
Open Access     Baghdad Science Journal                                P-ISSN: 2078-8665 

Published Online First: Suppl. November 2022            2022, 19(6): 1623-1635                                              E-ISSN: 2411-7986 

 

3261 

DOI: https://dx.doi.org/10.21123/bsj.2022.2233 

 

An Asymptotic Analysis of the Gradient Remediability Problem for Disturbed 

Distributed Linear Systems 
 

Soraya Rekkab1*   Samir Benhadid 1   Raheam Al-Saphory2  
 

1Department of Mathematics, Faculty of Exact Science, University of Mentouri, Constantine, Algeria. 
2Department of Mathematics, College of Education for Pure Sciences, University of Tikrit, Tikrit, Iraq. 
*Corresponding author: rekkabsoraya@gmail.com  

E-mail addresses:  ihebmaths@yahoo.fr, sahory@tu.edu.iq 

 

Received 10/10/2021, Accepted 2/10/2022, Published Online First 65/11/2026, Published 5/12/2022 

 

 This work is licensed under a Creative Commons Attribution 4.0 International License. 

 

Abstract: 
The goal of this work is demonstrating, through the gradient observation of a 

disturbed distributed parameter systems of type linear (𝐷𝐷𝑃𝐿-systems), the possibility for reducing the 

effect of any disturbances (pollution, radiation, infection, etc.) asymptotically, by a suitable choice of related 

actuators of these systems. Thus, a class of asymptotically gradient remediable system (𝐴𝐺𝑅-system) was 

developed based on finite time gradient remediable system (𝐺𝑅-system). Furthermore, definitions and some 

properties of this concept 𝐴𝐺𝑅-system and asymptotically gradient controllable system (𝐴𝐺𝒞-controllable) 

were stated and studied. More precisely, asymptotically gradient efficient actuators ensuring the weak 

asymptotically gradient compensation system (𝑊𝐴𝐺𝐶-system) of known or unknown disturbances are 

examined. Consequently, under convenient hypothesis, the existence and the uniqueness of the control of type 

optimal, guaranteeing the asymptotically gradient compensation system (𝐴𝐺𝐶-system), are shown and proven. 

Finally, an approach that leads to a Mathematical approximation algorithm is explored. 
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Introduction: 
Driven by environmental, pollution1, radiation 

and infection problems 2- 3, the authors have studied 

the problem with regard to the gradient observation 

of a class of 𝐷𝐷𝑃𝐿-systems considering the 

possibility of lessening or compensating 

asymptotically the effect of any disturbances. Thus, 

the study constitutes a development to the case of 

asymptotic type for the previous investigates to the 

remediability linear  parabolic problem of 

different systems, introduced in the finite time case 4-

7 and asymptotic case 4, 8, 9.  

One can note that studying compensation 

problem with respect to the gradient observation and 

the so-called gradient remediability, is of 

considerable interest 10. Thus, it was shown that there 

exists a system that is not remediable, however may 

be gradient remediable. 
Gradient remediability concept in usual and 

regional case is considered and studied for 𝐷𝑃𝐿-

systems 10-12. Regarding the asymptotic case aspect 
13, the great importance of the asymptotic analysis in 

systems theory 14-15, takes into consideration the 

problem of 𝐴𝐺𝐶-systems and studies a prospective 

extension of the development methods, in addition to 

analyzing the results in finite time. Hereafter, 

through likeness the relationship among the 

remediability and controllability of the gradient 

case has been inspected and studied in a considerable 

time.  

Also, the link among 

remediability and controllability in asymptotic 
 gradient case has been studied and analyzed.  

This paper is structured as follows:   

Section 2, is devoted to the introduction of the 

gradient remediability concepts of type exact and 

weak under convenient hypothesis.  

Section 3 relates to the asymptotic form in 

various cases in connection with suitable actuators 

and sensors. Also, an asymptotically gradient 

efficient actuators enable the guaranteeing an 

asymptotic gradient compensation of weak type is 

presented.  

In section 4, weakly and exactly 
a  asymptotically gradient controllable  system  
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(𝑊𝐸𝐴𝐺𝒞-system) are defined and characterized. 

Then, the link between 𝑊𝐸𝐴𝐺𝒞-system and 

weakly and exactly asymptotically gradient  
remediable system (𝑊𝐸𝐴𝐺𝑅-system) are 

studied and analyzed, and it is shown that 𝐴𝐺𝑅-

system is dependent on the appropriate sensors with 

corresponding actuators.  

While, in section 5, the 𝐴𝐺𝑅-problem through the 

energy of type minimum is examined. 

 In the last section, the control of optimal type, is 

used to obtain a mathematical algorithm approach. 

 

Formulation of the Considered Problem: 
Assume that Ω stands as 

an open and bounded set in 𝐼𝑅𝑛, with a boundary 
of smooth type 𝜕Ω. Considering a class of 𝐷𝐷𝑃𝐿-

system defined by the form: 

(𝑆) {
𝓎 ̇ (𝑡) = 𝒜 𝓎(𝓉) + 𝐵 𝓊 (𝓉) + 𝑓(𝓉)  ; 0 < 𝓉 < 𝑇  

𝓎 (0) = 𝓎0                                                                     
 

where 𝒜 generates a strongly continuous semi-group 

(𝑆(𝓉))
𝑡≥0

; 𝐵 ∈ ℒ(𝑈,𝒳), 𝑢 ∈ 𝐿2(0, 𝑇; 𝑈), 𝑈 is a 

space of Hilbert type is denoted the input space and 

𝒳 = 𝐻0
1( Ω ), the space  of state.  

The system (𝑆) admits a unique solution 𝑦 ∈

𝐶 (0, 𝑇; 𝐻0
1 (Ω)) ∩ 𝐶1(0, 𝑇; 𝐿2(Ω)) given by 13: 

           𝓎(𝓉) = 𝑆(𝓉)𝑦0 + ∫ 𝑆 (𝓉 − 𝑠) 𝐵𝓊 (𝑠) 𝑑𝑠
𝓉

0
+

∫ 𝑆 (𝓉 − 𝑠) 𝑓 (𝑠)𝑑𝑠
𝓉

0
 

The system (𝑆) is augmented by the 

following output (gradient observation) equation:  

(𝒪) 𝑧𝑢,𝑓(𝓉) = 𝐶∇𝓎(𝓉) ; 0 < 𝓉 < 𝑇 

where 𝐶 ∈ ℒ((𝐿2(Ω))
𝑛
, 𝑌), 𝑌 is a Hilbert space 

(gradient observation space) and ∇ is the operator  

defined by: 

∇:𝐻0
1(Ω) → (𝐿2(Ω))

 𝑛
 

𝓎 → ∇𝓎 = (
𝜕𝓎

𝜕𝑥1
,
𝜕𝓎

𝜕𝑥2
, … ,

𝜕𝓎

𝜕𝑥𝑛
) 

while ∇∗ its adjoint operator. Then, the gradient 

observation at the final time 𝑇 is given by: 

𝑧𝑢,𝑓(𝑇) = 𝐶∇𝑆(𝑇)𝓎0 +  𝐶∇𝐻𝑇u + C∇𝐹𝑇𝑓 

where  𝐻𝑇 and 𝐹𝑇 are operators formulated by 

𝐻𝑇: 𝐿
2( 0, 𝑇; 𝑈 ) ⟶  𝒳 

𝓊 ⟶ 𝐻𝑇 𝓊 = ∫ 𝑆(𝑇 − 𝑠) 𝐵𝓊 (𝑠)𝑑𝑠

  𝑇

  0

 

and 

𝐹𝑇: 𝐿
2(0, 𝑇;𝒳) ⟶ 𝒳 

𝑓 ⟶ 𝐹𝑇𝑓 = ∫𝑆(𝑇 − 𝑠)𝑓(𝑠)𝑑𝑠

𝑇

0

 

In the autonomous case, that is to say, 

deprived of disturbance (𝑓 = 0) and control (𝓊 =  0) 

the observation of gradient, 𝑧0,0(. ) = 𝐶∇𝑆(. )𝑦0, is 

then normal. But if the system is disturbed by a term 

𝑓, the gradient observation becomes 

𝑧0,𝑓(𝑇) = 𝐶∇𝑆(𝑇)𝑦0 + C∇𝐹𝑇𝑓 

Generally 𝑧0,𝑓(. ) ≠ 𝐶∇𝑆(. )𝑦0. Then a 

control term 𝐵𝑢 is introduced in order to reduce, in 

finite time, the effect of this disturbance according to 

the gradient observation, such that: For any 𝑓 ∈
𝐿2(0, 𝑇;𝒳), there exists 𝑢 ∈ 𝐿2(0, 𝑇; 𝑈) satisfying 

𝐶∇𝐻𝑇 𝓊 + C∇𝐹𝑇𝑓 = 0 

The next definition 1 characterizes the gradient 

remediable notion of type exactly and weakly in 

finite time as follows: 

Definition 1 10 

1. System (𝑆) augmented by (𝒪), (or (𝑆) +
(𝒪)) is called exactly gradient remediable 

(𝐸𝐺𝑅-system) on [0, 𝑇], if for every 𝑓 ∈
𝐿2(0, 𝑇; 𝑋), there exists a control 𝑢 ∈
𝐿2(0, 𝑇; 𝑈) such that 𝐶𝛻𝐻𝑇𝑢 + 𝐶𝛻𝐹𝑇𝑓 = 0. 

2. (𝑆) + (𝒪) is called weakly gradient 

remediable (𝑊𝐺𝑅-system) on [0, 𝑇], if for 

every  𝑓 ∈ 𝐿2(0, 𝑇;𝒳) and for every 𝜀 > 0, 

there exists a control 𝓊 ∈ 𝐿2(0, 𝑇; 𝑈) such 

that ‖𝐶𝛻𝐻𝑇𝓊 + 𝐶𝛻𝐹𝑇𝑓‖𝑌 < 𝜀. 
Remark 1 

The finite time gradient compensation problem is 

equivalent to: 

For any 𝑓 ∈ 𝐿2(0, 𝑇;𝒳), does there exists a 

control 𝓊 ∈ 𝐿2(0, 𝑇; 𝑈) such that 

∫𝐶𝛻𝑆(𝑇 − 𝑠)𝐵𝓊(𝑠)𝑑𝑠

𝑇

0

+ ∫𝐶𝛻𝑆(𝑇 − 𝑠)𝑓(𝑠)𝑑𝑠

𝑇

0

= 0 

or equivalently 

∫𝐶𝛻𝑆(𝑡)𝐵𝑣(𝑡)𝑑𝑡

𝑇

0

+ ∫𝐶𝛻𝑆(𝑡)𝑔(𝑡)𝑑𝑡

𝑇

0

= 0 

      1 

where 𝑔 (𝑡) = 𝑓 (𝑇 − 𝑡) and  𝑣 (𝑡) = 𝓊 (𝑇 − 𝑡).  
Consequently, the finite time gradient 

remediability of (𝑆) + (𝐸) can be also formulated as 

follows:  

For any 𝑔 ∈ 𝐿2(0, 𝑇;𝒳), there exists a control 𝑣 ∈
𝐿2(0, 𝑇; 𝑈) satisfying Eq.1. 

The characterizations consequences on the 

𝑊𝐸𝐺𝑅-systems and in limited time have been 
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established by Rekkab and Benhadid, and they have 

shown that the remediability concept of type gradient 

is a weaker than controllability of type gradient 10. 

