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Introduction 

The perturbation problems involve differential 

equations with a higher-order derivative. The 

derivative order of these problems increases by a 

small positive parameter known as the perturbation 

parameter 1-4. Modeling a phenomenon in science and 

engineering often requires looking at differential 

equations with very small (or very large) parameters. 

When these parameters get close to zero (or infinity), 

the solutions of these differential equations behave 

very differently, which makes it harder to get close 

numerical solutions that are accurate. This concept is 

called "singular perturbation" 5. In several 

disciplines, such as magneto-hydrodynamics, fluid 

dynamics and mechanics, aerodynamics, plasma 

dynamics, elasticity, rarefied gas dynamics, 

oceanography, and other domains of the fantastic 

world of fluid motion, singularly perturbed 

differential equations with epsilon as a small 

parameter are used in the mathematical simulation of 

procedures. 

 Steady and unsteady viscous flow problems, 

especially with the large Reynolds numbers and 

boundary layers, usually are difficult to model on the 

basis of a tiny positive parameter. Big challenges 

were known to be remarkable cases. There are 

boundaries in this issue class, which are places where 

the solution quickly alters close to one of the 

boundary points. The solution to this equation 

fluctuates quickly in some parts of the domain and 

slowly in others. 

Recently, a large number of techniques have 

been presented to solve singularly perturbed 

boundary value problems. For example, Abdullah6 

has recently introduced a number of strategies for 

solving ordinary differential equations and Volterra 

integral equations (VIEs) utilizing the operation 
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matrix of differentiation and integration. To solve 

VIEs using Touchard Polynomials, Al-Saif & 

Ameen7 employ the collection approach. They apply 

the collocation method for solving mixed Volterra – 

Fredholm integral equations (MVFIEs). Also, for the 

singularly perturbed boundary value problems, a 

novel exponentially fitted integration approach on a 

uniform mesh is developed by Alam et al.8 . And a 

Hermite approximation is developed for solving the 

singular perturbed delay differential equations under 

the boundary conditions 9. Furthermore, a numerical 

method was presented based on quintic B-spline 

functions to find the solution of the singular Emden–

Fowler Equation 10. In addition, a new fractional-

order derivative operational matrix was suggested by 

Ghomanjani in which the matrix depends on 

Genocchi polynomials 11. For the computational 

solution of singularly perturbed boundary-value 

problems, Farajeyan et al. designed a class of new 

approaches focused on changing the polynomial 

spline equation 3. 
While there are various disciplines that deal 

with singularly perturbed boundary problems and 

have used a variety of asymptotic expansion 

approaches to solve them, more effective and 

simplified computational methodologies are needed 

to handle uniquely disrupted boundary value 

problems 12.  

The equation is as follows, 

 

𝜀𝑥 "(𝑟) + 𝑝1(𝑟)𝑥
′(𝑟) + 𝑝2(𝑟)𝑥(𝑟) = 𝑓(𝑟),             

1  

With boundary conditions (BCs) 

𝑥(0) = 𝛼1, 𝑥(1) = 𝛼2.                             2  

 

Wang-Ball polynomial has various 

applications, such as surface interpolation in 

geometric modeling 13,14. However, to the best of our 

knowledge, the first application of the Wang-Ball 

and DP-Ball polynomials in a numerical approach 

were by Kherd et al. 14, 15, who obtained surprising 

results when compared to existing methods. This 

paper is an extension of the Wang- Ball series to 

solve problems involving singular perturbation.   

 

The following outline constitutes this paper's 

structure: 

At the beginning of the article, there is a 

concise explanation of the Wang-Ball polynomial, as 

well as its conventional derivation and its operational 

matrix differentiation. In addition, the applications of 

the operational matrix of the derivative are 

explained. We provide a brief explanation of a 

method for estimating the error of a solution that has 

already been found. This makes it effective to bring 

improvement to the solution itself. Afterward, we 

will proceed to explain our findings by going through 

four numerical examples. Finally, we arrive at some 

conclusions about the existing approach. 

 

Review on Ball polynomial 

The Ball polynomial was introduced by A. A. Ball in 

his well-known aircraft design system CONSURF 16. 

It is described as a cubic polynomial and defined 

mathematically as 14. 

(1 − 𝑟)2, 2𝑟(1 − 𝑟)2 , 2𝑟2(1 − 𝑟), 𝑟2 ,    0 ≤ 𝑟 ≤ 1                                                
3  

Previous studies have investigated the Ball 

polynomial's high generality and qualities. For 

instance, in the 1980s, two distinct Ball polynomials 

of an arbitrary degree, namely Said-Ball and Wang-

Ball 14,15 were introduced. 

