Open Access Baghdad Science Journal P-1SSN: 2078-8665
Published Online First: July 2022 2023, 20(1): 166-174 E-1SSN: 2411-7986

DOI: https://dx.doi.org/10.21123/bsj.2022.6541

Efficient Approach for Solving (2+1) D- Differential Equations

Noor A. Hussein® Luma N. M. Tawfig®*

"Department of Mathematics, College of Education, University of Al-Qadisiyah,Al-Diwaniyah , Iraq

2Department of Mathematics, College of Education for Pure Science Ibn Al-Haitham, University of Baghdad, Iraq
*Corresponding author: luma.n.m@ihcoedu.uobaghdad.edu.ig

E-mail addresses: noor.alli@qu.edu.iq

Received 9/9/2021, Revised 26/2/2022, Accepted 28/2/2022, Published Online First 20/7/2022,
Published 1/2/2023

- This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract:

In this article, a new efficient approach is presented to solve a type of partial differential equations, such
(2+1)-dimensional differential equations non-linear, and nonhomogeneous. The procedure of the new
approach is suggested to solve important types of differential equations and get accurate analytic solutions
i.e., exact solutions. The effectiveness of the suggested approach based on its properties compared with other
approaches has been used to solve this type of differential equations such as the Adomain decomposition
method, homotopy perturbation method, homotopy analysis method, and variation iteration method. The
advantage of the present method has been illustrated by some examples.

Keywords: Boussinesq equations, Cubic Klein-Gordon equations, Decomposition method, (2+1)-
dimensional PDEs, Kadomtsev-Petviashvili equation.

Introduction:

Differential equations especially partial kuznetsov (ZK) equation for nonlinear Rossby
differential equations (PDESs) play an important role  solitary waves in barotropic fluids®. In recent years,
in everyday life, they have become a part of modern ~ numerous scholars have obtained higher-
life 1. Therefore, it has become necessary to have dimensional PDEs for Rossby solitary waves to
many and varied ways to solve such equations, explain the wave phenomenon in large-scale
which in turn solve life problems associated with atmospheres and oceans. Yang et al ° obtained three
them 2. —dimensional ZK-Burgers equation in barotropic

They are used to describe many life models  fluids. Zhang et al ° derived (2+1)-dimensional
such as exponential growth, population growth of  generalized fZK equation and ZK equation with
species or the change in investment return over  complete Coriolis force. Yin et al'! obtained two-
time3, cooling and heating problems, bank interest, dimensional nonlinear Rossby waves with the
radioactive decay problems even flow problems in dissipation and external source under complete
solving continuous compound interest problems, Coriolis force effects and discussed the effects of
orthogonal trajectories * and also involving fluid  these factors on the Rossby waves fluctuations.
mechanics problems, population or conservation Many methods for solving (2+1)D- PDEs
biology S, circuit design, heat transfer, seismic  such as variable separation approach *2, hyperbola

waves °. They are used in specific fields such as, in - fnction method 2, expanded (G/GZ) expansion
the field of medicine, where modeling cancer method “, extended F-expansion method %, and
growth or the spread of disease may be described as complex method * 7, a Darboux Transformation 1

differential equations 7. X .
d 19 In this paper, the researchers will use a stunner

The (1+1)-dimensional PDEs is applied to o . . .
simulate the propagation of waves in a line. Actual method_to so_lve partial dlffere_ntl_al equations with
propag (2+1)-dimension and obtain distinct and accurate

atmospheric and oceanic motions do not occur on . ) .
lines but planes. Accordingly, it is necessary to analytical results. The next section explains the
study higher-dimensional PDEs to describe the Steps ofthe proposed method.

This paper has been arranged as follows: In

ropagation of Rossby solitary waves. Gottwald . S
?irs'? %erived the (21/1) dim);,nsional Zakharov section 2, the basic ideas of the suggested method
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will be given. In section 3, solving some examples
of (2+1)D, such as cubic Klein-Gordon equation,
Kadomtsev-Petviashvili equation, and Boussinesq
equations by using the suggested method will be
given. The convergence of the suggested techniques
will be illustrated in section 4. Finally, the
conclusion is given in section 5.
Suggested Method
Consider the (2+1) D-PDE as follows
L(u(x,y,t)) + R(u(x,y,t)) +
N(u(x,y,t)) = g(x,y,t) 1

k
With initial conditions: ~ ZMEXO|
at t=0
filx,y), k=01,..,n—1 .2
Where  L(. ) = aat(n) ,nm=123,. s a
linear operator of the partial derivation with respect
to t,

g(x,y,t) is the nonhomogeneous part, N(.)is a nonlinear teSHP#{tuting Eq. 15 in 14 to get:

is the remainder of the linear term, and x and y are
space independent variables. R(.) and N(.) are free
orders of partial derivation with respect to t.