 

Asymptotic Gradient Compensation Problem: 

Formalism statement: 

An asymptotic analysis of the problem is 

given by considering the system: 

(𝑆∞) {
�̇�(𝓉) = 𝒜𝓎(𝓉) + 𝐵 𝓊(𝓉) + 𝑓(𝓉)  ; 𝓉 > 0  

𝓎(0) = 𝓎0                                                           
 

augmented by the output (gradient observation) 

equation: 

(𝒪∞) 𝑧𝑢,𝑓(𝓉) = 𝐶 ∇𝓎(𝓉) ; 𝓉 > 0 

with 𝑓 ∈ 𝐿2(0,+∞;𝒳) and 𝓊 ∈ 𝐿2(0,+∞;𝑈). 
Let us consider the following operators 

𝐻∞: 𝐿
2(0,+∞;𝑈) → 𝒳 

𝓊 → 𝐻∞𝓊 = ∫ 𝑆(𝑠)𝐵𝑢(𝑠)𝑑𝑠

+∞

0

 

and 

𝐹∞: 𝐿
2(0,+∞;𝒳) → 𝒳 

𝑓 → 𝐹∞𝑓 = ∫ 𝑆(𝑠)𝑓(𝑠)𝑑𝑠

+∞

0

 

The asymptotic gradient remediability 

problem was studied to consist an investigation 

regarding the output operator 𝐶, the existence of an 

input one 𝐵 confirming the gradient compensation 

asymptotically of any disturbance, that is : For any 

𝑓 ∈ 𝐿2(0,+∞;𝒳), there exists 𝑢 ∈ 𝐿2(0,+∞;𝑈) 
such that 

𝐶∇𝐻∞𝓊 + C∇𝐹∞𝑓 = 0      2 

Note that the operators 𝐻∞ and 𝐹∞ are not 

generally well defined. They are, if and only if the 

following condition is verified 14:  

∃𝑘 ∈ 𝐿2(0,+∞;ℝ+) such that 

 ‖𝑆(𝓉)‖ ≤ 𝑘(𝓉); ∀𝓉 ≥ 0                           3   

Remark 2 

 If (𝑆(𝓉))
𝑡≥0

 is exponentially stable, that is 

to say, if ∃𝛽 > 0 𝑎𝑛𝑑 ∃𝛼 > 0 such that 

‖𝑆(𝓉)‖ ≤ 𝛽𝑒−𝛼𝑡;  ∀𝓉 ≥ 0 

then Eq.3, is satisfied with 𝑘(𝓉) = 𝛽𝑒−𝛼𝑡 ∈
𝐿2(0,+∞;ℝ+), consequently  𝐻∞ and 𝐹∞ are well 

defined. This hypothesis concern the choice of the 

dynamics 𝒜 of the system through the semi-group 

(𝑆(𝓉))
𝑡≥0

 and also the input operator 𝐵. 

 Actually, this work is concerned with the 

operators 𝐾𝐶
∞ and 𝑅𝐶

∞ which are defined by 

𝐾𝐶
∞: 𝐿2(0,+∞;𝑈) → 𝑌 

𝓊 → 𝐾𝐶
∞ 𝓊 = ∫ 𝐶∇𝑆(𝓉)𝐵 𝓊 (𝓉)𝑑𝑡

+∞

0

 

      and 

 𝑅𝐶
∞: 𝐿2(0,+∞;𝑋) → 𝑌 

𝑓 → 𝑅𝐶
∞𝑓 = ∫ C∇𝑆(𝓉)𝑓(𝓉)𝑑𝑡

+∞

0

 

Then some weaker hypotheses are needed than Eq.3. 

Certainly, it is supposed that ∃ 𝑘 ∈ 𝐿2(0,+∞;  ℝ+) 
satisfied 

‖𝐶∇𝑆(𝓉) ‖ ≤ 𝑘 (𝓉); ∀𝓉 ≥ 0             4 

In this case, 𝐾𝐶
∞ and 𝑅𝐶

∞ are well defined and Eq.2 

becomes: 

𝐾𝐶
∞𝓊 + 𝑅𝐶

∞𝑓 = 0 

Under hypothesis Eq.4, therefore, the 𝑊𝐸𝐴𝐺𝑅-

system can be expressed in the next manner: 

Definition 2 

(i) (𝑆∞) + (𝒪∞) is called 𝐸𝐴𝐺𝑅-system, if 

∀ 𝑓 ∈ 𝐿2(0,+∞;𝒳), there exists a control 

𝑢 ∈ 𝐿2(0,+∞;𝑈) such that 𝐾𝐶
∞𝓊 + 𝑅𝐶

∞𝑓 =
0. 

(ii) (𝑆∞) + (𝒪∞) is called 𝑊𝐴𝐺𝑅-system, if  

∀ 𝑓 ∈ 𝐿2(0,+∞;𝒳) and every 𝜀 > 0 there 

exists a control 𝑢 ∈ 𝐿2(0, +∞;𝑈) such that 

‖𝐾𝐶
∞𝓊 + 𝑅𝐶

∞𝑓‖𝐼𝑅𝑞 < 𝜀. 
 

Let us note that for 𝑇 > 0;  𝑓 ∈ 𝐿2(0,+∞;𝒳) 
and 𝑢 ∈ 𝐿2(0,+∞;𝑈) and under hypothesis Eq.4, it 

follows that: 

𝐾𝐶
∞𝓊 + 𝑅𝐶

∞𝑓 = ∫𝐶𝛻 𝑆 (𝓉) 𝐵 𝓊(𝓉)𝑑𝓉

𝑇

0

+ ∫𝐶𝛻𝑆 (𝓉)𝑓 (𝓉)𝑑𝑡

𝑇

0

+∫ 𝐶∇ 𝑆 (𝓉) 𝐵 𝓊(𝓉)𝑑𝑡

+∞

𝑇

+∫ 𝐶∇ 𝑆 (𝓉) 𝑓(𝓉)𝑑𝑡

+∞

𝑇

 

= ∫𝐶𝛻𝑆(𝓉)𝐵𝓊(𝓉)𝑑𝑡

𝑇

0

+ ∫𝐶𝛻𝑆(𝓉)𝑓(𝓉)𝑑𝑡

𝑇

0

+ [𝜀1(𝑇) + 𝜀2(𝑇)] 

where 𝜀1(𝑇) = ∫ 𝐶∇𝑆(𝑡)𝐵𝓊(𝑡)𝑑𝑡
+∞

𝑇
     and 
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 𝜀2(𝑇) = ∫ 𝐶∇𝑆(𝑡)𝑓(𝑡)𝑑𝑡
+∞

𝑇
, with 

 𝜀1(𝑇) + 𝜀2(𝑇) → 0 when 𝑇 → +∞, then for any 

𝑓 ∈ 𝐿2(0,+∞;𝑋) and 𝓊 ∈ 𝐿2(0,+∞;𝑈), it follows 

that   

lim
𝑇→+∞

(∫𝐶𝛻𝑆(𝓉)𝐵𝓊(𝑡)𝑑𝑡

𝑇

0

+ ∫𝐶𝛻𝑆(𝓉)𝑓(𝑡)𝑑𝑡

𝑇

0

)

= 𝐾𝐶
∞𝓊 + 𝑅𝐶

∞𝑓 

 

Characterization: 

For the following results, let  𝐵∗ and  𝐶∗ be the 

adjoint operators of 𝐵 and 𝐶 respectively and 

(𝑆∗(𝓉))
𝑡≥0

 is considered for the semigroup of 

(𝑆(𝓉))
𝑡≥0

  of type adjoint. Let also 𝒳′, 𝑈′ and 𝑌′ be 

the dual space of 𝒳,𝑈 and 𝑌. Under hypothesis Eq.4, 

the following general characterization results are 

obtained: 

Proposition 1 

The following properties are equivalent  

(i) (𝑆∞) + (𝐸∞) is 𝐸𝐴𝐺𝑅-system. 

(ii) 𝐼𝑚(𝑅𝐶
∞) = 𝐼𝑚(𝐾𝐶

∞). 
(iii) ∃𝛾 > 0 such that  ∀𝜃 ∈ 𝑌′, it 

follows that 

‖𝑆∗(. )𝛻∗𝐶∗𝜃‖𝐿2(0,+∞;𝑋′)
≤ 𝛾‖𝐵∗𝑆∗(. )𝛻∗𝐶∗𝜃‖𝐿2(0,+∞;𝑈′) 

Proof 
(𝑖) ⟺ (𝑖𝑖) Derives from Definition 1. Indeed, it is 

assumed that (𝑆∞) + (𝐸∞) is 𝐸𝐴𝐺𝑅-system.  

Let 𝑦 ∈ 𝐼𝑚(𝑅𝐶
∞), then there exists 𝑓 ∈

𝐿2(0,+∞;𝒳) such that 𝑦 = 𝑅𝐶
∞𝑓.  

From the property of 

exact asymptotic gradient remediability for the 

considered system, there exists 𝓊 ∈ 𝐿2(0,+∞;𝑈) 
such that  𝐾𝐶

∞𝓊 + 𝑅𝐶
∞𝑓 = 0 ⟹ 𝑅𝐶

∞𝑓 = −𝐾𝐶
∞𝓊.  

By the linearity of the operator 𝐾𝐶
∞, it follows that 

𝑦 = 𝑅𝐶
∞𝑓 = 𝐾𝐶

∞(−𝓊), then 𝑦 ∈ 𝐼𝑚(𝐾𝐶
∞).  

The other inclusion is obtained as the previous one. 

Then, it follows that 𝐼𝑚(𝑅𝐶
∞) = 𝐼𝑚(𝐾𝐶

∞). 
- Conversely, it is assumed that  𝐼𝑚(𝑅𝐶

∞) =
𝐼𝑚(𝐾𝐶

∞) and one can show that (𝑆∞) + (𝐸∞) is 

𝐸𝐴𝐺𝑅-system.   
Let 𝑓 ∈ 𝐿2(0,+∞;𝑋), then 𝑅𝐶

∞𝑓 ∈ 𝐼𝑚(𝑅𝐶
∞). Since 

𝐼𝑚(𝑅𝐶
∞) ⊂ 𝐼𝑚(𝐾𝐶

∞), it follows that 𝑅𝐶
∞𝑓 ∈ 𝐼𝑚(𝐾𝐶

∞) 
then there exists 𝑢 ∈ 𝐿2(0,+∞;𝑈) such that 𝑅𝐶

∞𝑓 =
𝐾𝐶
∞𝑢, this gives 𝑅𝐶

∞𝑓 − 𝐾𝐶
∞𝑢 = 0 and by putting 

𝑢1 = −𝓊 ∈ 𝐿
2(0,+∞;𝑈). Thus 𝑅𝐶

∞𝑓 + 𝐾𝐶
∞𝓊1 = 0 

where (𝑆) + (𝐸) is 𝐸𝐴𝐺𝑅-system.  
(𝑖𝑖) ⟺ (𝑖𝑖𝑖) Derives from the fact that the adjoint 

operators (𝑅𝐶
∞)∗ and (𝐾𝐶

∞)∗ of (𝑅𝐶
∞) and (𝐾𝐶

∞) 
respectively, are defined by 

(𝑅𝐶
∞)∗: 𝑌′ → 𝐿2(0,+∞;𝑋′) 

𝜃 → (𝑅𝐶
∞)∗𝜃 = 𝑆∗(. )∇∗𝐶∗𝜃 

and 

(𝐾𝐶
∞)∗: 𝑌′ → 𝐿2(0, +∞;𝑈′) 

𝜃 → (𝐾𝐶
∞)∗𝜃 = 𝐵∗(𝑅𝐶

∞)∗𝜃 = 𝐵∗𝑆∗(. )∇∗𝐶∗𝜃 

Set  𝑃 = (𝑅𝐶
∞)∗, 𝑄 = (𝐾𝐶

∞)∗ and use the following 

lemma. 

Lemma 1 14 

Let 𝒳, 𝑌, 𝑍 be spaces of Banach reflexive type, 𝒫 ∈
𝔏(𝒳, 𝑍) and 𝑄 ∈ 𝔏(𝑌, 𝑍). There is an equivalence 

between: 

𝐼𝑚(𝒫) ⊂ 𝐼𝑚(𝑄) 
and 

∃𝛾 > 0  such that  ‖𝒫∗𝑧∗‖𝒳′ ≤ 𝛾‖𝑄
∗𝑧∗‖𝑌′,     

∀𝑧∗ ∈ 𝑍′.                                                                                 
□ 

The following proposition 2 is proved with 

regard of the weak asymptotic gradient remediability 

characterization. 