 
Wang-Ball Polynomial Representation 

Wang-Ball polynomial  𝑊𝑖
𝑚(𝑟) of degree, 𝑚  can 

be defined by13-15, 17. 

          𝑊𝑖
𝑚(𝑟) =

{
  
 

  
 (1 − 𝑟)

2+𝑖   (2𝑟)𝑖                       ,0 ≤ 𝑖 ≤
𝑚−3

2
         

(1 − 𝑟)
1+𝑚

2   (2𝑟)
1−𝑚

2                 , 𝑖 =
𝑚−1

2
             

(2(1 − 𝑟))
𝑚−1

2   𝑟
𝑚+1

2                  , 𝑖 =
𝑚+1

2
              

(2(1 − 𝑟)𝑟)𝑚−𝑖   𝑟𝑚+2−𝑖            ,
𝑚+3

2
≤ 𝑖 ≤ 𝑚  

         4  

when 𝑚 is odd, and 

          𝑊𝑖
𝑚(𝑟) =

{
 
 

 
 
(1 − 𝑟)2+𝑖  (2𝑟)𝑖                    ,0 ≤ 𝑖 ≤

𝑚

2
− 1

(2(1 − 𝑟))
𝑚

2                              , 𝑖 =
𝑚

2
                

(2(1 − 𝑟))
𝑚−𝑖

  𝑡𝑚+2−𝑖          ,
𝑚+3

2
≤ 𝑖 ≤ 𝑚

        5  

 
Wang-Ball Monomial Form 

Given a Wang-Ball curve of degree 𝑚  represented 

by  𝐴𝑚(𝑟) together with  𝑚+ 1 control points, 

represented by{𝑤𝑖}𝑖=0
𝑚 . The degree m Wang-Ball 
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𝑊𝑖
𝑚(𝑟) is shown in the form of power basis as given 

below17 

𝑊𝑖
𝑚(𝑟) =∑∑𝑤𝑘,𝑙

𝑚

𝑙=0

 𝑟𝑙  , 0 ≤ 𝑟 ≤ 1                      6

𝑚

𝑖=0

 

where 

 
    𝑤𝑙𝑘 =

{
 
 
 

 
 
 (−1)

(𝑘−𝑙)2𝑙 (
𝑙 + 2
𝑘 − 𝑙

) ,                      for  0 ≤ 𝑙 ≤ ⌊
𝑚

2
⌋ − 1,           

(−1)(𝑘−𝑙)2𝑙 (
𝑛 − 𝑙
𝑘 − 𝑙

) ,                       for  𝑙 = ⌊
𝑚

2
⌋,                           

(−1)(𝑘−𝑙)2𝑛−𝑙 (
𝑛 − 𝑙
𝑘 − 𝑙

) ,                   for  𝑙 = ⌈
𝑚

2
⌉,                          

(−1)(𝑘−𝑛+𝑙)2𝑛−𝑙 (
𝑛 − 𝑙

𝑘 − 𝑛 + 𝑙 − 2
) , for  ⌈

𝑚

2
⌉ + 1 ≤ 𝑙 ≤ 𝑛         

                  

7  

where ⌊𝑥⌋ represents GI ≤ x and  ⌈𝑥⌉ represents 𝐿𝐼 ≥
𝑥 where 𝐺𝐼  and  𝐿𝐼  are the greatest integer and least 

integer, respectively.   The Wang-Ball monomial 

matrix is 

 

𝒜 =

[
 
 
 
 
𝑤00
𝑤10
⋮

⋮

𝑤𝑚0

  

𝑤01
𝑤11
⋮

⋮

𝑤𝑚1

 

…

…

⋱

⋱

…

 

…

…

⋱

…

 

𝑤0𝑚
𝑤1𝑚
⋮

⋮

𝑤𝑚𝑚

    

]
 
 
 
 

(𝑚+1)(𝑚+1)

           8  

 

where 𝑤𝑙𝑘 is given as in (7). 