In the suggested method the unknown
dependent function u(x,y,t) can be construed as
infinite series of the form:

u(x,y, t) = uo(x;}’) + u1(x;}’)t +

o)+ = Sy o) 3
_ la u(x,y,t)
Where  ui(x,y) = P W
4
In the next step calculate the terms u,, (n =
0,1,2 ..).

Rewrite Eq.1 as follow:

L(u(x,y,t)) = —R(u(x,y,t)) —
N(u(x,y, t)) +g(x,y,t) 5

Taking L~ (inverse of the linear operator L)
to both sides of the Eq.5 to get:

L Y(L(U(x,y,0))) = =L [R(U) +

NW] + L [g(x, y, )] 6
n—1tk aku(xy,t)
u(x,y,t) = SRZb = o
—L7'[R(w) + Nw)] + L™ [g(x, y,t)] 7

From Eg.2 , obtain that:

u(xy,t) = Xi=p t*fe (e, y) — L7
N@)] + L Yg(x,y,0)]

Now substitute Eq.3 in EQ.8, to get:

LM RW) = L7 (R(Tio wie(x 9)tF) ) =

o k!
Yk=o R(uk(x,4)) ! gtk 9

In Eq.8 the nonlinear part N (u), can be
written as follows:

[R(uw) +
8

N(u) = X7 N t® ) 10
Such that Ny =
lakN(u(x,y,t))
k! otk =0
11
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Thus
LN (W) = L i Net"] =
ZZO=0 NkL_l(tk) = ZIOCO=O Nk (n+.k)! tn+k 12
Also, the nonhomogeneous term will be
written as:
_ o tk
GOy ) =L gl 9] = Eizo iy - 13
Where
_ 1 %G (x,y,t)
9k = o otk =0 14
Substituting Eg. 9, 12, and 13 in Eg. 8 to
have:
u(x'yrt)z k Ok,fk(xJ’)_
Lic=o R (ux (x, %))W L —
X! tk
Zk 0 k (n+?€)' n+k + Zk ng k! 15
1 dJu(xy,t)
uj(X,y) j'T r—o
1 0J _ tk
ﬁﬁ[ k=0 e y) 4 —
. k!
D= om( (ue(x,y)) + Nt  +
Seagt™] . vz 16
then ﬁ[ 3 e y) k|] = 0 and
0 K<j
aJ o) o
atl " K- K>
- t =]
Thus Eg. 16 becomes:
uj(x' }’) =
l[—zw ; k—!(R(u (x, ) +
! k=j=1 (n+k)! KXY
(n+k)! n+¥x—j ) k! k—j
k) Gk ¢ + Zi=o 9k Tk ]t=0
17
1 - n)
uj(xy)=ﬁ[ (R(Jn)"' —n)+
g; 5 tk] 18
' Hence u;(x,y) = g; —
C (R(tjn (e )) + Nin), 2
19
Finally, substitute Eq. 19 in 3 to get
u(x,y,t).

Convergence Analysis for Series Solution

The analysis of convergence for the series
solution of the (2+1) D-PDEs is discussed. The
sufficient requirement for convergence of the
suggested approach is addressed. That is the series
solution for (2+1) D-PDEs will appear to be close to
the exact solution.



Open Access
Published Online First: July 2022

Baghdad Science Journal
2023, 20(1): 166-174

P-1SSN: 2078-8665
E-ISSN: 2411-7986

Theorem 1. Let A, presented as Uo + ...+ un be an
operator from a Hilbert space H to H. The series
solution

[oe]

u= Z g, (x, y)tk

k=0
is convergent if 3 0<A<1 when||An+1 || <
A||Ax]| (such that |Junt1 ||<A|un|]) ¥n=0,1,....

Theorem 1, is a specific case from the
Banach's fixed point theorem which is a sufficient
condition to study the convergence of the proposed
method.