Proposition 2 

There is equivalence between 

(i) (𝑆∞) + (𝒪∞) is 𝑊𝐴𝐺𝑅-system. 

(ii) 𝐼𝑚(𝑅𝐶
∞) ⊂ 𝐼𝑚(𝐾𝐶

∞)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 
(iii) 𝐾𝑒𝑟  (𝐵∗(𝑅𝐶

∞)∗) = 𝐾𝑒𝑟 ((𝑅𝐶
∞)∗). 

Proof 

 (𝑖) ⟺ (𝑖𝑖) Derives from Definition 1. Indeed, it is 

assumed that (𝑆∞) + (𝒪∞) is 𝑊𝐴𝐺𝑅-system.   

Let 𝑓 ∈ 𝐿2(0,+∞;𝒳), then ∀𝜀 > 0, ∃𝓊 ∈
𝐿2(0,+∞;𝑈) such that  

                     ‖𝐾𝐶
∞𝓊 + 𝑅𝐶

∞𝑓‖𝑌 < 𝜀, that is to say 

‖𝑅𝐶
∞𝑓 − 𝐾𝐶

∞(−𝓊)‖𝑌 < 𝜀.  
Set 𝓊 = −𝓊 ∈ 𝐿2(0, +∞;𝑈), then ∀𝜀 > 0, ∃𝓊1 ∈
𝐿2(0,+∞;𝑈) such that ‖𝑅𝐶

∞𝑓 − 𝐾𝐶
∞𝓊1‖𝑌 < 𝜀, this 

gives   𝑅𝐶
∞𝑓 ∈ 𝐼𝑚(𝐾𝐶

∞)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, where 𝐼𝑚(𝑅𝐶
∞) ⊂ 𝐼𝑚(𝐾𝐶

∞)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 

Conversely, assume that 𝐼𝑚(𝑅𝐶
∞) ⊂ 𝐼𝑚(𝐾𝐶

∞)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  

and let 𝑓 ∈ 𝐿2(0,+∞;𝒳), then  𝑅𝐶
∞𝑓 ∈ 𝐼𝑚(𝐾𝐶

∞)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 
then ∀𝜀 > 0, ∃𝓊1 ∈ 𝐿

2(0,+∞;𝑈) such that 

‖𝑅𝐶
∞𝑓 − 𝐾𝐶

∞𝓊‖𝑌 < 𝜀.  
Put 𝓊1 = −𝓊 ∈ 𝐿

2(0,+∞;𝑈), then  

∀𝜀 > 0, ∃𝑢 ∈ 𝐿2(0,+∞;𝑈)  such that  ‖𝑅𝐶
∞𝑓 +

𝐾𝐶
∞𝑢‖𝑌 < 𝜀  where (𝑆∞) + (𝐸∞) is 𝑊𝐴𝐺𝑅-system. 
(𝑖𝑖) ⟺ (𝑖𝑖𝑖)  by considering orthogonal. Indeed, it is 

assumed that (𝑆∞) + (𝒪∞) is 𝑊𝐴𝐺𝑅-system. So, 

one can show that ker(𝐵∗(𝑅𝐶
∞)∗) = 𝐾𝑒𝑟 ((𝑅𝐶

∞)∗). 
Let 𝜃 ∈ 𝐼𝑅𝑞 such that 𝐵∗(𝑅𝐶

∞)∗𝜃 = 0.  

In addition, (𝐾𝐶
∞)∗ = 𝐵∗(𝑅𝐶

∞)∗, this gives 𝜃 ∈

ker((𝐾𝐶
∞)∗). Thus 𝐼𝑚(𝐾𝐶

∞)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = (𝐾𝑒𝑟  ((𝐾𝐶
∞)∗))⊥.  

By Proposition 3.5, if follows that 𝐼𝑚(𝑅𝐶
∞) ⊂

𝐼𝑚(𝐾𝐶
∞)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. Then, 𝐼𝑚(𝑅𝐶

∞) ⊂ (𝐾𝑒𝑟 ((𝐾𝐶
∞)∗))⊥ 

⟹ ∀𝑓 ∈ 𝐿2(0,+∞;𝑋); 𝑅𝐶
∞𝑓 ∈ (𝐾𝑒𝑟 ((𝐾𝐶

∞)∗))⊥ 

⟹ 〈𝑅𝐶
∞𝑓, 𝜃〉 = 0, because    𝜃 ∈ 𝐾𝑒𝑟((𝐾𝐶

∞)∗) 

⟹ 𝜃 ∈ (𝐼𝑚(𝑅𝐶
∞))

⊥
= 𝐾𝑒𝑟((𝑅𝐶

∞)∗),  

and then   𝐾𝑒𝑟(𝐵∗(𝑅𝐶
∞)∗) ⊂ 𝐾𝑒𝑟((𝑅𝐶

∞)∗) where 

ker(𝐵∗(𝑅𝐶
∞)∗) = ker((𝑅𝐶

∞)∗). 
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Conversely, assume that 𝐾𝑒𝑟(𝐵∗(𝑅𝐶
∞)∗) =

𝐾𝑒𝑟((𝑅𝐶
∞)∗)  and one can show that   𝐼𝑚(𝑅𝐶

∞) ⊂

𝐼𝑚(𝐾𝐶
∞)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 

Let 𝑓 ∈ 𝐿2(0,+∞;𝑋) such that 𝑓 ∈ 𝐼𝑚(𝑅𝐶
∞), it 

follows that 𝐼𝑚 (𝐾𝐶
∞)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = (𝐾𝑒𝑟 ((𝐾𝐶

∞)∗))⊥.  

For every 𝜃 ∈ 𝐼𝑅𝑞 such that (𝐾𝐶
∞)∗𝜃 = 0 that is, 

𝐵∗(𝑅𝐶
∞)∗𝜃 = 0, it follows that (𝑅𝐶

∞)∗𝜃 = 0 because 

𝐾𝑒𝑟(𝐵∗(𝑅𝐶
∞)∗) = 𝐾𝑒𝑟 ((𝑅𝐶

∞)∗), then 〈𝑅𝐶
∞𝑓, 𝜃〉 = 0.  

       □ 

 

Asymptotic Gradient Remediability via 

Actuators and Sensors: 

In connection with the system (𝑆∞) is 

motivated by (Ω𝑘 , 𝑔𝑘)1≤𝑘≤𝑝,  actuators suite of type 

zone with 𝑔𝑖 ∈ 𝐿
2 (Ω𝑘) and , Ω𝑘 = 𝑆𝑢𝑝𝑝 (𝑔𝑘)  ⊂

Ω, ∀ 𝑘 = 1,… , 𝑝, with control space  𝑈 = ℝ𝑝 and 𝐵 

is specified by   

𝐵:ℝ𝑝⟶𝒳 

 𝓊(𝑡) ⟶ 𝐵𝓊(𝑡) = ∑ 𝜒Ω𝑘𝑔𝑘𝑢𝑘(𝑡)
𝑝
𝑘=1  

and where 𝓊 = (𝓊1, … , 𝓊𝑝) ∈ 𝐿
2(0, +∞;ℝ𝑝). Its 

adjoint is given by 

𝐵∗𝑧 = (〈𝑔1, 𝑧1〉𝐿2(Ω𝑖), … , 〈𝑔𝑝, 𝑧𝑝〉𝐿2(Ω𝑝)) ∈ ℝ
𝑝 

 5 

then, the following result is obtained: 

Corollary 1 

(𝑆∞) + (𝒪∞) is 𝐸𝐴𝐺𝑅-systems ⟺  ∃ 𝛾 > 0 

satisfied the next inequality    

∫ ‖𝑆∗(𝓉)𝛻∗𝐶∗𝜃‖𝒳′
2 𝑑𝓉

+∞

0

≤ 𝛾∫ ∑(〈𝑔𝑘 , 𝑆
∗(𝓉)𝛻∗𝐶∗𝜃〉)2

𝑝

𝑘=1

𝑑𝑡
+∞

0

 

for every 𝜃 ∈ 𝑌. 

Proof 

Since Proposition 1, (𝑆∞) + (𝒪∞) is 𝐸𝐴𝐺𝑅-systems 

⟺  ∃ 𝛾 > 0  with 
‖𝑆∗(. )𝛻∗𝐶∗𝜃‖𝐿2(0,+∞;𝑋′)
≤ 𝛾‖𝐵∗𝑆∗(. )𝛻∗𝐶∗𝜃‖𝐿2(0,+∞;𝑈′) 

for every 𝜃 ∈ 𝑌 

By using Eq.5, the formula of the operator 𝐵∗, 
yields that  

 ∫ ‖𝑆∗(𝓉)𝛻∗𝐶∗𝜃‖𝒳′
2 𝑑𝓉

+∞

0
≤

𝛾 ∫ ∑ (〈𝑔𝑘 , 𝑆
∗(𝓉)𝛻∗𝐶∗𝜃〉)2

𝑝
𝑘=1 𝑑𝓉

+∞

0
 

                       □ 

By supposing the output function (𝑆∞) is 

specified via suite of  sensor of type zones 

(𝐷𝑙 , ℎ𝑙)1≤𝑙≤𝑞 , ℎ𝑖 ∈ 𝐿
2(𝐷𝑙),  represent the 

distribution zone sensor, 𝐷𝑙 = 𝑆𝑢𝑝𝑝 ℎ 𝑙 ⊂ Ω, 

intended for 𝑙 = 1,… , 𝑞 as well as 𝐷𝑙 ∩ 𝐷𝑗 = ∅ for 

𝑙 ≠ 𝑗, 𝑌 = ℝ𝑞 and the operator 𝐶 is formed by 

𝐶 ∶ (𝐿2(Ω))
𝑛
→ ℝ𝑞 

𝓎(𝓉) ↦ 𝐶𝓎(𝓉)

= (∑〈ℎ1, 𝓎𝑙(𝓉)〉𝐷1

𝑛

𝑙=1

, … ,∑〈ℎ𝑞 , 𝓎𝑙(𝓉)〉𝐷𝑞

𝑛

𝑙=1

) 

its adjoint is given by 𝐶∗ with for 𝜃 = (𝜃1, … , 𝜃𝑞) ∈

ℝ𝑞 

𝐶∗𝜃 = (∑𝜒𝐷𝑖𝜃𝑖ℎ𝑖

𝑞

𝑖=1

, … ,∑𝜒𝐷𝑖𝜃𝑖ℎ𝑖

𝑞

𝑖=1

) ∈ (𝐿2(Ω))
𝑛

 

 6 

Without loss of generality, consider the system 
(𝑆∞) with a dynamics 𝒜  having the form 

𝒜 𝓎 = ∑ 𝜆𝑚∑〈𝓎,𝜑𝑚𝑗〉𝐿2(Ω)𝜑𝑚𝑗

𝑟𝑚

𝑗=1

+∞

𝑚=1

, ∀𝓎 ∈ 𝒟(𝒜) 

where 𝜆1, 𝜆2, … are real parameters such that 𝜆1 >

𝜆2 > 𝜆3 > …, (𝜑𝑚𝑗)1≤𝑗≤𝑟𝑚
𝑚≥1

 is an orthogonal basis 

in 𝐻0
1 (Ω) of eigenvectors for  𝒜 which is 

orthonormal in 𝐿2(Ω), related to eigenvalues 𝜆𝑛 with 

a multiplicity 𝑟𝑛. It is well known that 𝒜 produces a 

semi − group (𝑆(𝓉))
𝑡≥0

 of type 

strongly continuous given by 14, 15:  

𝑆(𝓉)𝓎 = ∑ 𝑒𝜆𝑚𝓉∑〈𝓎,𝜑𝑚𝑗〉𝐿2(Ω)𝜑𝑚𝑗

𝑟𝑚

𝑗=1𝑚≥1

 

Obviously, if  sup
𝑚≥1

𝜆𝑚 = 𝜆1 < 0 , (𝑆(𝑡))
𝑡≥0

 is 

exponentially stable.     