The Wang-Ball basis function satisfies the following 

properties. 

i. The Wang-Ball  basis function  is non-

negative, that is, 

𝑊𝑖
𝑚(𝑟) ≥ 0, ∀𝑖 = 0,1,… ,𝑚                9  

ii. The partition of unity that is, 
 

∑𝑊𝑖
𝑚(𝑟)

𝑚

𝑖=0

= 1  .                             10  

In general, any function  𝑥(𝑟)  can be written with 

the first (𝑚 + 1) Wang-Ball polynomials and get 

approximated as  

𝑥(𝑟) ≈∑𝑐𝑖
′𝑊𝑖

𝑚(𝑟) = Ω(𝑟)𝐶′
𝑚

𝑖=0

= 𝐻𝑚(𝑟)𝒜
𝑇𝐶′                     11 

where 𝐶′ = [𝑐0
′ , 𝑐1

′ , … , 𝑐𝑚
′ ]𝑇 , 𝐻𝑚(𝑟) =

[1  𝑟  𝑟2  …  𝑟𝑚]  and 𝒜 is the monomial matrix form 

given in  Eq 8 . The  𝑚 + 1 by 𝑚 + 1an operational 

matrix of derivative of the Wang-Ball polynomials 

set Ω(𝑟) is given by: 

𝑑Ω(𝑟)

𝑑𝑟
=
𝑑

𝑑𝑟
𝐻𝑚(𝑟)𝒜

𝑇 

= [0  1  2𝑟 …   𝑚𝑟𝑚−1]𝒜𝑇 

= [1  𝑟  𝑟2  …  𝑟𝑚]

[
 
 
 
 
0
0
⋮
0
0

  

1
0
⋮
0
0

  

0
2
⋮
0
0

  

0
0
⋱
0
0

 

0
0
⋮
𝑚
0

 

]
 
 
 
 

 𝒜𝑇 

 

  = 𝐻𝑚(𝑟)Λ𝒜
𝑇                                                12  

Where 

Λ =

[
 
 
 
 
0 1 0   ⋯ 0
0 0 2   ⋯ 0
⋮ ⋮   ⋮   ⋱   ⋮
 0 0 0   0 𝑚
0 0 0   0 0 ]

 
 
 
 

 

Hence 

𝑥′(𝑟) = 𝐻𝑚(𝑟)(Λ)
𝑛𝒜𝑇𝐶′                                13  

 

 

Eq 13 can be generalised as 

 

𝑥(𝑛)(𝑟) =
𝑑𝑛

𝑑𝑟𝑛
𝐻𝑚(𝑟)(Λ)

𝑛𝒜𝑇𝐶′ , 𝑛 = 1,2, … 

 

Applications of the Operational Matrix of 

Derivative 
     The following is the derivation of the Wang-

Ball Polynomials method for solving differential 

equations of the form Eq 1   

𝜀𝐻𝑚(𝑟)(Λ)
2𝒜𝐶′ + 𝑝(𝑟)𝐻𝑚(𝑟)Λ𝒜𝐶

′ +
𝑞(𝑟)𝐻𝑚(𝑟)Λ𝒜𝐶

′ = 𝑓(𝑟)                                       14                                          

First Eq 14 is collocated at (𝑚 − 1) points. For 

suitable points, the following 𝑟𝑖 =
1

2
(cos (

𝑖𝜋

𝑁
) +

1) , 𝑖 = 1,2, … ,𝑁 is used. Then Eq 14 can be written 

as a system of equation 

 

(𝜀𝐻𝑚(𝑟𝑖)(Λ)
2𝒜 + 𝑝(𝑟𝑖)𝐻𝑚(𝑟𝑖)Λ𝒜
+ 𝑞(𝑟𝑖)𝐻𝑚(𝑟𝑖)Λ𝒜)𝐶

′ = 𝑓(𝑟𝑖) 
or in matrix form  

(𝜀𝐻(Λ)2𝒜 + 𝑃𝐻Λ𝒜 +𝑄𝐻𝒜)𝐶′ = 𝐹            15  

Where 

https://dx.doi.org/10.21123/bsj.2023.6409
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ℇ = [

𝜀 0   0 0
0 𝜀   0 0
⋮  ⋮     ⋱ ⋮
0 0   0 𝜀

] , 𝑃

= [

𝑝(𝑟0)
0

⋮

0

    

0
𝑝(𝑟1)
⋮

0

    

0
0
⋱

0

    

0
0
⋮

𝑝(𝑟𝑁)

] , 𝐹

= [

𝑓(𝑟1)

𝑓(𝑟2)
⋮

𝑓(𝑟𝑁)

] 

𝑄 = [

𝑞(𝑟0)
0

⋮

0

    

0
𝑞(𝑟1)
⋮

0

    

0
0
⋱

0

    

0
0
⋮

𝑞(𝑟𝑁)

]   and  𝐻 =

[

𝐻(𝑟1)

𝐻(𝑟2)
⋮

𝐻(𝑟𝑁)

] =

[
 
 
 1
1

⋮

1

    

𝑟0
𝑟1
⋮

𝑟𝑁

    

⋯

…

⋯

⋯

    

𝑟0
𝑁

𝑟1
𝑁

⋮

𝑟𝑁
𝑁]
 
 
 

 

 Eq.15 can be written as  

𝑆𝐶′ = 𝐹     or      [𝑆; 𝐹] ,                              16  

where  𝑆 = [𝑆𝑖,𝑗] = ℇ𝐻(Λ)
2𝒜 +𝑃𝐻Λ𝒜 +

𝑄𝐻𝒜 , 𝑖 = 0,1,… ,𝑁 − 2 and  𝑗 = 0,1,… ,𝑁 . 