Theorem 2. If the series solution u=
Yook (x, )tk convergent, then this series will
consider the exact solution of the present non-linear
problem.

Now the following theorem shows the series
solution u = ¥, uk (x, )tk is convergent
Theorem 3 Condition  for
Convergence)

"If y and Y are Banach spaces and X: y —
Y is a contractive nonlinear mapping, that is
Voo €xliw)—Rw)ISyllo—o 0
<y<l1

Then according to Banach's fixed point
theorem, X has a unique fixed point w, consider the
exact solution of the present non-linear problem.

Proof

Assume that the sequence generated by the
suggested method can be written as:

wp = R(Wp_q1), Wp_g = ?:_01 wi,n =

(Sufficient

1,2,3, ...
Suppose that wg € B.(w) whereB,(w) =
{w* eyl 0" —w lI< 7} Then:

i.w, € B-(w)
ii. limw, =w
n—-oo

(i) From the inductive approach, for n =
1, one can get:
Il w; —w =1 R(wp) — V(@) ISyl wo—w
Assume that lwpg —w ISyl wpp —
ol<y?*lw,z—wll

<YV lwps—wl
<y M lwy—wll
As induction hypothesis, then
|l w, —w I=ll R(wp—1) = R(@) ISV | Wy —w
I<y™ll wg—w
Using (i), to get
lw, —w ISyl wg—w ISY"r <r= w,
€ B, (w)

Becauseof 0 <y < 1,50
limy™ =0, lim | w, —w IS lim y"r=0
n—oo

n—oo n—-oo

thatis: limw, = w
n—oo

Theorem's 1, 2 and 3 show that the achieved
solution from the suggested method is convergent to
the exact solution under the given condition, 3
0<A<1, such that |Jun+1 || <A||un]|, Vn=0,1,....
Ilustrative Examples

In this section, some illustrative examples for
solving (2+1) D-PDEs by using the suggested
method are presented.

Examplel

The suggested method is used to solve the
(2+1)-dimensional cubic Klein-Gordon equation.
This equation prescribes many problems in classical
(quantum) mechanics, solitons, and condensed
matter physics. For example, it models the
dislocations in crystals and the motion of rigid
pendula attached to a stretched wire.?°

Consider (2+1) D- cubic Klein-Gordon
equation

Uyy + Uyy — Uy —u + 2u3 =0, with
initial conditions

u(x,y,0) = sech(x +y), us(x,y,0) =
sech(x + y) tanh(x + y)

= Upp = Uyy + Uyy — u + 2u3

Itis clear that L(w) = =5 , R(u) = s +
Uyy —u, (W) =2u?, g(x,y,t) =0

From ICs: uy =sech(x +y), u; =
sech(x + y) tanh(x + y)

So, from Eq. 11, it follows that:

Ny = 2uy® = 2sech®(x +y) ,and N; =
%(2113) = 6u?u; = 6(uy)?uy = 6sech®(x +
y)tanh(x + y)

Also, (ug) = Ugxx + Ugyy — U ,

Upx = —sech(x + y) tanh(x + y)

"Uoxx = Ugyy = —Sech®(x +y) +
sech(x + y) tanh?(x + y)

R(uy) = —2sech3(x + ¢) + 2 sech(x +
y) tanh?(x + ¢) — sech(x + ¢)

Uy, = sech3(x + ¢) — sech(x +
y) tanh?(x + ¢)

Uppx = Uryy = —5sech®(x + y)tanh(x +
) + sech(x + ¢) tanh3(x + ¢)

= R(u,) = —10sech®(x + y)tanh(x +
y) + 2sech(x + y) tanh3(x + y) — sech(x +
y)tanh(x + y)

By Eq. 19,

Uy = —%[R(uo) + Nol

U, = %[—Zsech3 (x +y) + 2sech(x +

y) tanh?(x + ) — sech(x + y) + 2sech3(x + )]
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U, = %[sech(x + y) tanh?(x + y) +
sech(x + y) — sech®(x + y) — sech(x + y)]

U, = i [sech(x + y) tanh?(x + y) —
sech®(x + y)] "(6)

Also, u3 —-= [R(ul) + N; |

Uz = [ 1OSech3 (x + y)tanh(x + y) +

2sech(x + y) tanh3(x + y) — sech(x +
y)tanh(x + y) + 6sech®(x + y)tanh(x + y)]