     □ 

The following characterization results have obtained  

Corollary 2 
(𝑆∞) + (𝐸∞) is 𝐸𝐴𝐺𝑅-systems ⟺  ∃ 𝛾 > 0 

satisfied the next inequality    

∑
−1

2𝜆𝑚
∑〈𝐶∗𝜃, ∇𝜑𝑚𝑗〉

(𝐿2(Ω))
𝑛

2

𝑟𝑚

𝑗=1𝑚≥1

≤ 𝛾∑ ∑
−1

2𝜆𝑚
∑〈𝐶∗𝜃, ∇𝜑𝑚𝑗〉

(𝐿2(Ω))
𝑛

2 〈𝑔𝑘, 𝜑𝑚𝑗〉Ω𝑘
2

𝑟𝑚

𝑗=1𝑚 ≥1

𝑝

𝑘=1

 

for every 𝜃 = (𝜃1, … , 𝜃𝑞) ∈  ℝ
𝑞 . 

Proof 

Since Corollary 1, (𝑆∞) + (𝐸∞) is 𝐸𝐴𝐺𝑅-

systems ⟺  ∃ 𝛾 > 0 satisfied that ∀ θ =

(θ1, … , θq) ∈ ℝ
q, yields that   

∫ ‖𝑆∗(𝓉)𝛻∗𝐶∗𝜃‖𝒳′
2 𝑑𝓉

+∞

0

≤ 𝛾∫ ∑(〈𝑔𝑘 , 𝑆
∗(𝓉)𝛻∗𝐶∗𝜃〉𝐿2(Ω))

2

𝑝

𝑘=1

𝑑𝑡
+∞

0
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Since 

𝑆(𝓉)𝓎 = ∑ 𝑒𝜆𝑚𝓉∑〈𝓎,𝜑𝑚𝑗〉𝐿2(Ω)𝜑𝑚𝑗

𝑟𝑚

𝑗=1𝑚≥1

 

it follows that 

∫ ‖𝑆∗(𝓉)𝛻∗𝐶∗𝜃‖𝒳′
2 𝑑𝑡

+∞

0

≤ ∫ ‖𝑆∗(𝓉)𝛻∗𝐶∗𝜃‖𝐿2(Ω)
2 𝑑𝓉

+∞

0

= ∫ ∑ 𝑒2𝜆𝑚𝓉

𝑚 ≥ 1

 ∑(〈𝛻∗𝐶∗𝜃, 𝜑𝑚𝑗〉)
2

𝑟𝑚

𝑗=1

𝑑𝓉
+∞

0

= ∑
−1

2𝜆𝑚
𝑚 ≥ 1

∑  (〈𝐶∗𝜃, ∇𝜑𝑚𝑗〉)
2

𝑟𝑚

𝑗 =1

 

 

and  

∫ ∑(〈𝑔𝑘 , 𝑆
∗(𝓉)𝛻∗𝐶∗𝜃〉)2

𝑝

𝑘 = 1

𝑑𝓉
+∞

0

= 

∑ ∫ ∑ 𝑒2𝜆𝑚𝓉∑〈𝛻∗𝐶∗𝜃, 𝜑𝑚𝑗〉Ω
2

𝑟𝑚

𝑗=1𝑚 ≥ 1

+∞

0

〈𝑔𝑘 , 𝜑𝑚𝑗〉Ω𝑘
2 𝑑𝓉

𝑝

𝑘 = 1

= ∑ ∑
−1

2𝜆𝑚
∑〈 𝐶∗𝜃, ∇𝜑𝑚𝑗〉

(𝐿2(Ω))
𝑛

2

𝑟𝑚

𝑗=1𝑚 ≥ 1

〈𝑔𝑘 , 𝜑𝑚𝑗〉Ω𝑘
2

𝑝

𝑘 = 1 

 

□ 

By using Eq.6, the formula of the operator 𝐶∗, the 

following Corollary is obtained: 

Corollary 3 
(𝑆∞) + (𝐸∞) is 𝐸𝐴𝐺𝑅-systems ⟺  ∃ 𝛾 > 0 

satisfied the next inequality  

∑
−1

2 𝜆𝑚
 ∑  ∑  ∑ 〈𝜃𝑖ℎ𝑖,

𝜕𝜑𝑚𝑗

𝜕𝑥𝑙
〉𝐿2(𝐷𝑖)
2

 𝑞

 𝑖 = 1

 𝑛

 𝑙 = 1

 𝑟𝑚

𝑗 = 1 𝑚 ≥ 1 

 

≤ 𝛾 ∑ ∑
−1

2 𝜆𝑚 
∑  〈𝑔𝑘 , 𝜑𝑚𝑗〉𝐿2(Ω𝑘)

2 ∑ ∑ 〈𝜃𝑖ℎ𝑖,
𝜕𝜑𝑚𝑗

𝜕𝑥𝑙
〉𝐿2(𝐷𝑖)
2

 𝑞

 𝑖 = 1

 𝑛

 𝑙 = 1

 𝑟𝑚

 𝑗 = 1 𝑚 ≥ 1

 𝑝

 𝑘 = 1

, ∀𝜃 = (𝜃1, … , 𝜃𝑞) ∈ ℝ
𝑞 . 

 

Proof 

Since Corollary 2, (𝑆∞) + (𝐸∞) is 𝐸𝐴𝐺𝑅-systems 

⟺  ∃ 𝛾 > 0 satisfied that ∀ θ = (θ1, … , θq) ∈ ℝ
q, 

then 

∑
−1

2𝜆𝑚
∑〈𝐶∗𝜃, ∇𝜑𝑚𝑗〉

(𝐿2(Ω))
𝑛

2

𝑟𝑚

𝑗=1𝑚≥1

≤ 

𝛾∑∑
−1

2𝜆𝑚
∑〈𝐶∗𝜃, ∇𝜑𝑚𝑗〉

(𝐿2(Ω))
𝑛

2 〈𝑔𝑘, 𝜑𝑚𝑗〉Ω𝑘
2

𝑟𝑛

𝑗=1𝑚≥1

𝑝

𝑘=1

 

Using the formula of the operator 𝐶∗, in Eq.6, yields 

that 

〈𝐶∗𝜃, ∇𝜑𝑚𝑗〉
(𝐿2(Ω))

𝑛

= 〈

(

 
 
 
 
 
 
 
∑𝜒𝐷𝑖𝜃𝑖ℎ𝑖

𝑞

𝑖=1

∑𝜒𝐷𝑖𝜃𝑖ℎ𝑖

𝑞

𝑖=1

⋮

∑𝜒𝐷𝑖𝜃𝑖ℎ𝑖

𝑞

𝑖=1 )

 
 
 
 
 
 
 

,

(

 
 
 
 
 

𝜕𝜑𝑚𝑗

𝜕𝑥1
𝜕𝜑𝑚𝑗

𝜕𝑥2
⋮

𝜕𝜑𝑚𝑗

𝜕𝑥𝑛 )

 
 
 
 
 

〉
(𝐿2(Ω))

𝑛 

=∑〈∑𝜒𝐷𝑖𝜃𝑖ℎ𝑖

𝑞

𝑖=1

,
𝜕𝜑𝑚𝑗

𝜕𝑥𝑙
〉𝐿2(Ω)

𝑛

𝑙=1

=∑∑〈𝜃𝑖ℎ𝑖,
𝜕𝜑𝑚𝑗

𝜕𝑥𝑙
〉𝐿2(𝐷𝑖)

𝑞

𝑖=1

𝑛

𝑙=1

 

□ 

 

Asymptotic Gradient Efficient Actuators and 

Sensors: 

The notion of asymptotic gradient efficient 

actuator have been presented analogy to the concept 

of gradient efficient actuator in finite time given as 

follows: 

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟑 10 

The suite ( 𝛺𝑘 ,  𝑔𝑘)1≤ 𝑘 ≤𝑝, is called 

asymptotic gradient efficient actuators (𝐴𝐺𝔼-

actuators) if, (𝑆∞) + (𝐸∞) is  𝑊𝐴𝐺𝑅-systems. 

Proposition 3  

The suite (𝛺𝑘 , 𝑔𝑘)1≤𝑘≤𝑝,   𝐴𝐺𝔼-actuators 

if and only if  

⋂𝐾𝑒𝑟  (𝑀𝑚𝑓𝑚)

𝑚≥1

= 𝐾𝑒𝑟 (𝐵∗(𝑅𝐶
∞)∗) 

anywhere, for 𝑚 ≥ 1, 𝑀𝑚 is the matrix of order 
(𝑝 × 𝑟𝑚) defined by 

𝑀𝑚 = (〈𝑔𝑘 , 𝜑𝑚𝑗〉𝐿2(Ω𝑘))𝑘𝑗
, 1 ≤ 𝑘 ≤ 𝑝 𝑎𝑛𝑑 

 1 ≤ 𝑗 ≤ 𝑟𝑚 

and 
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𝑓𝑚: 𝜃 ∈ ℝ
𝑞 ⟶ 𝑓𝑚(𝜃)

= (〈∇∗𝐶∗𝜃, 𝜑𝑚1〉, 〈∇
∗𝐶∗𝜃, 𝜑𝑚2〉,… , 〈∇

∗𝐶∗𝜃, 𝜑𝑚𝑟𝑚〉)

∈ ℝ𝑟𝑚 
 

Proof 

Since Proposition 3, (𝑆∞) + (𝒪∞) is 𝑊𝐴𝐺𝑅-

systems if and only if 
𝐾𝑒𝑟 (𝐵∗(𝑅𝐶

∞)∗) = 𝐾𝑒𝑟  ((𝑅𝐶
∞)∗) 

Let 𝜃 ∈ ℝ𝑞, then  

𝐵∗(𝑅𝐶
∞)∗ 𝜃 = 𝐵∗𝑆∗(. )∇∗𝐶∗ 𝜃 =

(

 
 

〈𝑔1, 𝑆
∗(. )∇∗𝐶∗ 𝜃〉𝐿2(Ω1)

〈𝑔2, 𝑆
∗(. )∇∗𝐶∗ 𝜃〉𝐿2(Ω2)

⋮
〈𝑔𝑝, 𝑆

∗(. )∇∗𝐶∗ 𝜃〉𝐿2(Ω𝑝))

 
 

                               = 

(

 
 
 
 
 
 
 
 
∑ 𝑒𝜆𝑚(.)

𝑚≥1

∑〈∇∗𝐶∗ 𝜃, 𝜑𝑚𝑗〉𝐿2(Ω)〈𝑔1, 𝜑𝑚𝑗〉𝐿2(Ω1)

𝑟𝑚

𝑗=1

∑ 𝑒𝜆𝑚(.)

𝑚≥1

∑〈∇∗𝐶∗ 𝜃, 𝜑𝑚𝑗〉𝐿2(Ω)〈𝑔2, 𝜑𝑚𝑗〉𝐿2(Ω2)

𝑟𝑚

𝑗=1

⋮

∑ 𝑒𝜆𝑚(.)