The boundary conditions in Eq 1 in matrix form as 

𝐻𝑚(0)Λ𝒜 = [𝛼1]  and 𝐻𝑚(𝑏)Λ𝒜 = [𝛼2] that is 
[1 0    ⋯ 0]Λ𝒜 = [𝛼1] and 
[1 𝑏    ⋯ 𝑏𝑁]Λ𝒜 = [𝛼2], Then the last two rows 

of [𝑆; 𝐹] are replaced by boundary conditions. Then 

Eq 16 becomes as 

 

  [𝑆̃; 𝐹̃] =

[
 
 
 
 
 
𝑠0,0
𝑠1,0
⋮

𝑠𝑁−2,0
1
1

      

𝑠0,1
𝑠1,1
⋮

𝑠𝑁−2,1
0
𝑏

      

𝑠0,2
𝑠1,2
⋮

𝑠𝑁−2,2
0
𝑏2

      

⋯
⋯
⋱
⋯
⋯
⋯

       

𝑠0,𝑁
𝑠1,𝑁
⋮

𝑠𝑁−2,𝑁
0
𝑏𝑁

      

;
;
;
;
;
;

      

𝑓(𝑟0)

𝑓(𝑟1)
⋮

𝑓(𝑟𝑁)
𝛼1
𝛼2

 

]
 
 
 
 
 

                          

17  

                           

If rank 𝑆̃ = 𝑟𝑎𝑛𝑘[𝑆̃; 𝐹̃] = 𝑁 + 1; therefore, the 

coefficient matrix 𝐶′  can be easily computed as  

𝐶′ = 𝑆̃−1 𝐹̃ . 

Thus, by substituting the coefficient matrix 𝐶′ into 

Eq 11, the approximate solution can be obtained as 

𝑥𝑁(𝑟) =∑𝑐𝑙
′ 𝑊𝑖

𝑚(𝑟)

𝑁

𝑙=0

 . 

These equations generate (𝑚 + 1) non-linear 

equations, which can be handled by employing the 

Newton's iteration method. As a result, 𝑥(𝑟) it can be 

calculated. 

 
Error analysis and estimation of the absolute 

error 

The error analysis of the approach utilized is 

described in this section. The problem will be given 

a residual correction approach that can estimate the 

absolute inaccuracy. 

Let 𝑥𝑁(𝑟) and 𝑥(𝑟) be the approximate solution and 

the exact solution of Eq 1, respectively. In the 

process below, for the estimation of the absolute 

error, the residual correction could be assigned 18.  

First, the following results are obtained by removing 

the term from both sides of Eq 1. 

ℜ = 𝜀𝑥𝑁
" (𝑟) + 𝑝1(𝑟)𝑥𝑁

′ (𝑟) + 𝑝2(𝑟)𝑥𝑁(𝑟) − 𝑓(𝑟), 

to (1) yield the following differential equation 

𝜀𝑒𝑁
" (𝑟) + 𝑝1(𝑟)𝑒𝑁

′ (𝑟) + 𝑝2(𝑟)𝑒𝑁(𝑟) = 𝑓(𝑟) − ℜ                                                 

18  

with the homogenous  BCs 

𝑥(0) = 0, 𝑥(1) = 0                                                    19  

Where    𝑒𝑁 = 𝑥(𝑟) − 𝑥𝑁(𝑟) 

For some choices of 𝑀 ≥ 𝑁, applying the proposed 

approach to problems 18 and 19 yields an 

approximate solution, which will be donated by 𝐸𝑁,𝑀
∗  

.The actual error function 𝑒𝑁(𝑟) is estimated in this 

approximation solution. This estimate can be used to 

generate a new approximate solution, keeping in 

mind that 𝑥𝑒𝑥𝑎𝑐𝑡(𝑟) = 𝑥𝑁(𝑟) + 𝑒𝑁(𝑟). This estimate 

can be utilized to compute another fresh approximate 

solution 

𝑥𝑀,𝑁(𝑟) = 𝑥𝑁(𝑟) + 𝐸𝑁,𝑀
∗  

of the problem  1. The error of this new solution 

𝑥𝑁,𝑀(𝑟), called the corrected solution, is directly 

related to the accuracy of the error estimate 𝐸𝑁,𝑀
∗ (𝑟). 