Uz = l[ 4sech3(x + y)tanh(x + y) +

2sech(x + y) tanh3(x + y) — sech(x +
y)tanh(x + y)] "(9)

Uz = —[ 5sech®(x + y) tanh(x + y) +
sech(x + y) tanh3(x + )]

And so on, thus from Eq. 3, we get

"u(x:y; t) = uo(x'J/) + ul(x'y)t +
u, (x, y)t? +

u(x,y, t) = sech(x + y) + sech(x +
y)tanh(x +y) t + [sech(x + y) tanh?(x + y) —
sech3(x +y)]t? + [ 5sech3(x + y) tanh(x +

y) + sech(x + ) tanh3(x + )]t +
u(x,y,t) = sech(x +y - t) +

[ sech(x +y-— t)] sech(x +y —

2I at?

t)]t T [6t3 sech(x +y — t)]t=0 +

= u(x,y,t) = sech(x + y — t), this is the
exact analytic solution.

Comparing the results presented in this paper
with other results shows that the suggested method
is powerful, efficient, and adequate.

The Riccati—Bernoulli sub-ODE method was
used to construct solitary wave solutions for the
(2+1)-dimensional cubic nonlinear Klein—Gordon
(cKG) equation and obtain a new infinite sequence
of solutions by using a Backlund transformation.
The Riccati-Bernoulli sub-ODE gives infinite
solutions. Indeed, all presented solutions have so
important contributions for the explanation of some
practical physical phenomena and further nonlinear
problems?.

Wang et al.?’ have presented only five
solutions for the cKG equation, using the multi-
function expansion method. Whereas Khan et al. ??
gave eight solutions, using the modified simple
equation (MSE) method. Comparing these results
with the presented result in this paper, one can
deduce that the suggested method gives a unique
exact traveling wave solution. Thus, the suggested
method is more effective in providing an exact
solution than these two methods.

Example 2
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Kadomtsev and Petviashivili in 1970 first
introduced this equation to describe slowly varying
nonlinear waves in a dispersive medium and study
weakly nonlinear dispersive waves in plasmas and
also in the modulation of weakly nonlinear long
water waves which travel nearly in one dimension
that is, nearly in a vertical plane. The solitons are
stable?.

Consider the 4™ order nonlinear (2+1)D-
Kadomtsev-Petviashvili equation

User = 6ULx — 6(Ux)® + Uy + 3uyy =

With IC: u,(x,y,0) = —%csc2 G x+

y)) coth (% x+ y))
It is clear that L(uw) =% , R(w) =

(uxxxx + 3uyy)v (u) = —(6uuy, + 6(ux)2) '

gy, t)=0
= Upp = 6ULUy + 6(Uy)? —

From IC. :

0,

— 3uyy

Uxxxx
g (x,7,0) = — L esc? G x +
y)) coth G x + y)) = up = Lesch? (g x + y))
Ugyy = 5 csch (% (x+ y)) +
G x + y)) coth? G x + y))
Uy = —CSChY (% x + y)) coth (% x +
) = Sesch? (2 0x+ ) coth® (S x+ )
Uoxxxx = 5 CSCh® (l (x+ y)) +
U csch ( x + y)) coth? ( x + y)) +

Ecsch2 (E (x+ y)) coth* (5 x+ y))
from Eq. 11, obtain that:
—Np = 6(uoUoxx + (Uox)?)
Ny=6 [%CSChG G x+ y)) +
%csch4 G (x+ y)) coth? G x+ y))]
~R(ug) = —(Uoxxxx + 3Uoyy)
"R(uy) = —%csch6 G x+ y)) —

L escht G x+ y)) coth? (% x+ y)) -

Uoxx =

1
3 csch?