𝑚≥1

∑〈∇∗𝐶∗ 𝜃, 𝜑𝑚𝑗〉𝐿2(Ω)〈𝑔𝑝, 𝜑𝑚𝑗〉𝐿2(Ω𝑝)

𝑟𝑚

𝑗=1 )

 
 
 
 
 
 
 
 

 

and then, for 𝑚 ≥ 1,  

𝑀𝑚𝑓𝑚(𝜃)

=

(

 
 
 
 
 
 
 
 
∑〈∇∗𝐶∗ 𝜃, 𝜑𝑚𝑗〉𝐿2(Ω)〈𝑔1, 𝜑𝑚𝑗〉𝐿2(Ω1)

𝑟𝑚

𝑗=1

∑〈∇∗𝐶∗ 𝜃, 𝜑𝑚𝑗〉𝐿2(Ω)〈𝑔2, 𝜑𝑚𝑗〉𝐿2(Ω2)

𝑟𝑚

𝑗=1

⋮

∑〈∇∗𝐶∗ 𝜃, 𝜑𝑚𝑗〉𝐿2(Ω)〈𝑔𝑝, 𝜑𝑚𝑗〉𝐿2(Ω𝑝)

𝑟𝑚

𝑗=1 )

 
 
 
 
 
 
 
 

 

Assume that  𝜃 ∈ ⋂ 𝐾𝑒𝑟  (𝑀𝑚𝑓𝑚)𝑚≥1 , this gives 

 𝜃 ∈ 𝐾𝑒𝑟 (𝑀𝑚𝑓𝑚) , ∀ 𝑚 ≥ 1 ⟹
∑ 〈∇∗𝐶∗ 𝜃, 𝜑𝑚𝑗〉𝐿2(Ω)〈𝑔𝑘, 𝜑𝑚𝑗〉𝐿2(Ω𝑘)
 𝑟𝑚
𝑗 = 1 = 0,

∀ 𝑘 ∈ { 1, 2, … , 𝑝}, ∀ 𝑚 ≥  1 ⟹
∑ 𝑒𝜆𝑚(.) 𝑚 ≥ 1 ∑ 〈∇∗𝐶∗ 𝜃, 𝜑𝑚𝑗〉𝐿2(Ω)〈𝑔𝑘, 𝜑𝑚𝑗〉Ω𝑘

 𝑟𝑚
 𝑗 = 1       

 = 0, ∀ 𝑘 ∈ { 1, 2, … , 𝑝}, ∀ 𝑚 ≥  1 ⟹
𝐵∗ (𝑅𝐶

∞)∗ 𝜃 = 0 ⟹ 𝜃 ∈ 𝐾𝑒𝑟  (𝐵∗ (𝑅𝐶
∞)∗). 

Where 

⋂𝐾𝑒𝑟 (𝑀𝑚𝑓𝑚)

𝑚≥1

⊂ 𝐾𝑒𝑟  (𝐵∗ (𝑅𝐶
∞)∗) 

 that is 

⋂𝐾𝑒𝑟 (𝑀𝑚𝑓𝑚)

𝑚≥1

= 𝐾𝑒𝑟  (𝐵∗ (𝑅𝐶
∞)∗) 

□ 

 

 

 

Proposition 4 

The suite (𝛺𝑘 , 𝑔𝑘)1≤𝑘≤𝑝, is  𝐴𝐺𝔼-

actuators if and only if  

𝐾𝑒𝑟 (∇∗𝐶∗) = ⋂𝐾𝑒𝑟  (𝑀𝑚𝑓𝑚)

𝑚≥1

 

Proof 

Suppose that the suite  (𝛺𝑘 , 𝑔𝑘)1≤𝑘≤𝑝,  is  

𝐴𝐺𝔼-actuators to prove 

𝐾𝑒𝑟 (∇∗𝐶∗) = ⋂𝐾𝑒𝑟 (𝑀𝑚𝑓𝑚)

𝑚≥1

 

Since Proposition 2 and Proposition 3, (𝑆∞) +
(𝐸∞) is 𝑊𝐴𝐺𝑅-system if and only if   

⋂𝐾𝑒𝑟 (𝑀𝑚𝑓𝑚)

𝑚≥1

= 𝐾𝑒𝑟  (𝐵∗(𝑅𝐶
∞)∗)

= 𝐾𝑒𝑟  ((𝑅𝐶
∞)∗) 

it follows that for every 𝜃 ∈ ℝ𝑞,  

(𝑅𝐶
∞)∗ 𝜃 = 𝑆∗(. )∇∗𝐶∗𝜃

= ∑ 𝑒𝜆𝑚(.)

𝑚≥1

∑〈∇∗𝐶∗ 𝜃, 𝜑𝑚𝑗〉𝐿2(Ω)

𝑟𝑚

𝑗=1

𝜑𝑚𝑗 

Assuming that 𝜃 ∈ 𝐾𝑒𝑟 ((𝑅𝐶
∞)∗), then 

(𝑅𝐶
∞)∗ 𝜃 = 0.  

Then. 

(𝑅𝐶
∞)∗ 𝜃 = 𝑆∗(. )∇∗𝐶∗𝜃

= ∑ 𝑒𝜆𝑚(.)

𝑚≥1

∑〈∇∗𝐶∗ 𝜃, 𝜑𝑚𝑗〉𝐿2(Ω)

𝑟𝑚

𝑗=1

𝜑𝑚𝑗 = 0 

⟹∀ 𝑚 ≥  1, ∑〈∇∗𝐶∗ 𝜃, 𝜑𝑚𝑗〉𝐿2(Ω)

𝑟𝑚

𝑗=1

𝜑𝑚𝑗 = 0 

⟹ ∇∗𝐶∗ 𝜃 = 0 ⟹ 𝜃 ∈ 𝐾𝑒𝑟  (∇∗𝐶∗ 𝜃). 
Hence, 

𝐾𝑒𝑟 ((𝑅𝐶
∞)∗) ⊂ 𝐾𝑒𝑟  (∇∗𝐶∗ 𝜃) 

On the other hand, if it is assumed that 𝜃 ∈
𝐾𝑒𝑟  (∇∗𝐶∗), then ∇∗𝐶∗ 𝜃 = 0 that is to say,  

(𝑅𝐶
∞)∗ 𝜃 = 𝑆∗(. )∇∗𝐶∗𝜃 = 0 

⟹ 𝜃 ∈ 𝐾𝑒𝑟  ((𝑅𝐶
∞)∗). 

That is to say, 𝐾𝑒𝑟 (∇∗𝐶∗) ⊂ 𝐾𝑒𝑟  ((𝑅𝐶
∞)∗), 

then 𝐾𝑒𝑟 (∇∗𝐶∗) = ker((𝑅𝐶
∞)∗).  

            □ 

By analogy with the finite time case and under 

a condition given by: If there exists 𝑚0 ≥ 1 such that  

𝑟𝑎𝑛𝑘 𝐺𝑚0
𝑡𝑟 = 𝑞               7 

where, for 𝑚 ≥ 1, 𝐺𝑚 is the matrix of order (𝑞 × 𝑟𝑚) 
defined by 

𝐺𝑚 = (∑〈ℎ𝑖,
𝜕𝜑𝑚𝑗

𝜕𝑥𝑙
〉𝐿2(𝐷𝑖)

𝑛

𝑙=1

)

𝑖𝑗

,

1 ≤ 𝑖 ≤ 𝑞   𝑎𝑛𝑑   1 ≤ 𝑗 ≤ 𝑟𝑚 

and 𝐺𝑚
𝑡𝑟 is the transposal matrix of  𝐺𝑚, the two 

following corollary’s are obtained, where the 

demonstrations are similar to the finite time case 

given in 12. 
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𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 𝟒 

The suite (𝛺𝑘 , 𝑔𝑘)1≤𝑘≤𝑝, is   𝐴𝐺𝔼 −

actuators if and only if  

⋂𝐾𝑒𝑟 (𝑀𝑚𝐺𝑚
𝑡𝑟)

𝑚≥1

= {0} 

Corollary 5 

          If 

𝑟𝑎𝑛𝑘 ( 𝑀𝑚0𝐺𝑚0
𝑡𝑟 ) = 𝑞   or   𝑟𝑎𝑛𝑘 𝑀𝑚0 = 𝑟𝑚0 

Then, the suite (𝛺𝑘 , 𝑔𝑘)1≤𝑘≤𝑝,  is 𝐴𝐺𝔼-actuators 

 

 𝐀𝐬𝐲𝐦𝐩𝐭𝐨𝐭𝐢𝐜 𝐆𝐫𝐚𝐝𝐢𝐞𝐧𝐭 𝐑𝐞𝐦𝐞𝐝𝐢𝐚𝐛𝐢𝐥𝐢𝐭𝐲 𝐚𝐧𝐝  
𝐀𝐬𝐲𝐦𝐩𝐭𝐨𝐭𝐢𝐜 𝐆𝐫𝐚𝐝𝐢𝐞𝐧𝐭 𝐂𝐨𝐧𝐭𝐫𝐨𝐥𝐥𝐚𝐛𝐢𝐥𝐢𝐭𝐲: 

  The case of asymptotic relation is difficult 

and requires more conditions. 

Asymptotic Gradient Controllability: 

Assuming the system that is described by the 

following equation:  

(𝑆0) {
�̇� (𝓉) = 𝒜𝓎(𝓉) + 𝐵 𝓊(𝓉)  ; 𝓉 > 0  

𝓎 (0) = 𝓎                                               
 

and 𝐴 is supposed generates a strongly 

continuous semi-group (𝑆(𝑡))
𝑡≥0

 such that 

∃𝑘 ∈ 𝐿2(0,+∞;ℝ+) such that 

 ‖∇𝑆(𝓉)‖ ≤ 𝑘(𝓉); ∀𝓉 ≥ 0                     8 

Next, some sufficient conditions to 

characterize the 𝐴𝐺𝐶-system are given in the 

following results. 

Definition 4 

           System  (𝑆0) is called  

  𝐸𝐴𝐺𝒞-system if for every 𝓎 ∈ ℰ =

(𝐿2(Ω))
𝑛

, there exists 𝑢 ∈ 𝐿2(0,+∞;𝑈) 
such that ∇𝓎0 + ∇𝐻∞ 𝓊 = 𝓎, or 

equivalently  𝐼𝑚∇𝐻∞ = (𝐿
2(Ω))

𝑛
. 

 𝑊𝐴𝐺𝒞-system if for every 𝓎𝑑 ∈

ℰ = (𝐿2(Ω))
𝑛
, and every 𝜀 > 0, there exists 

 𝓊 ∈ 𝐿2(0,+∞;𝑈) such that ‖∇𝓎0 +
∇𝐻∞ 𝓊 − 𝓎𝑑‖ < 𝜀, or equivalently 

𝐼𝑚∇𝐻∞̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = (𝐿2(Ω))
𝑛

. 

 

Let ℰ′, 𝑈′ be the dual spaces of ℰ and 𝑈 

respectively, then using Lemma 1, it is easy to show 

the following results the following proposition 5 

characterizes the 𝐸𝐴𝐺𝑅-systems, and 𝑊𝐴𝐺𝑅-

systems. 

Proposition 5 

The system (𝑆0) is 

(i) 𝐸𝐴𝐺𝑅-systems if and only if 
∃𝛾 > 0 such that ∀𝑧∗ ∈ ℰ′, 
‖𝑧∗‖ℰ′ ≤ 𝛾‖(∇𝐻∞)

∗𝑧∗‖𝐿2(0,+∞;𝑈′) 

Or equivalently 

∃𝛾 > 0 such that ∀𝑧∗ ∈ ℰ′,  
‖𝑧∗‖ℰ′ ≤ 𝛾‖𝐵

∗𝑆∗(. )∇∗𝑧∗‖𝐿2(0,+∞;𝑈′) 

(ii) 𝑊𝐴𝐺𝑅-systems if and only if : 

𝐾𝑒𝑟  [(∇𝐻∞)
∗] = {0} 

 

The following results in proposition 6 

demonstrate that the asymptotic controllability 

concept of type gradient is strongest than the 

asymptotic remediability of type gradient in various 

situations. 