Specifically, if the error of  𝑥𝑁,𝑀(𝑟)  has been 

denoted by 𝐸𝑁,𝑀
𝜀 (𝑟), it is true that 

𝐸𝑁,𝑀
𝜀 (𝑟) = 𝑥𝑒𝑥𝑎𝑐𝑡(𝑟) − 𝑥𝑁,𝑀(𝑟)

= 𝐸𝑁(𝑟) − 𝐸𝑁,𝑀(𝑟) 

As a result, the precision of the error estimate 

𝐸𝑁,𝑀(𝑟) is directly related to the success of residual 

correction. In the examples problems that will be 

https://dx.doi.org/10.21123/bsj.2023.6409


 

Page | 2525  

2023, 20(6 Suppl.): 2521-2531 

https://dx.doi.org/10.21123/bsj.2023.6409   

P-ISSN: 2078-8665 - E-ISSN: 2411-7986 
 

Baghdad Science Journal 

presented in the following part, this scenario will 

become evident. 

Error bound for the solution 

In this part, the error bound for the approximate 

solution 𝑥𝑁(𝑟) is related to the truncation error of 

the Taylor polynomial corresponding to the exact 

solution. 

Theorem 

Let
 
𝑥𝑁(𝑟) and 𝑥(𝑟) denote the approximate and the 

exact solutions of problem 1, respectively. If 

 𝑥(𝑟) ∈ 𝐶𝑁+1[0, 𝑏] , then 

|𝑥(𝑟) − 𝑥𝑁(𝑟)| ≤ |𝑅𝑁
𝑇(𝑟)| + |𝑥𝑁

𝑇(𝑟) −

𝑥𝑁(𝑟)|

Where 𝑥𝑁
𝑇(𝑟) denotes the 𝑁𝑡ℎdegree Taylor 

polynomial of
 
𝑥(𝑟) around the points

 
𝑟 = 𝑞 ∈

[0, 𝑏] and 𝑅𝑁
𝑇(𝑟) represents its reminder term. 

Proof Since 𝑥(𝑟) is (𝑁 + 1)-times continuously 

differentiable, i t  can be represented by its Taylor 

series as 

𝑥(𝑟) =∑
(𝑟 − 𝑞)𝑘

𝑘!
𝑥𝑘(𝑞)+ 𝑅𝑁

𝑇 (𝑟) ,

𝑁

𝑘=0

 

where 

𝑅𝑁
𝑇 (𝑟) =

(𝑟 − 𝑞)𝑁+1

(𝑁+ 1)!
𝑥𝑁+1(𝑑𝑟), 0 < 𝑟 ≤ 𝑏 

is the remaining term of the Taylor expansion 𝑥(𝑟). 

Thus, 𝑥(𝑟) − 𝑥𝑁
𝑇(𝑟) = 𝑅𝑁

𝑇(𝑟) by using this and the 

triangle inequality, the following result might be 

obtained   

|𝑥(𝑟) − 𝑥𝑁(𝑟)|

= |𝑥(𝑟) − 𝑥𝑁(𝑟) + 𝑥𝑁
𝑇(𝑟)

− 𝑥𝑁
𝑇(𝑟)| 

  ≤ |𝑥(𝑟) − 𝑥𝑁
𝑇(𝑟)| + |𝑥𝑁

𝑇(𝑟) − 𝑥𝑁(𝑟)| 

                         = |𝑅𝑁
𝑇(𝑟, 𝑞)| + |𝑥𝑁

𝑇(𝑟) − 𝑥𝑁(𝑟)| . 

Therefore, an upper bound of the absolute error 

based on the Taylor truncation error of the exact 

solution is found. Note that this is not an a priori error 

bound; it only works as a means to compare the 

actual error to this Taylor truncation error. 

 

Results and Discussion

Problem 1 

Consider the first-order ODE with constant 

coefficients 4 

𝜀𝑥"(𝑟)+ 𝑥(𝑟) = 0                                              21 

with BCS  

𝑥(0) = 0, 𝑥(1) = 1                                             22 

Which has the exact solution is 

𝑥𝑒𝑥𝑠𝑎𝑐𝑡(𝑟) =
sin(𝑟 √𝜀⁄ )

sin(1 √𝜀⁄ )
                                         23 

The problem is solved using different values of N , 

and 𝜀 as shown in Table 1. The comparison between 

the current method with the method reported by 

Yüzbaşı et al.4 is in Table 2. As illustrated in Table 2 

when higher values of N (12 and 14) are used, the 

absolute error for problem 1 shows better results for 

the present method compared to Yüzbaşı et al.4   

Table 1. The max absolute error for problem 1. 