4
%csch2 G (x+ y)) coth* G x+ y)) —
3

41 3 5 (1
chch (E(X+y))—zcsch (E(X+

y)) coth? (% (x+ y)) "(12)
By Eq. 19

Ui (6,y) = =2 (R(uo(x, 1)) + No)
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U (x,y) = — Sesch G (x + y)) -
G (x + y)) coth? (% (x+ y)) -
Lesch? G x + y)) coth® (% x+ y)) _
S esch G x + y)) ~2esch? G x +
y)) coth? (% (x + y)) +Zeschs (% (x + y)) +
3csch® G (x+ y)) coth? (; (x + y))

U (x,y) = 5 csch® G (x + y)) +

G (x+ y)) coth? G (x+ y)) -
G (x+ y)) coth® (% X+ y)) -

3 csch (; (x+ y)) 2 esch? G x +
) coth® (2 x+ )

g (x,y) = —csch® (% x+ y)) -
2csch? (% (x + y)) coth? (% x + y))

w1 (x,y) = d [2csch? G (x+
) eoth (26c+ )]

uy = 2esch? (2 (e +y) ) coth (S x+ )

Uy, = —csch® G x+ y)) — 2csch? (g x +
) coth? (10x+)

Uiy = descht G x + y)) coth (% x +
y)) + 2¢sch? (; (x + y)) coth? G x + y))

Uy = —265h® (2 0x+ 7)) =
11csch* (; (x + y)) coth? (% x + y)) -
2csch? G (x + y)) coth? (; x + y))

gy = 17CSCHS (; x + y)) coth (; x +
y)) + 26¢sch* G x + y)) coth? (% (x + y)) +

2csch? G (x + y)) coth® (% (x + Y))

11
s csch*

1
—csch*
4

1
5 csch?

—R(uy) = _(ulxxxx + 3ulyy)
—R(uy) = —17csch® G x+

Y)) coth (% (x+ y)) — 26csch? (% (x+
Y)> coth® (% (x + y)) — 2csch? G (x+
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y)) coth® (% (x+ y)) — 12csch* (% (x +
y)) coth (% (x + y)) — 6¢sch? (% (x+

y)) coth3 (% x+ y))

Also, from Eq. 11

Ny = 2 [=6(tityy + (ue)?)] =
—6(UoUyxx + UgUoxx + 2UoxUsx)

—-N, =6 E csch® (% x+ y)) coth (% (x+

y)) + 4csch* (% (x+ y)) coth3 (% (x+ y))]
From Eq. 19; u,,(x,y) =
— % (R(ul(x, y)) + N1)

e = L [4csch® G x + y)) coth (g x +
y)) _ 4esch (g x + y)) coth’ G x+ y)) -
8csch? G x + y)) coth? (; x + y)) -
12¢sch (§ x + y)) coth (% x + y))]

;= 2|~ 16csch? G x+ y)) coth G x +
y)) _ 8csch? (g x + y)) coth? G x+ y))]

Upy = % [—8csch4’ (% (x + y)) coth (% (x +
y)) -8 (csch4 G x+ y)) coth G x+ y)) +
csch? (% (x+ y)) coth3 (% (x+ y)))]

U, = %[élcsch4 (% x+ y)) +

8csch? G (x+ y)) coth? (% (x+ y))]
and so on, from Eq. 3

o

w= ) Gyt

w = Losel? (B ) + 2tesch? (2 +
y)) coth (g x + y)) £ <4csch4 G x + y)) +
8csch? G (x + y)) coth? (% (x + y))) + - "(13)

u= E csch? G x+y- 4t)>] +

t=0
a (1 2 (1
t[a (Ecsch (E(X+y—4t))>] +
t=0
fﬁ 1 hz(l( + —4t)> + -
21 [z \ 265 g\ TY o
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This is the exact solution: u(x,y,t) =
%csch2 G x+y-— 4t))

In= the exp(-®(E))-expansion method with
the aid of Maple has been used to obtain the exact

solutions of the (2+1) Kadomtsev—Petviashvili
equation and get hyperbolic function solutions

Example 3

In this example, we solve the (2+1)-
dimensional Boussinesq equation which contains
the second-order partial derivative uy in addition to
other partial derivatives. This family of nonlinear
equations gained its importance because it appears
in many scientific applications and physical
phenomena 2*. The new family is of the form u,, —
Ugx — Uyy +p(w) =0, where u(x, y, t) is a
function of space x, y and time variable t and the
nonlinear term p(u) = —%(uz)xx—uxxxx , with

ux,y,t) is a sufficiently often differentiable
function. This is called the (2+1)-dimensional
Boussinesq equation. The (2+1)-dimensional
Boussinesq equation was introduced by Boussinesq
to describe the propagation of long waves in
shallow water under gravity propagating in both
directions. The (2+1)-dimensional Boussinesq
equation describes motions of long waves in
shallow water under gravity and in a two-
dimensional nonlinear lattice. This particular form
the (2+1)-dimensional Boussinesq equation is of
special interest because it is completely integrable
and admits inverse scattering formalism. However,
the good Boussinesq equation or the well-posed
equation can be handled in a like manner 2°.
Consider the nonlinear 4" order (2+1) D-

