 𝑆 ⊂ [𝑙] of size 𝑛 

5. Obtain a random permutation of 𝑆, and let the 

permuted set be the key, 𝐾 

6. Output the 𝐺𝑀, the key 𝐾 and 𝑙. 
 

𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑚, 𝐺𝑀, 𝐾) → 𝑐 ∶ This function takes 

plaintext 𝑚 = (𝑎0, 𝑎1, … , 𝑎𝑝−1), the generator 

matrix 𝐺𝑀 and the key 𝐾 will produce the 

ciphertext as output through following steps 

 

1. If the size of 𝑚 is less than 𝑝, concatenate 𝑚 

with a zero vector 0such that the size of 0||𝑚 is 

equal to 𝑝 

2. Choose a random bit vector 𝑟of size (𝑘 − 𝑝) 

3. Concatenate 𝑟 and  𝑚to obtain the expanded 

plaintext, 𝑝 = (𝑝0, 𝑝1, … , 𝑝𝑘−1) 

4. Compute the codeword vector, 𝑤 = 𝑝0𝑣0 ⊕
𝑝1𝑣1 ⊕ … ⊕ 𝑝𝑘−1𝑣𝑘−1 =
(𝑥0, 𝑥1, … , 𝑥𝑛−1)using the generator matrix 

𝐺𝑀 = {𝑣0, 𝑣1, … , 𝑣𝑘−1} 

5. Generate an 𝑙-bit random vector 𝑙 
6. Replace the bits of 𝑙, as specified by 𝐾, with the 

bits of codeword to get the ciphertext 𝑐 

 

𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝑐, 𝐾) → 𝑚 ∶This function takes the 

ciphertext 𝑐 and the key 𝐾  to decipher the 

message 𝑚 as follows 

 

1. Retrieve the codeword, 𝑤 = (𝑥0, 𝑥1, … , 𝑥𝑛−1) 

from 𝑐 by collecting from the locations as 

specified by the key 𝐾 

2. Compute the 𝑘-bit expanded plaintext message 

𝑝 = (𝑝0, 𝑝1, … , 𝑝𝑘−1) as follows 

i)  𝑝0 =  𝑥0 

     ii) for 𝑖 = 1 to 𝑘 − 1 

   𝑝𝑖 =  𝑥0 ⊕ 𝑥2𝑖−1 

3. Remove the (𝑘 − 𝑝) most significant bits from 

𝑝to obtain 0||𝑚 

4. Remove the most significant zero bits from 

resulting bit vector if any in it.  

5. Output the resulting plaintext 𝑚 =
(𝑎0, 𝑎1, … , 𝑎𝑝−1) 

 

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑐1, 𝑐2, 𝑜) → 𝑐𝑒 ∶Given two ciphertexts 

𝑐1and𝑐2 corresponding to the messages  𝑚1 and 𝑚2 

respectively, the homomorphic operation 𝑜, which 
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may be addition (H.Add ) or multiplication (H.Mul), 

is performed as follows: 

 

H.Add  is 𝑚𝑜𝑑 2 addition operation over 

the ciphertexts. It is denoted as  𝑐𝑒 = 𝑐1 + 𝑐2. 

Decryption of 𝑐𝑒 gives 𝑚1 + 𝑚2.   

 

Similarly,H.Mul  is 𝑚𝑜𝑑 2 multiplication 

over the ciphertexts. Unlike addition (H.Add),  mod 

2 multiplication is not straightforward due to noise 

that appear in the resultant ciphertext 𝑐𝑒 = 𝑐1. 𝑐2. 

But Multiplication with de-noising step as discussed 

in RMC-baseed FHE scheme (27) eliminates the 

additional noise generated during multiplication and 

decryption of resulting cipher produces  𝑚1. 𝑚2. 

 

The Proposition is CPA Secure: 

It may be noticed that the key vector is an 

instance of the sparse subset sum problem (9-11). 