ε N=5 N=7 N=9 N=11 N=13 N=15 

2-2     2.03E-4     6.90E-7     1.75E-9     3.17E-12     4.44E-15    8.88E-16 

2-4      1.28E-2     2.13E-4     2.22E-6     1.61E-8     8.60E-11    3.53E-13 

2-6     4.00E-1     3.85E-2     1.33E-3     3.56E-5     7.59E-7    1.26E-8 
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Table 2. Comparison of the max absolute error between the proposed methods with ref 4 for problem 1 

at N=10, 12, 14. 

ε 
Yüzbaşı and Karaçayır 4 Present method 

N=10 N=12 N=14 N=10 N=12 N=14 

2-2 0.4937E-12 0.4076E-13 0.1138E-12 0.4936E-12 0.4638E-15 0.8882E-17 

2-4 0.9168E-9 0.5626E-11 0.3041E-11 0.9179E-9 0.5665E-11 0.2633E-13 

2-6 0.1870E-5 0.4735E-7 0.1564E-7 0.1871E-5 0.4657E-7 0.8771E-9 

 

The exact solution and the absolute solution 

of different values of  𝑁 and 𝜀 are displayed in Fig 1 

(a and b). In contrast, the absolute error for various 

values of 𝑁 and 𝜀 is illustrated in Fig 1(c and d). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 1. The approximate solution when 𝑵 = 𝟕, 𝟗, 𝟏𝟏 at 𝜺 = 𝟐−𝟐 and the exact solution, while (b) is the 

exact solution together with the approximate solution for, how 𝑵 = 𝟓, 𝟕, 𝟗, 𝟏𝟏  and 𝟏𝟓  when  𝜺 = 𝟐−𝟐, 

(c) and (d) are the corrected absolute error when 𝑵 = 𝟏𝟓  with 𝜺 = 𝟐−𝟒  and 𝑵 = 𝟏𝟏 for 𝜺 = 𝟐−𝟐 

 

Problem 2.  

Consider the second-order nonhomogeneous 

equation 4, 15 

−𝜀𝑥"(𝑟) +
1

𝑟+1
𝑥′(𝑟) +

1

𝑟+1
𝑥(𝑟) = 𝑓(𝑟) ,           24  

subject to BCs 

𝑥(0) = 1 + 2−
1

𝜀  , 𝑥(1) = 2 + 𝑒                           25  

Where 

𝑓(𝑟) = (
1

𝑟+1
+

1

𝑟+2
− 𝜀)𝑒𝑟 +

2
−
1
𝜀(𝑟+1)

1+
1
𝜀

𝑟+2
, this 

problem has the exact solution given by 

 

https://dx.doi.org/10.21123/bsj.2023.6409


 

Page | 2527  

2023, 20(6 Suppl.): 2521-2531 

https://dx.doi.org/10.21123/bsj.2023.6409   

P-ISSN: 2078-8665 - E-ISSN: 2411-7986 
 

Baghdad Science Journal 

𝑥(𝑟) = 𝑒𝑟 + 2−
1

𝜀(𝑟 + 1)1+
1

𝜀 . 

 Table 3 shows the absolute error for the 

proposed technique compared to the published 

methods in refs 4 and 15 for various values of 𝑁. 

Clearly, in Table 3. It can be seen that Yüzbaşı et al. 
4 reported better results for the absolute error at 

values of 𝑁 (8 and 10) compared to results reported 

by Lin 10.  In addition, the proposed method gave 

better results of the absolute error for the same 𝑁 

values. On the other hand, Table 4 shows the actual 

and estimated absolute error for the suggested 

method. For various 𝑁 and 𝑀 values, better results 

of the estimated absolute errors were obtained 

compared to the actual absolute errors of the problem 

2.  

Table 3. The comparison max absolute error for ref  4, 15 with the suggested method for problem 2.  

ε 
Referance10 Referance4 Present method 

N=8 N=10 N=8 N=10 N=8 N=10 

2-2 1.139E-8 1.824E-11 1.237E-10 1.210E-13 8.58E-11 8.53E-14 

2-3 7.610E-6 1.434E-11 1.052E-7 1.323E-13 7.78E-8 6.33E-14 

2-4 9.630E-3 4.495E-4 3.135E-4 3.455E-6 2.34E-4 2.91E-6 

2-5 1.615E-1 5.235E-2 1.992E-2 1.566E-3 1.32E-2 1.24E-3 

2-6 5.301E-1 3.410E-1 2.281E-1 5.465E-2 1.10E-1 3.34E-2 

2-7 9.404E-1 7.571E-1 1.003E-0 4.390E-1 4.80E-1 1.89E-1 

 

Table 4. Actual absolute errors and Estimated absolute errors for problem 2 with N=6, 9, 12 and M=7, 

10, 13 at different values of  . 