Boussinesq equations

1
Ut — Uxx — Py (uz)xx — Uyy — Uxxxx = 0,
with ICs: u(x,y,0) = 6sech? (% (x + y))
uy(x,y,0) = 24 (\/ii) sech? (\/% (x+
1
y)) tanh (\/_5 (x+ y))
To solve the model equation by the suggested

method firstly should determine:
62
L(u) = TRl R(U) = —Uyy — Uy —
1
U N(u) = _E(uz)xx , g(x: Y t) =0

1
= Upp = Uy T 3 (uz)xx T Uyy + Uyyx
1
From ICs: u, = 6sech? (5 (x + y)),

1

and u; = 24 (ﬁ) sech? (% (x+
y)) tanh (\/% (x + y))

Ugy = Ugy = _lezsechz (% x+
y)) tanh (% x+ y))
Ugxx = —6sech* (TIE (x + y)) +

12sech? (% (x + y)) tanh? (\% (x + y))

Uoyyx = %sech4 (% (x +
y)) tanh (\/% (x+ y)) + 3—; sech* (% (x+
y)) tanh (717 (x + y)) - f/—;sechz (% (x +
y)) tanh3 (% (x + y))

Ugxxxx = 24sech® (% x+ y)) —
132sech?* (\% (x+ y)) tanh? (% (x+ y)) +

24sech? (Tli x+ y)) tanh* (\/_15 x+ y))

—R(up) = Ugxx + Ugyy T Uoxxxx
1 1
—No = (uoz)xx = E(ZUOUOX)X = UgUoxx t

(qu)z i

—N, = —36sech® (\/_15 x+ y)) +
144sech* (Tli x+ y)) tanh? <% x+ y))

u, (x,y) = —%(R(uo(x, ¥)) + No)

"u,(x,y) = %[—12$ech4 (% (x + y)) +
24sech? (% (x + y)) tanh? (717 (x + y)) +
24sech® (\% x+ y)) — 132sech?* (\% (x+
y)) tanh? (% x+ y)) + 24sech? (% x+
y)) tanh* (% (x+ y)) — 36sech® (% x+ y)) +
144sech* (715 x+ y)) tanh? (% x+ y))]

u,(x,y) = %[—24sech4 (\% (x + y)) +
48sech? (% (x+ y)) tanh? (\/ii (x+ y)) ]

Uy = Upy = 12sech? (% x+ y)) —
24sech? (\/—15 x+ y)) tanh? (\/% x+ y))

Uigx = (_%26) sech* (% x+
y)) tanh (% x+ y)) + (j_;) sech? (\/% x+
y)) tanh3 (% x+ y))

171



Open Access
Published Online First: July 2022

Baghdad Science Journal
2023, 20(1): 166-174

P-1SSN: 2078-8665
E-ISSN: 2411-7986

Uppxy = —48sech® (717 (x + y)) +
264sech* (\/% (x + y)) tanh? (% (x + y)) —
48sech? (\/% (x + y)) tanh* (\/% (x + y))

Uy = B—ﬁsech6 (iz (x +
) tanh (L Ge + 7))~ sech? (L (x +
y)) tanh® (%5 Gx + ) + S sech? (5 Gx +
y)) tanh® (% G+ )

Now, should be calculate u;(x, y)

_R(ul) = Uqpx T Uryy + Uinoxx
d[1 1
-N; = ot [5 (uz)xx] =3 (Zuux)x =
a
at [uuyy + (ux)z] = Ullyyp + Uplhyy + 2Up Uy
—N1 = UgUyxx + Usloxx T 2Ugx Uiy

1008
—N; = >

y)) tanh (\/% (x + y)) + 7 2 sech? (% x+
y)) tanh3 (% (x+ y))
-1 (R(u1 (x, y)) + Nl)