Proposition 6 

 If (𝑆0) is 𝐸𝐴𝐺𝒞-system (resp. 𝑊𝐴𝐺𝒞-

system), then, (𝑆∞) + (𝐸∞), it is 𝐸𝐴𝐺𝑅-system 

(resp. 𝑊𝐴𝐺𝑅-system).  

Proof 

 By hypothesis Eq.8, if follows that, 

for 𝜃 ∈ 𝑌′, 
‖𝑆∗(. )∇∗𝐶∗𝜃‖𝐿2(0,+∞;𝑋′)

= (∫ ‖𝑆∗(𝓉)∇∗𝐶∗𝜃‖𝑋′
2 𝑑𝑡

+∞

0

)

1
2

≤ (∫ ‖𝑆∗(𝓉)∇∗‖2‖𝐶∗𝜃‖ℰ′
2 𝑑𝑡

+∞

0

)

1
2

 

  = (∫ ‖(∇𝑆(𝓉))∗‖2‖𝐶∗𝜃‖ℰ′
2 𝑑𝓉

+∞

0
)

1

2
≤

𝑘‖𝐶∗𝜃‖ℰ′ ;  with 𝑘 > 0. 

from Proposition 5, and since (𝑆0) is 𝐸𝐴𝐺𝒞-system, 

∃ 𝛾 > 0, with 

‖𝐶∗𝜃‖ℰ′ ≤ 𝛾‖𝐵
∗𝑆∗(. )∇∗𝐶∗𝜃‖𝐿2(0,+∞;𝑈′) 

 then, 

‖𝑆∗(. )∇∗𝐶∗𝜃‖𝐿2(0,+∞;𝑋′) ≤

𝑀‖𝐵∗𝑆∗(. )∇∗𝐶∗𝜃‖𝐿2(0,+∞;𝑈′) with 𝑀 =  𝑘𝛾 > 0. 

By using the equivalence of part (i) and part (ii) in 

proposition 1,  (𝑆∞) + (𝐸∞) is 𝐸𝐴𝐺𝑅-systems. 

 From Proposition 5, (𝑆∞) + (𝐸∞) is  

𝑊𝐴𝐺𝒞-system and  remains equivalent to,    

𝐾𝑒𝑟 (𝐵∗(𝑅𝐶
∞)∗) = 𝐾𝑒𝑟 ((𝑅𝐶

∞)∗) , that is to 

say 

           𝐾𝑒𝑟 (𝐵∗(𝑅𝐶
∞)∗) ⊂ 𝐾𝑒𝑟 ((𝑅𝐶

∞)∗).  
This is equivalent to 𝐾𝑒𝑟 ((𝐾𝐶

∞)∗) ⊂ 𝐾𝑒𝑟  ((𝑅𝐶
∞)∗), 

because (𝐾𝐶
∞)∗ = 𝐵∗(𝑅𝐶

∞)∗.  
For 𝜃 ∈ 𝐾𝑒𝑟 ((𝐾𝐶

∞)∗), it follows that 

         (𝐾𝐶
∞)∗𝜃 = 𝐵∗𝑆∗(. )∇∗𝐶∗𝜃 = (∇𝐻∞)

∗𝐶∗𝜃 = 0, 

then 𝐶∗𝜃 = 0 because 𝐾𝑒𝑟[(∇𝐻∞)
∗] = {0} , 

 and then 𝜃 ∈ 𝐾𝑒𝑟 (𝐶∗) ⊂ 𝐾𝑒𝑟 ((𝑅𝐶
∞)∗). 

     □ 

Remark 3 

The opposite of Proposition 6 is not correct; this case 

may be exemplified via the following. 

Example 1 

Reflect the subsequent one dimensional system of 

type diffusion. 
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                (𝑆1){

𝜕𝓎

𝜕𝑡
(𝑥, 𝓉) = ∆𝓎(𝑥, 𝓉) + 𝑓(𝑥, 𝓉) + ∑ 𝑔𝑘(𝑥)𝓊𝑘(𝓉)

𝑝
𝑘=1   ; 𝑖𝑛 Ω × ]0,+∞[

𝓎(𝑥, 0) = 𝓎0(𝑥)  ;   𝑖𝑛 Ω                                                                                

𝓎(𝑥, 𝑡) = 0 ;   𝑖𝑛 𝜕Ω × ]0,+∞[                                                                    

 

 

boosted via observation function allows by  𝑞 sensors 

of type zone 

(𝒪1) 𝑧𝓊,𝑓 (𝓉) = 𝐶∇𝓎(𝓉)

= (∑〈ℎ1,
𝜕𝓎

𝜕𝑥𝑙
(𝓉)〉𝐷1

𝑛

𝑙=1

, … ,∑〈ℎ𝑞 ,
𝜕𝓎

𝜕𝑥𝑙
(𝓉)〉𝐷𝑞

𝑛

𝑙=1

) 

So,  Ω = [0, 1] gives the corresponding 

operator ∆ of type Laplace that confesses an 

appropriate basis of eigenfunctions via next form 

𝜑𝑚 (𝑥) = √2  sin ( 𝑚 𝜋 𝑥 )  ;𝑚 ≥ 1 

The correspondent eigenvalues are specified 

through 𝜆𝑚  = −𝑚
2 𝜋2 ;  𝑚 ≥  1. The operator ∆ 

generates a self adjoint strongly continuous semi 

group (𝑆(𝑡))
𝑡≥0

 defined by  

𝑆(𝓉)𝓎 = ∑ 𝑒−𝑚
2𝜋2𝓉〈𝓎, 𝜑𝑚〉𝜑𝑚

𝑚≥1

 

is exponentially stable 14  with the transformations  

𝐻∞𝑢

= ∑ ∑ ∫ 𝑒−𝑚
2𝜋2𝓉𝓊𝑘(𝓉)𝑑𝓉 〈𝑔𝑘 , 𝜑𝑚〉𝜑𝑚

+∞

 0

+∞

𝑚=1

𝑝

𝑘=1

 

and 

𝐹∞𝑓 = ∑ ∫ 𝑒−𝑚
2𝜋2𝓉 〈𝑓(. , 𝓉), 𝜑𝑚〉𝜑𝑚𝑑𝓉

+∞

0

+∞

𝑚=1

 

are well defined and since Corollary 3, (𝑆1) +
(𝒪1) is 𝐸𝐴𝐺𝑅-systems if and only if ∃ 𝛾 > 0 such 

that   

∑
1

2𝑚2𝜋2
∑〈𝜃𝑖ℎ𝑖 ,

𝜕𝜑𝑚
𝜕𝑥

〉
𝐿2(𝐷𝑖)
2

𝑞

𝑖=1 𝑚≥1

≤ 𝛾∑∑
1

2𝑚2𝜋2
〈𝑔𝑘 , 𝜑𝑚〉𝐿2(Ω𝑘)

2 ∑〈𝜃𝑖ℎ𝑖 ,
𝜕𝜑𝑚
𝜕𝑥

〉
𝐿2(𝐷𝑖)
2

𝑞

𝑖=1𝑚≥1

𝑝

𝑘=1

 

for every 𝜃 = (𝜃1, … , 𝜃𝑞) ∈ ℝ
𝑞 

If a unique actuator (sensor) represents the input 

(output) of system  (𝑆1) + (𝒪1)
13-14, then the last 

inequality becomes as follows:  

∑
1

2𝑚2𝜋2
〈𝜃ℎ,

𝜕𝜑𝑚
𝜕𝑥

〉𝐿2(𝐷)
2

𝑚≥1

≤ 𝛾 ∑
1

2𝑚2𝜋2
〈𝑔, 𝜑𝑚〉𝐿2(Ω)

2 〈𝜃ℎ,
𝜕𝜑𝑚
𝜕𝑥

〉𝐿2(𝐷)
2

𝑚≥1

;  ∀𝜃

∈ ℝ 
Or equivalently, 

∑
1

2𝑚2𝜋2
〈ℎ,
𝜕𝜑𝑚
𝜕𝑥

〉𝐿2(𝐷)
2

𝑚≥1

≤ 𝛾 ∑
1

2𝑚2𝜋2
〈𝑔, 𝜑𝑚〉𝐿2(Ω)

2 〈ℎ,
𝜕𝜑𝑚
𝜕𝑥

〉𝐿2(𝐷)
2

𝑚≥1

 

for 𝑔 = 𝜑𝑚0 with 𝑚0 ≥ 1, it is obtained that  

1

2𝑚0
2𝜋2

〈ℎ,
𝜕𝜑𝑚0
𝜕𝑥

〉𝐿2(𝐷)
2 ≤ 𝛾

1

2𝑚0
2𝜋2

〈ℎ,
𝜕𝜑𝑚0
𝜕𝑥

〉𝐿2(𝐷)
2  

this is verified for 𝛾 ≥ 1. But the considered system 
(𝑆1) is not 𝐸𝐴𝐺𝒞-system because it is not 𝑊𝐴𝐺𝒞-

system. Indeed,  

let 𝑦 ∈ 𝐿2(Ω) 
(∇ 𝐻∞)

∗ 𝑦 = (𝐻∞)
∗ ∇∗𝓎 = 𝐵∗ 𝑆∗(. )∇∗𝓎

= ∑ 𝑒 −𝑚
2𝜋2(.) 〈𝓎, ∇ 𝜑𝑚〉 𝐵

∗𝜑𝑚
𝑚 ≥ 1

 

= ∑ 𝑒−𝑚
2𝜋2(.)〈𝓎, ∇𝜑𝑚〉〈𝑔, 𝜑𝑚〉

𝑚≥1

 

for 𝑔 = 𝜑𝑚0 with 𝑚0 ≥ 1, it follows that 

(∇𝐻∞)
∗𝓎 = 𝑒−𝑚0

2𝜋2(.)〈𝓎, ∇𝜑𝑚0〉

= 𝑚0𝜋𝑒
−𝑚0

2𝜋2(.)√2∫ 𝓎(𝑥) cos(𝑚0𝜋𝑥) 𝑑𝑥
1

0

 

Putting 𝓎(𝑥) = sin(𝑚0𝜋𝑥), yields that  

(∇𝐻∞)
∗𝑦

= 𝑒−𝑚0
2𝜋2(.)√2∫ 𝑚0𝜋 sin(𝑚0𝜋𝑥) cos(𝑚0𝜋𝑥)𝑑𝑥

1

0

=
√2

2
𝑒−𝑚0

2𝜋2(.)[sin2(𝑚0𝜋𝑥)]0
1 = 0 

then  𝐾𝑒𝑟 [(∇𝐻∞)
∗] ≠ {0} and by proposition 5, the 

result is proven.  

               □ 

Asymptotic Gradient Remediability with 

Minimum Energy: 

Under the condition Eq.7, and the hypothesis 

of 𝑊𝐴𝐺𝑅-system, then in the present section the 

problem of 𝑊𝐴𝐺𝑅-system with Minimal Energy is 

studied. Thus, through 𝑓 ∈ 𝐿2(0,+∞;𝑋), there 

exists a control of type  optimal  𝓊 ∈ 𝐿2(0,+∞;ℝ𝑝) 
ensuring, asymptotically, the gradient remediability 

of the disturbance 𝑓 such that 𝐾𝐶
∞𝓊 + 𝑅𝐶

∞𝑓 = 0, are 

studied. That is the set defined by  

𝐷 = {𝓊 ∈ 𝐿2(0,+∞;ℝ𝑝): 𝐾𝐶
∞𝓊 + 𝑅𝐶

∞𝑓 = 0} 
                                              9 

is non empty. Next, the following function is 

considered  

𝐽(𝑢) = ‖𝐾𝐶
∞𝓊 + 𝑅𝐶

∞𝑓‖ℝ𝑞
2 + ‖𝓊‖𝐿2(0,+∞;ℝ𝑝)

2  

The considered problem becomes : min
𝑢∈𝐷

𝐽(𝓊).  

For its resolution, one can use a modification of (H. 