ε 
Actual absolute errors Estimated absolute errors 

Eε6 Eε9 Eε12 Eε 6,7 Eε 9,10  Eε 12,13  

2-2 0.104E-8 0.211E-13 0.113E-14 0.324E-10 0.447E-15 0.888E-17 

2-3 0.119E-5 0.223E-13 0.677E-15 0.449E-7 0.486E-15 0.666E-17 

2-4 0.858E-4 0.293E-6 0.137E-9 0.159E-4 0.291E-7 0.627E-11 

2-5 0.850E-3 0.429E-4 0.723E-6 0.363E-3 0.124E-4 0.148E-6 

2-6 0.381E-2 0.634E-3 0.758E-4 0.196E-2 0.334E-3 0.325E-4 

2-7 0.115E-1 0.296E-2 0.852E-3 0.670E-2 0.189E-2 0.566E-3 

 

Problem 3. 

Thirdly, consider the singularly perturbed two-point 

boundary value problem19, 20 

−𝜀𝑥"(𝑟) + 𝑥(𝑟) = −cos2(𝜋𝑟) − 2𝜀𝜋2 cos(2𝜋𝑟) ,                                                            
26 

with BCs    

𝑥(0) = 𝑥(1) = 0                                             27 

The exact solution is given by 

𝑥(𝑟) =

exp (−
1 − 𝑟

√𝜀
) + exp (−

𝑟

√𝜀
)

1 + exp (−
1

√𝜀
)

−cos2(𝜋𝑟) 

Fig. 2a displays the exact and approximate 

solutions for various values of 𝑁 and 𝜀 = 16, 

whereas Fig 2d shows the approximate solution for 

various values of. However, for problem 3, Fig 2 (b 

and c) shows the absolute error for a variety of 𝑁 and 

𝜀 = 16 values. 

In Table 5, it is easy to see that there were 

slit differences in the findings of Aziz and Khan 19,20 

when quintic spline and a spline method were used 

for larger N values. However, by applying the 

present method for lower values of (N, M) = (12, 15), 

(14, 17), the max absolute error results are better 

compared to the findings of Aziz and Khan 19,20.  
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Table 5. Comparison of the max absolute error for our method with reported work 19, 20 for problem 3 

ε 
Reference 19 Reference 20 Present method 

N=128 N=256 N=128 N=256 N=12 N=12,M=15 N=14 N=14,M=17 

1/16 0.330E-10 0.205E-11 0.988E-10 0.6172E-11 0.151E-11 0.125E-15 0.161E-15 0.945E-18 

1/32 0.162E-10 0.100E-11 0.484E-10 0.3032E-11 0.137E-11 0.131E-15 0.161E-15 0.945E-18 

1/64 0.439E-10 0.278E-11 0.134E-9 0.8397E-11 0.316E-11 0.732E-15 0.907E-15 0.672E-13 

1/128 0.145E-9 0.944E-11 0.481E-9 0.3011E-10 0.136E-7 0.368E-11 0.453E-11 0.913E-15 

 

 
(a) 

 
(b) 

 
(c) 

 

 
(d) 

Figure 2. (a) The exact solution and the approximate solution when 𝑵 = 𝟕, 𝟗, 𝟏𝟐, 𝟏𝟒, 𝟏𝟓 and 𝜺 = 𝟏𝟔, (b) 

The absolute error were 𝑵 = 𝟏𝟓 and  𝜺 = 𝟏𝟔 (c) The absolute error where 𝑵 = 𝟏𝟐 and 𝑵 = 𝟏𝟑,  and 

(d) The approximate solutions for different values of 𝜺 . 

 

Problem 4. 

Consider a singular perturbation two-point boundary 

value problem is 19 

−𝜀𝑥"(𝑟) + 4𝑥(𝑟) = 4 + 2√𝜀 (𝑒
−
𝑟

√𝜀 + 𝑒
𝑟−1

√𝜀 ) −

3(1 − 𝑟)𝑒
−
𝑟

√𝜀 − 3𝑟 (𝑒
𝑟−1

√𝜀 ) ,                                 28  
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Subject to BCs 

𝑥(0) = 𝑥(1) = 0. 