However, the sum of the bit positions or any such 

aggregate corresponding to key positions is not 

being mentioned anywhere. So, this becomes a 

hidden sparse subset sum problem (28) for which no 

solution is known. So, the security of the scheme is 

totally dependent on the size and randomness of the 

ciphertext and the secret key permutation chosen, 

which involves the positions at which the codeword 

is to be embedded. Once the codeword is recovered, 

decoding is simple. In general, no explicit hard 

problem assumption is known for the security of a 

cryptosystem which involves embedding the 

plaintext bits in a randomly generated bit stream. 

Similar studies have been performed and 

proved its security following game-based security 

proof (29-31) and the security of present work can 

also be proved on same lines as follows. 

 

The IND-CPA game 

For a probabilistic symmetric key 

algorithm, IND-CPA is defined by the following 

game between an adversary A and a challenger C: 

A is assumed to be a probabilistic 

polynomial time (PPT) algorithm. That means, A 

must complete the game and output a guess within a 

polynomial number of steps (31). Let the 

parameters have their usual meaning as described in 

the scheme Notations. Let the proposed symmetric 

key encryption scheme be S= (KeyGen, Encrypt, 

Decrypt, Evaluate). Then the IND-CPA game, 

adapted from article (32), is defined as follows 

 

Symmetric key CPA indistinguishability game: 

𝑆𝑦𝑚𝐾𝐴,𝑆
𝐶𝑃𝐴(𝑝)  

1. C generates a random secret key𝐾 based on the 

security parameter 𝑝and retains 𝐾. In the 

proposed scheme, the size of the ciphertext𝑙 and 

the key𝐾 are dependent on the RM 

parameters(𝑟, 𝑚).  

2. A is given the security parameter 1𝑝 and an 

oracle access to 𝐸𝑛𝑐𝑟𝑦𝑝𝑡( . ). It, then, performs 

a polynomial number of encryptions and other 

computations and chooses a pair of plaintext 

messages𝑚0 , 𝑚1such that,|𝑚0| = |𝑚1|  ≤
𝑝 and sends them to C. 

3. C chooses𝑏 ← {0, 1}uniformly at random, and 

sends the challenge ciphertext𝑐 =
𝐸𝑛𝑐𝑟𝑦𝑝𝑡( 𝑚𝑏 , 𝐺𝑀, 𝐾)to A. 

4. A continues to have oracle access 

to𝐸𝑛𝑐𝑟𝑦𝑝𝑡( . ) and may perform a polynomial 

number of additional encryptions or 

computations and random guesses over the 

key𝐾  the codeword 𝑤 and the other parameters 

involved in the encryption to generate a guess 

for𝑏, say𝑏′. 

5. The adversary wins the game if𝑏′ = 𝑏, in case 

of which the output of the game is defined as 1, 

and 0 otherwise. 

 

Definition 1(32). A symmetric key encryption 

scheme, say S = (KeyGen, Encrypt, Decrypt, 

Evaluate) is IND-CPA secure or has 

indistinguishable encryptions under chosen 

plaintext attack if for all PPT adversaries A there 

exists a negligible function say𝜀( . ) such that, 

𝑃𝑟 𝑃𝑟 [𝑆𝑦𝑚𝐾𝐴,𝑆
𝐶𝑃𝐴(𝑝) = 1]  ≤  

1

2
+  𝜀(𝑝)  

 

That means, an encryption scheme is IND-

CPA secure if every PPT adversary has only a 

negligible advantage over random guessing. The 

advantage of an adversary is said to be negligible if 

it wins the above game with the probability 
1

2
+

 𝜀( . ), where𝜀(𝑝)  is a negligible function in the 

security parameter𝑝. 

 

Definition 2 (32). A function𝑓(𝑛) is said to be 

negligible if for every𝑐 ∈  𝑁, there exists an 

integer𝑛0 such that,𝑓(𝑛) ≤  
1

𝑛𝑐for all 𝑛 ≥ 𝑛0.   