U. M) 14.  

For 𝜃 ∈ ℝ𝑞, it is noted that 

  ‖𝜃‖∗ = (∫ ‖𝐵∗𝑆∗(𝑡)∇∗𝐶∗𝜃‖ℝ𝑝
2 𝑑𝓉

+∞

0
)

1

2
 

The conforming inner product is specified by 

〈𝜃, 𝜎〉∗ = ∫ 〈𝐵∗𝑆∗(𝓉)∇∗𝐶∗𝜃, 𝐵∗𝑆∗(𝑡)∇∗𝐶∗𝜎〉𝑑𝑡
+∞

0
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and the operator Λ𝐶
∞: ℝ𝑞⟶ℝ𝑞 defined by 

Λ𝐶
∞𝜃 = 𝐾𝐶

∞(𝐾𝐶
∞)∗𝜃 

Then, the following proposition have obtained. 

Proposition 7 

        If the condition Eq.7, is verified, then ‖. ‖∗ is a 

norm on ℝq if and only if (𝑆∞) + (𝐸∞) is  𝑊𝐴𝐺𝑅-

system and the operator 𝛬𝐶
∞ is invertible. 

Proof 

Since, 

‖𝜃‖∗ = (∫ ‖𝐵∗𝑆∗(𝓉)∇∗𝐶∗𝜃‖ℝ𝑝
2 𝑑𝓉

+∞

0

)

1
2

= 0 

     ⟹ ‖𝐵∗𝑆∗(. )∇∗𝐶∗𝜃‖𝐿2(0,+∞;ℝ𝑞)
2 = 0 

      ⟹𝐵∗𝑆∗(. )∇∗𝐶∗𝜃 = 0 

⟹ 𝜃 ∈ 𝐾𝑒𝑟 (𝐵∗𝑆∗(. )∇∗𝐶∗) = 𝐾𝑒𝑟 𝐵∗(𝑅𝐶
∞)∗ 

However, from Proposition 3, it follows that 

⋂ 𝐾𝑒𝑟 (𝑀𝑚𝑓𝑚)𝑚≥1 = 𝐾𝑒𝑟 (𝐵∗(𝑅𝐶
∞)∗)  

and also ⋂ 𝐾𝑒𝑟 (𝑀𝑚𝑓𝑚)𝑚≥1 =
⋂ 𝐾𝑒𝑟  (𝑀𝑚𝐺𝑚

𝑡𝑟)𝑚≥1 . Indeed, let 𝜃 ∈ ℝ𝑞, then 

  𝜃 ∈ ⋂ 𝐾𝑒𝑟 (𝑀𝑚𝐺𝑚
𝑡𝑟)𝑚≥1 ⟺ (𝑀𝑚𝐺𝑚

𝑡𝑟)𝜃 =
0, ∀ 𝑚 ≥ 1. 
           ⟺

∑ ∑  〈𝑔𝑘 , 𝜑𝑚𝑗〉
 𝑟𝑚 
 𝑗 =1

 𝑞
 𝑖 = 1 〈ℎ𝑖 , ∑  

𝜕𝜑𝑚𝑗

𝜕𝑥𝑙

 𝑛
 𝑙 = 1 〉 =

0, ∀ 𝑚 ≥ 1,∀𝑘 =  1,… , 𝑝. 
                                ⟺

∑  〈𝑔𝑘 , 𝜑𝑚𝑗〉
 𝑟𝑚
𝑗 = 1 〈∇∗𝐶∗𝜃, 𝜑𝑚𝑗〉 = 0, ∀ 𝑚 ≥ 1,

∀ 𝑘 =  1,… , 𝑝. 

⟺ (𝑀𝑚𝑓𝑚)𝜃 = 0, ∀𝑚 ≥ 1. 
   ⟺ 𝜃 ∈ ⋂ 𝐾𝑒𝑟 (𝑀𝑚𝑓𝑚) 𝑚 ≥ 1 . 
Where 𝐾𝑒𝑟 (𝐵∗(𝑅𝐶

∞)∗) =
⋂ 𝐾𝑒𝑟 (𝑀𝑚𝐺𝑚

𝑡𝑟)𝑚≥1  this gives 𝜃 ∈
⋂ 𝐾𝑒𝑟 (𝑀𝑚𝐺𝑚

𝑡𝑟)𝑚≥1  and since the Corollary 4, the 

result is obtained.  

Alternatively the Λ𝐶
∞ is an 

operator of type symmetric. Actually,  

〈Λ𝐶
∞𝜃, 𝜎〉ℝ𝑞 = 〈𝐾𝐶

∞(𝐾𝐶
∞)∗𝜃, 𝜎〉ℝ𝑞

= 〈𝜃, 𝐾𝐶
∞(𝐾𝐶

∞)∗𝜎〉ℝ𝑞 = 〈𝜃, Λ𝐶
∞𝜎〉ℝ𝑞 

and positive definite. Indeed,  

〈Λ𝐶
∞θ, θ〉ℝ𝑞 = 〈𝐾𝐶

∞(𝐾𝐶
∞)∗𝜃, 𝜃〉ℝ𝑞

= 〈(𝐾𝐶
∞)∗𝜃, (𝐾𝐶

∞)∗𝜃〉𝐿2(0,+∞; ℝ𝑞) 

Finally, the mapping  Λ𝐶
∞ has an inverse 

operator.      

        □ 

Now, the next consequence demonstrates, the 

existence of an optimal control in which 

guaranteed the 𝐴𝐺𝑅-system.  

Proposition 8 

      For 𝑓 ∈ 𝐿2(0,+∞;  𝑋), there exists a unique 𝜃𝑓 ∈

ℝ𝑞 such that  

𝛬𝐶
∞𝜃𝑓 = −𝑅𝐶

∞𝑓 

and the control 𝑢𝜃𝑓 defined by : 

𝓊𝜃𝑓 = 𝐵
∗𝑆∗(. )𝛻∗𝐶∗𝜃𝑓 = (𝐾𝐶

∞)∗𝜃𝑓 

 verifies 𝐾𝐶
∞𝓊𝜃𝑓 + 𝑅𝐶

∞𝑓 = 0.  

Moreover, it is optimal and   

‖𝓊𝜃𝑓‖𝐿2(0,+∞; ℝ𝑝)
= ‖𝜃𝑓‖∗

. 

Proof 

         By utilizing Proposition 7, the mapping  Λ𝐶
∞ has 

inverse, now, 𝑓 ∈ 𝐿2(0,+∞;  𝑋), then there exists a 

unique 𝜃𝑓 ∈ ℝ
𝑞 such that  Λ𝐶

∞𝜃𝑓 = −𝑅𝐶
∞𝑓 and by 

putting 𝑢𝜃𝑓 = (𝐾𝐶
∞)∗𝜃𝑓, yields that  

Λ𝐶
∞𝜃𝑓 = 𝐾𝐶

∞(𝐾𝐶
∞∗)𝜃𝑓 =

∫ 𝐶∇𝑆(𝓉)𝐵𝐵∗𝑆∗(𝓉)∇∗𝐶∗𝜃𝑓𝑑𝑡
+∞

0
= 𝐾𝐶

∞𝑢𝜃𝑓 =

−𝑅𝐶
∞𝑓 ⟹ 𝐾𝐶

∞𝑢𝜃𝑓 + 𝑅𝐶
∞𝑓 = 0. 

The set 𝐷 defined by Eq.9, is closed, convex and not 

empty.  

For 𝓊 ∈ 𝐷, 𝐽(𝓊) = ‖𝓊‖𝐿2 (0,+∞;ℝ𝑝)
2 .  So,   𝐽 is 

convex mapping of type strictly in 𝐷, and hence 

ensures a unique minimum at 𝓊∗ ∈ 𝐷, 

characterized by  〈𝓊∗, 𝑣 − 𝓊∗〉𝐿2(0,+∞;ℝ𝑝) ≥ 0; ∀𝑣 ∈

𝐷.  

For 𝑣 ∈ 𝐷,  

〈𝓊𝜃𝑓 , 𝑣 − 𝓊𝜃𝑓〉𝐿2(0,+∞;ℝ𝑝)
= 〈(𝐾𝐶

∞)∗𝜃𝑓 , 𝑣

− (𝐾𝐶
∞)∗𝜃𝑓〉𝐿2(0,+∞;ℝ𝑝)

= 〈𝜃𝑓 , 𝐾𝐶
∞𝑣 − Λ𝐶

∞𝜃𝑓〉𝐿2(0,+∞;ℝ𝑝)
= 0 

Since 𝑢∗ is unique, then 𝓊∗ = 𝓊𝜃𝑓  and 𝑢𝜃𝑓 is 

optimal with 

               ‖𝓊𝜃𝑓‖𝐿2(0,+∞; ℝ𝑝)

2
=

‖𝐵∗𝑆∗(. )∇∗𝐶∗𝜃𝑓‖𝐿2(0,+∞; ℝ𝑝)
2

= ‖𝜃𝑓‖∗
2
 

□ 

 𝐌𝐚𝐭𝐡𝐞𝐦𝐞𝐭𝐢𝐜𝐚𝐥 𝐀𝐩𝐩𝐫𝐨𝐱𝐢𝐦𝐚𝐭𝐢𝐨𝐧𝐬  
The current part of this paper, presents 

important approximations  augmented with an 

approximation  approach for 𝐴𝐺𝑅-system. First we 

give an approximation of 𝜃𝑓 as a solution of a finite 

dimension linear system 𝐴𝜃𝑓 = 𝑏 and then the 

optimal control 𝓊𝜃𝑓, with a comparison between the 

corresponding observation noted 𝑧𝑢𝜃𝑓 ,𝑓
, and the 

normal case. 

 𝐓𝐡𝐞 𝐀𝐩𝐩𝐫𝐨𝐱𝐢𝐦𝐚𝐭𝐢𝐨𝐧𝐬 𝐀𝐩𝐩𝐫𝐨𝐚𝐜𝐡: 
 𝑆𝑦𝑠𝑡𝑒𝑚 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠: 

For  𝑖 , 𝑗 ≥  1, consider  𝑎𝑖𝑗 = 〈Λ𝐶
∞𝑒𝑖, 𝑒𝑗〉ℝ𝑞 such that 

(𝑒𝑖)1 ≤ 𝑖 ≤ 𝑞 is the canonical basis of ℝ𝑞, it follows 

that  

Λ𝐶
∞𝑒𝑖 = ∫ 𝐶∇𝑆(𝑡)𝐵𝐵∗𝑆∗(𝓉)∇∗𝐶∗𝑒𝑖 𝑑𝓉

+∞

0

 

and since 𝑁 and 𝑀 represent the number of 

eigenfunctions of the dynamic operator 𝐴. Thus, 

sufficiently large because the space have an infinite 

dimension. 

 Then, 𝑀,𝑁 be sufficiently large: 
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𝑎𝑖𝑗 ≅ ∑ ∑ ∑ ∑∑(
−1

𝜆𝑚 + 𝜆𝑚′
) 〈𝑔𝑟, 𝜑𝑚𝑙〉Ω𝑟〈𝑔𝑟, 𝜑𝑚′ℎ〉Ω𝑟

𝑝

𝑟=1

𝑟
𝑚′

ℎ=1

𝑁

𝑚′=1

𝑟𝑚

𝑙=1

𝑀

𝑚 =1

∑ 〈
𝜕𝜑𝑚′ℎ

𝜕𝑥𝑘′
, ℎ𝑖〉D𝑖

𝑛

𝑘′=1

∑〈
𝜕𝜑𝑚𝑙
𝜕𝑥𝑘

, ℎ𝑗〉D𝑗

𝑛

𝑘=1

 

10 

           

and  𝑏𝑗 = −〈𝑅𝐶
∞𝑓, 𝑒𝑗〉ℝ𝑞.  

Because N represent the number of eigenvectors 

(𝜑𝑚𝑗)1≤𝑗≤𝑟𝑚
𝑚≥1

and really it is infinite.  