The exact solution is  

𝑥(𝑟) = 1 − (1 − 𝑟)𝑒
−
𝑟

√𝜀 − 𝑟 (𝑒
𝑟−1

√𝜀 )  . 

Table 6 displays the absolute error and the 

correct absolute error for different values of M, N, 

and 𝜀 when the present Wang-Ball method was 

applied. Also, table 7 gives the values of the absolute 

error and the correct absolute error for different 

values of M, N, and 𝜀 for the suggested method 

against the one reported by Aziz and Khan19. The 

results show that in spite of the lower values of N 

Wang –Ball method gives better result comparing to 

Aziz and Khan19 method.   

 

Table 6. Maximum absolute errors, problem 4 present method. 

ε N=16 N=16,M=19 N=16,M=22 N=15 N=15,M=20 N=15,M=22 

2-1 2.90E-12 8.88E-16 1.23E-15 1.61E-12 1.11E-15 1.01E-15 

2-2 3.48E-12 1.89E-15 1.84E-15 1.85E-12 1.55E-15 2.04E-15 

2-3 4.31E-12 2.23E-9 2.12E-15 2.08E-12 2.89E-15 1.03E-15 

2-4 5.55E-12 6.88E-15 5.78E-15 2.43E-12 2.70E-8 4.98E-15 

2-5 7.22E-12 3.48E-8 3.16E-14 2.31E-11 3.03E-14 1.97E-14 

2-6 2.72E-11 4.37E-13 3.55E-13 1.54E-9 5.65E-7 2.84E-13 

2-7 2.25E-9 4.30E-11 6.82E-12 7.24E-8 5.02E-12 5.91E-12 

 

Table 7. Comparison of the max absolute error for problem 4 with ref 19 

ε 
Reference 19 Present Method 

N=32 N=64 N=128 N=256 N=15 N=17, M=22 

2-4 0.657E-09 0.438E-10 0.279E-11 0.175E-12 0.39146E-14 0.52535E-16 

2-5 0.182E-08 0.130E-09 0.854E-11 0.540E-12 0.56366E-14 0.30243E-15 

2-6 0.535E-08 0.420E-09 0.283E-10 0.182E-11 0.21544E-12 0.18119E-14 

2-7 0.299E-07 0.135E-08 0.977E-10 0.637E-11 0.19633E-10 0.77307E-13 

 

Conclusion 

The subject of this article is the numerical solution of 

singularly perturbed second-order differential 

equations with boundary conditions. The Wang-Ball 

operational matrix, which was developed to 

generalize the ordinary Ball polynomial, is the 

method presented. The novel approach converts the 

(SPSODEs) into a set of linear and non-linear 

algebraic equations with respect to the DE's property 

for each numerical issue considered. Therefore, the 

DEs are easier to solve while still yielding precise 

results. The Wang-Ball operational matrix has shown 

impressive performance when compared to current 

literature, in addition to recovering the exact solution 

of specific DEs. Consequently, the method provided 

in this article may be used to solve any real-life 

scenario model in the form of either first or second-

order DEs. 
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 اضطراب مفرد تتضمنمخطط رقمي لحل مسائل القيمة الحدية التي 

  2 سالم فرج بامسعود، 1 أحمد خرد ،1 العيدروسالقادر  حسين عبد

 .كلية علوم الحاسبات و الهندسة، جامعة الاحقاف، المكلا، اليمن 1
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 ةالخلاص

المعادلات التفاضلية الشاذه المضطربة من الدرجة بول متعددة الحدود في هذه الدراسة لحل -نستخدم المصفوفات العملياتية لمشتقات وانج

بول، يمكن تحويل مشكلة الاضطراب الرئيسية الشاذ -( ذات الشروط الحدية. باستخدام مصفوفة كثيرات حدود وانجWPSODEsالثانية )

ام المعادلات المذكور. وتم إلى أنظمة معادلات جبرية خطية. كما يمكن الحصول على معاملات الحل التقريبي المطلوبة عن طريق حل نظ

 استخدام أسلوب الخطاء المتبقي أيضًا لتحسين الخطأ، كما تمت مقارنة النتائج بالطرق المنشورة في عدد من المقالات العلمية. استخُدِمت

ج عن طريق تقليل ين النتائالعديد من الأمثلة لتوضيح موثوقية وفائدة مصفوفات وانج بول العملياتية. طريقة وانج بول لديها القدرة على تحس

بول فائدتها في حل أي نموذج واقعي كمعادلات تفاضلية من الدرجة الأولى -درجة الخطأ بين الحلول التقريبية والدقيقة. أظهرت سلسلة وانج

 أو الثانية
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