Now, let𝑙  𝑅 ← {0 ,1}𝑙  is a random𝑙-bit 

string. We claim that, under the assumption of 

random embedding of the permuted𝑤 in𝑙, no PPT 

adversary A can learn any information about the 

plaintext𝑚or codeword𝑤(beyond what it could 

guess at random) except with negligible probability. 

This is proved in the following theorem. 

 

Theorem 1. Let the proposed symmetric key 

encryption scheme, S = (KeyGen, Encrypt, Decrypt, 

Evaluate). Let𝑝be the security parameter and the 

other parameters𝑟, 𝑚, 𝑘, 𝑙, 𝑛  are 
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chosen/computed as defined. An adversary A that 

breaks the IND-CPA security of the proposed 

scheme will have an advantage𝜀(𝑝) , where𝜀(𝑝) is 

negligible.  

 

Proof. Given the two plaintexts 𝑚0, 𝑚1, it is 

evident that the probability of choosing the one 

uniformly at random by the challenger is
1

2
. We 

analyse the probability the adversary A will have 

over and above this random guess. Given a 

ciphertext𝑐of length𝑙, A first tries to obtain the 

length of the codeword𝑛. The only way it can do 

this is by assuming that𝑙 = 𝑛2, the minimum length 

of the ciphertext, because, we keep the parameters𝑟, 

𝑚as secret and𝑙 ≥ 𝑛2. Based on the value of𝑛, A 

selects a subset of size 𝑛from [ 𝑙 ] which he can 

retrieve the codeword. This probability is 
1

(𝑙 𝑛 )
. As 

another way, A may directly guess a codeword 𝑤  
from the set of all possible strings of length𝑛. In 

fact, only few of these strings, i.e.,2𝑘 << 2𝑛are the 

codewords. Suppose that, A is able to compute𝑘. 

Even then, the permuted codeword may not belong 

to the set of codewords of dimension𝑘 and the 

problem boils down to choosing a string from the 

set of2𝑛 strings. Clearly, this probability is
1

2𝑛.  

 

Upon choosing the permuted embedded 

codeword, A has to compute the exact permutation 

of the 𝑛-bit string chosen to obtain the actual 

embedded codeword. However, the number of 

permutations depends on the pattern of the strings. 

The codewords like all 0’s and all 1’s will make no 

sense with respect to the permutation. So, we 

assume that the permutation can be guessed with a 

probability of 1 in such cases. This makes the whole 

probability of guessing a codeword and its 

permutation in worst case as(
1

2𝑛) . 1 =  
1

2𝑛. 

 

So, the overall probability of A to generate 

a ciphertext hopefully closer to the one returned by 

the challenger is
1

(𝑙 𝑛 )
+  

1

2𝑛, which is nothing but the 

advantage𝜀(𝑝)  it has over the random guess1/2.  

For simplicity, let us take𝑘 = 2𝑝and 

𝑛 = 2𝑘 as mentioned in the KeyGen algorithm. This 

gives𝑛 = 4𝑝 and𝑙 = 16 𝑝2. Substituting these 

values in
1

(𝑙 𝑛 )
+  

1

2𝑛, we get(
(16𝑝2−4𝑝)!(4𝑝)!

16𝑝2 !
) +  

1

16𝑝. 

Thus the advantage of the adversary𝜀(𝑝) =

 (
(16𝑝2−4𝑝)!(4𝑝)!

16𝑝2 !
) +  

1

16𝑝. In this function𝜀(𝑝), the 

exponential component
1

16𝑝is clearly negligible (32). 

The Lemma 1 below, shows that the factorial based 

component, which is inverse a combination function 

is also negligible for sufficiently large values of𝑝. 

Hence, from the Proposition1 it is obvious that,𝜀(𝑝) 

is negligible as claimed.   

 

Lemma 1. Inverse of a combination function, i.e., 
1
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By plugging in𝑛 = 𝑝 and𝑙 =  𝑝2 (ignoring the 

constant values), we get 
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  because, for  

 

large values of 𝑝 we get, 𝑝2 >> 𝑝.  Thus, we have 

the function𝑓(𝑛) = 
2

1
pp . 