( x+

sech® (\/_ x+

u3(x'Y) =

us(x,y) = —<1T925ec

816

+Tsec ( (x +

v) tanh(—(x+ ))—%Sec (5(x+

)
)sanh
)
)tan ( (x+y)) —Sech2<12(x+
)
)
)

=t
Q
:3
/\
ﬁ
>
+
<
—~
~——

y) | tanh® (ﬁ (x + y)) - &\/(;zsech6 (\/% x+

y) | tanh (Jii (x + y)) + L; sech* (% x+

u3(xy)——<%sc ( x+

y)) tanh ( (x+ y)) Tsech2 ( (x+
y)) tanh? (— (x + )) - Tsec ( (x +
y)) tanh ( (x+ y)) - —sech4 ( (x +
)
)

y) ) tanh3 ( (x + y)) Tisechz ( 12 (x +
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1 [ -384 1
us(x,y) =2 < 5 se ch4( = (x+

y)) tanh (% x+ y)) + ﬁsech2 (\/_15 x+

y)) tanh3 (% x+ y)))

and so on, from Eqg. 3

[ee)

u= Z u, (x, y)tk

k=0
— 2(1
u = 6sech <ﬁ(x+y)>+

\2/—;tsech2 (% x+ y)) tanh (% x+ y)) +

e(_ 4L 2(L
2!< 24sech (ﬁ(x+y))+48560h <ﬁ(x+

y)) tanh? ( (x + y))) = (% sech < (x +
y)) tanh( (x+y)> +%sec (\/_E x+
y)) tanh3 (ﬁ x+ y))) +

— 2(L —
u= [6sech (\/E x+y 2t)>]t=0 +

[at (6sech2 ( 12 x+y-— 2t)>)] +

t=0

t? | 92 21
v [mz <6sech ( 7% x+y— Zt)) ]t_o +

© [:t3 <6sech2 ( 12 (x+y-— 2t))>] + -

t=0
u = 6sech? (% (x+y-— Zt)). This is the
exact solution.

The (G'/G)-expansion method is used to solve
example 3, with Maple and getting solutions are in
more general forms 24,

In exp(®(n))-expansion method is applied to
find exact traveling wave solutions to the (2+1)-
dimensional Boussinesq equation with the aid of
Maple %,

Zheng studied the exact traveling wave
solutions of the (2+1)-dimensional Boussinesq
equation by using the (G'/G)-expansion method and
achieved three analytical solutions?.

Ajeel et al 2" were discussed the related
existing theorem.

Conclusion:

In this article, the new effective method for
treating non-linear, (2+1)D — PDEs is implemented.
A new decomposition technique has been
introduced to compute exact analytic solutions for
the non-linear (2+1) D- model equations such as
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(2+1) D- cubic Klein-Gordon equation, (2+1) D-
Kadomtsev-Petviashvili  model equation, and
(2+1)D- Boussinesq equations. Series formulation is
used throughout the entire procedure, which leads to
a series solution being made use within the new
procedure. The method is generally based on the
well selected base functions and produces an exact
solution. Illustrated examples showed that the
proposed method has better accuracy with easy
implementation. Furthermore, the results showed
that when the number of iterations increases, the
series solution becomes closer to the exact value as
well. The suggested method can be used in the
future to solve (3+1)D- PDEs.
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(2+1) 22 93 &lalds Y alas Jad ¢ 58S o gl

2355 taaa 2l ) L o i

Gloall A sl Apuoldl) Arala A il A0S laualy ) andd!
Gloadl ol slang dxala a0l - 4 puall o lall 4y 5l IS gl )l i
:ladal)
(2+1) 2l 13 Alialaall ¥ aleall Jie 4 jadl Abualisll ¥ aleal) (o Caia Jal ¢ 68 gl e a3 diad) 134 8
sdase sy dlealaill Y aleall (e age Caiia Jad a8 23 aaaldl Cglu¥) Gl a) Audlaie je s duilaie pha je 4k
AV )kl A i aal s el e e 7 el gl Aol L gl dall laaad 38y JLlas da e J seaadl Sasill Jes
A S el | s sesed) Jiladll | 68 e sed) ol eI e sl Ay pla Jle Abialiil) c¥aladd) (e Caiall 138 Jad deadiad)
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) 3 A e Al O¥alee Sl 34yl 3uueSHl Klein-Gordon  <¥slas | Boussinesq <¥ales sdalidal) cilalsl)
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