For the applications it is considered sufficiently large 

and then 

 𝑏𝑗 ≅ − ∑ ∑∑〈
𝜕𝜑𝑚′𝑙
𝜕𝑥𝑘

, ℎ𝑗〉𝐿2(D𝑗)∫ 𝑒𝜆𝑚𝑡〈𝑓(𝓉), 𝜑𝑚′ℎ〉𝐿2(Ω) 𝑑𝓉
+∞

0

𝑛

𝑘=1

𝑟𝑚′

ℎ=1

𝑁

𝑚′=1

 

11 

 

 𝑇ℎ𝑒 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑐𝑜𝑛𝑡𝑟𝑜𝑙: 
In this part, an approximation of the optimal 

control 𝑢𝜃𝑓 is given, which is defined by:  

𝓊𝜃𝑓(𝑠) = 𝐵
∗𝑆∗(𝓉)∇∗𝐶∗𝜃𝑓 

Its function coordinates 𝑢𝑗,𝜃𝑓(. ) are given, for 

a large integer 𝑁, by 

𝓊𝑗,𝜃𝑓(. ) = 〈𝑔𝑗, 𝑆
∗(𝓉)∇∗𝐶∗𝜃𝑓〉𝐿2(D𝑗) 

 

≅ ∑  ∑ ∑  ∑ 𝜃𝑖,𝑓𝑒
𝜆𝑚′(.)

 𝑞

 𝑖 = 1

〈𝑔𝑗, 𝜑𝑚′ℎ〉𝐿2(Ω𝑗) 〈
𝜕𝜑𝑚′ℎ

𝜕𝑥𝑘
, ℎ𝑖〉𝐿2(D𝑖)

 𝑛

 𝑘 = 1

 𝑟
𝑚′

 ℎ= 1

 𝑁

 𝑚′ = 1

 

 

12

 Cost:  

The minimum energy (cost), for 𝑁 sufficiently 

large, is defined by  

 

‖𝓊𝜃𝑓‖𝐿2(0,+∞; ℝ𝑝)
= 

(∫ ‖𝐵∗𝑆∗(𝓉)∇∗𝐶∗𝜃𝑓‖ℝ𝑝
2
𝑑𝑡

+∞

0

)

1
2

 

 

≅ (∑∫ (∑ ∑∑∑𝜃𝑖,𝑓𝑒
𝜆𝑚′𝑡

𝑞

𝑖=1

〈𝑔𝑗 , 𝜑𝑚′ℎ〉𝐿2(Ω𝑗) 〈
𝜕𝜑𝑚′ℎ

𝜕𝑥𝑘
, ℎ𝑖〉𝐿2(D𝑖)

𝑛

𝑘=1

𝑟
𝑚′

ℎ=1

𝑁

𝑚′=1

)

2

𝑑𝑡
+∞

0

𝑝

𝑗=1

)

1
2

 

 

  𝑇ℎ𝑒 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛:  
The measurement information related to a 

given control is described by 

 

 

 

 

 

𝑧𝑢𝜃𝑓 ,𝑓
(𝓉) = 𝐶∇𝑆(𝑡)𝑦0 + 𝐶∇∫ 𝑆

𝓉

0

(𝜏)𝐵𝓊𝜃𝑓(𝜏) 𝑑𝜏

+ 𝐶∇∫ 𝑆(𝜏)
𝓉

0

𝑓(𝜏) 𝑑𝜏 

                                            13 

Its coordinates (𝑧𝑗,𝑢𝜃𝑓 ,𝑓
(. ))

1≤𝑗≤𝑞

  are 

achieved for a specific integer 𝑁, given by: 

   

𝑧𝑗,𝓊𝜃𝑓 ,𝑓
(𝑡) ≅ ∑ ∑∑𝑒𝜆𝑚′𝑡〈𝑦0, 𝜑𝑚′ℎ〉𝐿2(Ω) 〈

𝜕𝜑𝑚′ℎ

𝜕𝑥𝑘
, ℎ𝑗〉𝐿2(D𝑗)

𝑛

𝑘=1

𝑟
𝑚′

ℎ=1

𝑁

𝑚′=1

+ ∑ ∑∑〈𝑔𝑖 , 𝜑𝑚′ℎ〉𝐿2(Ω𝑖) 〈
𝜕𝜑𝑚′ℎ

𝜕𝑥𝑘
, ℎ𝑗〉𝐿2(D𝑗)∫ 𝑒𝜆𝑚′𝜏𝓊𝑗,𝜃𝑓(𝜏) 𝑑𝜏

𝑡

0

𝑛

𝑘=1

𝑟
𝑚′

ℎ=1

𝑁

𝑚′=1

+ ∑ ∑∑〈
𝜕𝜑𝑚′ℎ

𝜕𝑥𝑘
, ℎ𝑗〉𝐿2(D𝑗)∫ 𝑒𝜆𝑚′𝜏〈𝑓(𝜏), 𝜑𝑚′ℎ〉𝐿2(Ω) 𝑑𝜏

𝑡

0

𝑛

𝑘=1

𝑟
𝑚′

ℎ=1

𝑁

𝑚′=1

 

                                       14 
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          𝐓𝐡𝐞 𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐚𝐥  𝐀𝐩𝐩𝐫𝐨𝐚𝐜𝐡: 
Remember the problem considered above: 

(ℙ) {
Calculate 𝓊∗ ∈ 𝐿2(0, +∞;𝑈) , with        
𝐾𝐶
∞𝓊∗ + 𝑅𝐶

∞𝑓 = 0                                       
 

 So, depending on the above result., and employment 

the preceding  consequences in this investigation, 

one can improve an algorithm which permits to 

define controls suite which tends to 𝓊∗ of (ℙ). The 

measurement information is specified via Eq.13 and 

Eq.14. 

Algorithm 

𝐹𝑖𝑟𝑠𝑡 𝑆𝑡𝑒𝑝: Data: domain Ω, initial state 𝓎0, 

disturbance function 𝑓, sensors (𝐷, ℎ), 
gradient  of efficient     actuators (𝜎, 𝑔) and 

precision threshold 𝜀. 
𝑆𝑒𝑐𝑜𝑛𝑑 𝑆𝑡𝑒𝑝: Select a truncation low of order  𝑀 =
𝑁. 

𝑇ℎ𝑖𝑟𝑑 𝑆𝑡𝑒𝑝: Calculate 𝑧0,0: output with  𝑓 = 0 and 

𝑢 = 0. 

𝐹𝑜𝑢𝑟𝑡ℎ 𝑆𝑡𝑒𝑝: Calculate 𝑧0,𝑓: output with 𝑓 ≠ 0 and 

𝑢 = 0. 

𝐹𝑖𝑣𝑒𝑡ℎ 𝑆𝑡𝑒𝑝: Resolve a finite system 𝐴𝜃 = 𝑏 such 

that the parameters are represented by Eq.10 and 

Eq.11. 

𝑆𝑖𝑥𝑡ℎ 𝑆𝑡𝑒𝑝:. Calculate 𝓊 given by Eq.12. 

𝑆𝑒𝑣𝑒𝑛𝑡ℎ 𝑆𝑡𝑒𝑝:. Compute 𝑧𝑢,𝑓: output where  𝑓 ≠ 0  

and 𝑢 ≠ 0.  

𝐸𝑖𝑔ℎ𝑡ℎ 𝑆𝑡𝑒𝑝: If ‖𝑧𝑢,𝑓 − 𝑧0,   0‖𝐿2(Ω)
 ≤  𝜀, then stop. 

Otherwise,  

𝑁𝑖𝑛𝑡ℎ 𝑆𝑡𝑒𝑝: 𝑀 ← 𝑀 + 1 and 𝑁 ← 𝑁 + 1 and return 

to third step. 

𝑇𝑒𝑛 𝑆𝑡𝑒𝑝: Control 𝓊 of type optimal links to  𝓊∗ 
the solution of  (ℙ). 
 

Conclusion:  
In this paper, the problem of 𝐴𝐺𝐶analysis has 

been presented. Certainly, it is based on suitable 

hypothesis and an appropriate choice of operators 

and spaces. Furthermore, 𝑊𝐸𝐴𝐺𝑅-system and 𝐴𝐺𝔼-

actuators have been presented firstly. Also the 

problem of 𝑊𝐸𝐴𝐺𝒞-system has been examined 

under a suitable hypothesis with appropriate choice 

of spaces and operators. More precisely, the 

relationship between 𝑊𝐸𝐴𝐺𝒞-system and 𝐴𝐺𝑅-

system has been demonstrated in different important 

results.  Indeed, in the asymptotic case, it has been 

proved that the controllability concept of gradient 

type remains stronger than the remediability concept 

of gradient type, that is to say, 𝐴𝐺𝑅-system can be 

asymptotically gradient remediable but, it is not 

𝐴𝐺𝒞-system. 

Thus, through the choice of sensors and 

hypothesis of 𝑊𝐴𝐺𝑅-system, the problem of 𝐸𝐴𝐺𝑅-

system with minimum energy has been studied. 

Moreover, the issue of how to discover an 

optimal control has been examined in a way 

compensateing for the influence of the disturbances 

about the observation of gradient via the use of H U 

M modified.  

Regarding the digital processing, some 

mathematical approximations are proposed, using a 

multi-step algorithm.   

Later, the obtained outcomes have been 

introduced for class 𝐷𝐷𝑃𝐿-systems and may be 

interesting to expand this work to 

regional or regional bounded case with other 

classes under the suitable different select of spaces, 

for example, the possibility to replace the 

observability concept in this paper by an asymptotic 

observer. 
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 تحليل مقارب لمسائل قابلية معالجة التدرج للأنظمة الخطية التوزيعية المضطربة
 

 2رحيم  الصفوري    1سمير بن حديد     1ركابصورية 

 
 .الجزائر قسنطينة، الإخوة منتوري، جامعة العلوم الدقيقة، كليةقسم الرياضيات،  1
 .العراق تكريت، تكريت، جامعة ،ةلصرفكلية التربية للعلوم اقسم الرياضيات،  2

 

 :الخلاصة
ج من خلال مراقبة تدر اضطرابات )تلوث، إشعاع، عدوى، الخ( بشكل تقاربي، تقليل من تأثير أيالبرهان إمكانية  ،الهدف من هذا العمل

تلك الانظمة بيار مناسب للمحفزات ذات العلاقة بواسطة اخت (، 𝐷𝐷𝑃𝐿-نوع من الأنظمة الخطية المضطربة ذات المعاملات التوزيعية )انظمة

-, بالاعتماد على منظومة قابلية معالجة التدرج في زمن محدود )منظومة- 𝐴𝐺𝑅) . وهكذا، تم تطوير منظومة قابلية معالجة التدرج  )منظومة

𝐺𝑅 وعلاوة على ذلك، درست وقدمت تعاريف وبعض خصائص مفاهيم  تتعلق بمنظومة .)-𝐴𝐺𝑅   ومنظومة قابلية السيطرة في التدرج المقارب

لمتدرجة بشكل مقارب والتي تضمن تعويض التدرج الضعيف بشكل مقارب (. بشكل ادق، فحصت المحفزات الفعالة ا𝐴𝐺𝒞 -)قابلية السيطرة

(. وبالتالي، في ظل فرضية ملائمة، أثبتت وبرهنت وجود ووحدانية مسيطر امثل يضمن 𝑊𝐴𝐺𝐶 -للخلل المعروف أو غير المعروف )منظومة

 دي إلى خوارزمية تقريبية رياضية.(. أخيرا، تم أيضا اكتشاف تقريبا يؤ𝐴𝐺𝐶 -منظومة تعويض تدرج مقارب )منظومة

 
 .المعالجةاضطراب، التحكم الأمثل، قابلية  ،قابلية التحكم، تحليل مقاربمفتاحية: الكلمات ال
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