 

Now, applying the definition of the negligible 

function (Definition 2 above), we get ∀𝑐 ∈  𝑁, 

p

lim 2

1
pp  = 0.    

       

Proposition 1. If𝑓1(𝑛) and 𝑓2(𝑛) are two negligible 

functions, then the function 𝑓(𝑛) = 𝑓1(𝑛) +  𝑓2(𝑛) 

is also negligible. 

Based on the assumption that, retrieving a 

secret randomly embedded permutation is hard, 

specifically when the bit string is sufficiently large, 

the proposed scheme is CPA secure. 

 

Analysis of Known Attacks: 

The proposed scheme has been analyzed for 

the following known attacks: 

1) Brute-force attack: Based on Theorem 1, it can 

be deduced that present scheme is secured 

against brute-force attack for all the cases where 
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𝑛 << 𝑙,  l, since 𝑙 is chosen as 𝑛2. And since 

recovering the codeword actually requires the 

key 𝐾, then, ∀𝐾 ⊂ [𝑙], attack may be viewed as 

the brute-force against the secret key 𝐾. 

Guessing the key for sufficiently large 

parameters is considered a very difficult 

problem. Therefore, such an attack against the 

codeword would not be effective and can be 

thwarted with ease. 

2) Privacy of the homomorphic operations: 

Privacy, in present scheme, is inherent due to a 

constant ciphertext size. This size does not 

change in course of operations over ciphertext. 

Hence it becomes hard to predict the type and 

number of operations performed. 

3) Attacks with respect to the first bit of codeword: 

Attack over first bit is of no significance as the 

length of the codeword and locations of 

remaining codeword bits are not revealed. 

Deducing the first bit is if of no use in 

comparison to the total remaining length of 

codeword. 

4) Attacks against the DSCP:Any such scheme can 

be defended by keeping the length of 

ciphertext𝑛5/2for a given codeword of𝑛bits (18). 

Proposed scheme having the length of the 

ciphertext 𝑙which is larger than𝑛5/2, can defend 

itself against such attack.  

5) Attack based on the properties of the RM code: It 

can be noticed that, generally the mapping 

between a message and a codeword in a RM 

code is deterministic. That means given a 

message 𝑚 we always get the same codeword 𝑤. 

So, when a codeword is embedded in a random 

string using the same key𝐾, we always get same 

bits at the positions specified by𝐾 whenever we 

encrypt the same message 𝑚 using the same 

key𝐾. So, simple XOR operation over sufficient 

number of ciphertexts will reveal the positions at 

which the codeword is embedded, because, those 

positions contain zero bits after XORing. The 

only way this attack can be defended is that, the 

message to be encrypted should be changed in a 

way that encoding of the same message results in 

different codewords. Prepending a random string 

and zero bits as described in the Encrypt 

algorithm serves this purpose and with this 

message expansion operation such attacks can be 

successfully thwarted.    

6) Attack concerned with guessing the𝑟, 𝑚 values: 

It is proposed to keep the Reed-Muller 

parameters𝑟, 𝑚 for additional security. But, it is 

possible to guess the 𝑟, 𝑚values as described 

below, though guessing them will not 

compromise the security of the scheme. As a 

simple analysis, consider the length of the 

ciphertext which is of𝑙bits, where𝑙 ≥  𝑛2. 

Unless 𝑙 >> 𝑛2, for smaller values we get√𝑙 ≈

𝑛or in other words the value of√𝑙will be close 

to𝑛. Since𝑛 =   2𝑚, it will be easy to guess the 

value of 𝑛as power of 2 and from that, it is easy 

to compute𝑚 = 𝑙𝑜𝑔2𝑛. Now, having the value 

of 𝑚 the𝑟, 𝑚values can be any of the 

pairs(1, 𝑚), (2, 𝑚 ), … (𝑚, 𝑚). So, one can 

consider these pairs in turn compute the 

corresponding generator matrix and obtain the 

plaintext corresponding to the codewords in each 

of these codes. However, the complexity of such 

attack to determine the codeword and in turn the 

corresponding plaintext is exponential, i.e.,2𝑛as 

discussed in Theorem 1 as probability. 

Moreover, the recovered plaintext each time 

would correspond to an expanded plaintext and 

obtaining the original plaintext from it adds up a 

further complexity of 2𝑘. Thus, the overall 

complexity will be2𝑛+𝑘. 

 

Conclusion:  
In present work, � a modified RMC-based 

symmetric key FHE scheme has been proposed with 

padding mechanism. The padding of random bit 

string to the plaintext has been ensuring one-to-

many (non-deterministic) mapping between 

plaintext and ciphertext. It is shown that padding 

mechanism is enhanced the security against the 

IND-CPA. The modified algorithms of Keygen, 

Encryption and Decryption with respect to padding 

mechanism have been presented. The security of the 

proposed scheme is proved by Indistinguishability 

Chosen plaintext attack (IND-CPA) game-based 

proof. The mathematical proof of IND-CPA game-

based security proof proved that retrieving a fixed 

length bit string which is embedded in the large 

random bit string specified by the secret positions is 

a hard problem. Further, the scheme is thoroughly 

analyzed with respect to the changes and new 

techniques suggested to show that the proposed 

scheme is secure against all the known attacks. The 

present scheme involves simple operations which 

makes this scheme easy to implement. The 

homomorphic operations H.Add and H.Mulare 

simple MOD 2 operations and they are easy to 

implement. In this paper, we focused on study of 

algorithm and its security proof with respect to the 

proposed enhancements. Many other aspects with 

respect to the practical implementation of the 

scheme with different parameters need to be studied 

and compared its performance analysis with other 

related works in future work. 
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 Read-Mullerمفتاح متماثل معدَّل لمخطط تشفير متماثل الشكل تمامًا استنادًا إلى كود 
 

راتناكوماري تشالا 
1

فيجيايا كوماري كونتا             
2 

 
 أندرابراديش ، الهند          -جامعة راجيف غاندي لتكنولوجيا المعرفة 1
 جامعة جواهر لال نهرو التكنولوجية ، حيدر أباد ، تيلانجانا ، الهند.  2
 

 :الخلاصة
أصبح التشفير المتجانس شائعًا وقوياً للتشفير لمختلف تطبيقات الحوسبة السحابية. حيث حدثت تطورات عديدة في العقود الأخيرة. تم 

د على رمز اقتراح مخططات قليلة تستند إلى نظرية الترميز ولكن لا يدعم أي منها عمليات غير محدودة بأمان. نقترح مفتاحًا متماثلًا معدّلًا يعتم

Reed-Muller  لتشفير متماثل تمامًا لتحسين أمانه باستخدام تقنية توسيع الرسائل. يوفر توسيع الرسالة باستخدام سلسلة ذات طول ثابت

ر. يدعم عشوائي مسبقة التعيين من واحد إلى متعدد بين الرسالة وكلمة التشفير ، وبالتالي تعيين واحد إلى العديد بين النص العادي والنص المشف

( بشكل غير محدود. نحن نبذل جهدًا لإثبات أمان المخطط في ظل عدم القدرة على MOD 2ترح عمليات الجمع والضرب )المخطط المق

( من خلال إثبات أمني قائم على اللعبة. يعطي دليل الأمان تحليلًا رياضياً ومدى IND-CPAالتمييز في ظل هجوم النص العادي المختار )

  أمنياً ضد جميع الهجمات المعروفة فيما يتعل  بتوسيع الرسالة والعمليات المتجانسة.تعقيد الصعوبة. كما يقدم تحليلًا 
 

 .كود ريد مولر، مجموع مجموعة فرعية متفرقة ،تبديل عشوائي ،هجوم النص العادي المختار، تشفير متماثل الشكل الكلمات المفتاحية:
 

 

 

 


