Fusion Reaction Study of some Selected Halo Systems

Shaimaa A. Abbas1, Aeshah Ali Hussein1, Noor Adil Mohammed2, Sarah M. Obaid3

1Department of Physics, College of Education for Pure Science (Ibn-Alhaitham), University of Baghdad, Baghdad, Iraq.
3Department of Biomedical Engineering, Al-Mustaqbal University College, Babil, Iraq.

*Corresponding author email: sarah.mahdi@mustaqbal-college.edu.iq
ORCID ID: shaimaa19750@gmail.com, aisha.sataa.1983@gmail.com, noorphysics1@gmail.com

This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract:

The challenge in studying fusion reaction when the projectile is neutron or proton rich halo nuclei is the coupling mechanism between the elastic and the breakup channel, therefore the motivation from the present calculations is to estimate the best coupling parameter to introduce the effect of coupled-channels for the calculations of the total cross section of the fusion σ_{fus}, the barrier distribution of the fusion D_{fus} and the average angular momentum $\langle L \rangle$ for the systems $^6\text{He}^+\text{Pb}$, $^8\text{B}^+\text{Si}$, $^{11}\text{Be}^+\text{Bi}$, $^{17}\text{F}^+\text{Pb}$, $^{6}\text{He}^+\text{U}$, $^{3}\text{He}^+\text{Au}$ and $^{15}\text{C}^+\text{Th}$ using quantum mechanical approach. A quantum Coupled-Channel Calculations are performed using CC code. The predictions of quantum mechanical approach are comparable with the measured data that is available. Above and below the Coulomb barrier, comparison of theoretical calculations of quantum mechanical with the relevant measured data demonstrates good agreement.

Keywords: Average angular momentum, Breakup channel, Fusion barrier distribution, Fusion cross section, Halo nuclei.

Introduction:

Investigation of the mechanisms of the reaction involving the collisions of weakly bound nuclei at the energies near to the barriers which are stable or radioactive is one of the main fields of Low Energy Nuclear Physics (LENP). Comprehensive theoretical and experimental studies have been focused on understanding the various processes that occur in a collision, as well as the significant couplings that exist between them. On this topic, a few global review papers have been written 1. The breakup channel plays an important role in collisions of the systems that are tightly bound. Transfer channels are essential, particularly for neutron-halo nuclei. The cross sections have large breakup for the systems of the weakly bound have due to their low breakup threshold, and the breakup mechanism has efficient on other reaction channels 2. The study of such reactions is significant in astrophysics, and several of those reactions could be significant gateways for super-heavy elements production. Fusion is affected by two in a weakly bound projectile collision. firstly, a nature of the static, the fusion barrier has various property relative to the fusion barrier for the same target for a tightly bound isotope. The barriers are lower due to the longer density tail. At the energies near to the sub-barrier, it is generally thought to contribute to greater fusion cross sections. The dynamic of the elastic channel coupling with inelastic, breakup, and transition channels is the second thing to consider. The bound states inelastic excitations and the channels of the direct transfer have been shown to enhance the cross sections of the fusion at the energies near to sub-barrier. On the contrary, the break-up method has a number of features when it establishes continuum status, and the impact of connections to sources is debatable in the continuum. As the binding is weak, the breakup is still quite wide and the elastic channel is very strongly coupled. Thus, the cross section, along with the normal transfer and inelastic channels, can play a relevant role 3. The role of the breakup channel has been studied extensively by Majeed and his collaborators and for more details we refer the...
readers to refs. Fusion reaction for some light, medium and heavy mass systems using the semiclssical approach seems very competitive to study the fusion reactions properties.

The purpose of this work is to employ quantum mechanics by means of the coupled-channels to study the effect of coupling the breakup channel on the theoretical predictions of the total cross section of the fusion σ_{fus}, the barrier distribution of the fusion D_{fus} and the average angular momentum (L) for the systems 3He+206Pb, 3B+28Si, 11Be+208Bi, 17F+208Pb, 4He+238U, 4He+197Au and 15C+232Th. These systems involving light halo nuclei as a projectile. The calculations were conducted using the CC code. The results are compared with the measured data available. The c that used in the calculations is CC code

Theoretical Background

Fusion cross section

The basic formula for calculating elastic and fusion cross sections is derived using a single-channel potential model. In three dimensions, Schrödinger equation is given:

$$-rac{\hbar^2}{2\mu} \nabla^2 + V(r) - E \phi(r) = 0 \quad \ldots \quad 1$$

where $V(r)$ is the complete potential, which is equal to the contribution from the nuclear potential and the potential of Coulomb, $[V(r) = V_C(r) + V_N(r)]$ and μ is the system reduced mass.

The nuclear potential is taken as the Woods-Saxon potential:

$$V_n(r) = \frac{-V_0}{1 + e^{\frac{r - R_n}{a_o}}} \quad \ldots \quad 2$$

where V_0 belongs to the depth of potential and a_o was the potential diffuseness. The radius R_n of the nuclear potential was described as:

$$R_n = r_0 \left(\frac{1}{A_p^\frac{1}{3}} + \frac{1}{A_t^\frac{1}{3}}\right) \quad \ldots \quad 3$$

Where; r_0 is the radius parameter.

This equation can be solved directly in abseniting of the potential $\psi(r)$ in the form $\phi = \exp(i \cdot \vec{k} \cdot \vec{r})$, \vec{k} is the magnitude of the wave number vector is given by $k = \sqrt{2\mu E}/\hbar$. The asymptotic form of this solution is given:

$$\phi(r, \theta, \phi) = e^{i\vec{k} \cdot \vec{r}} \rightarrow \frac{1}{2k} \sum_{l=0}^{\infty} (2l + 1) \left(\frac{e^{-ik(r - \frac{\pi}{2})}}{r} - \frac{e^{ik(r - \frac{\pi}{2})}}{r}\right) P_l(cos \theta), r \rightarrow \infty \quad \ldots \quad 4$$

where the angle θ is between \vec{k}, \vec{r} and P_l are the polynomials of Legendre. Due to the potential, the solution enhanced in behaviour. Because the potential reaches zero at infinity, the wave-function asymptotic shape can be described similar to Eq. 2. the plane waves will be replacing with the corresponding waves of Coulomb, the form of asymptotic is:

$$\phi(r, \theta) \rightarrow \frac{i}{2k} \sum_{l=0}^{\infty} (2l + 1) e^{i(l+1)kr} \left[H_l^{(-)}(kr) - S_l H_l^{(+)}(kr)\right] P_l(cos \theta), r \rightarrow \infty \quad \ldots \quad 5$$

where $H_l^{(-)}(kr)$ and $H_l^{(+)}(kr)$ are the waves of Coulomb outgoing and incoming, respectively. S_l is the S-Matrix for the nuclear is labelled and generally it’s a complicated term to be computed. The calculation of the S-matrix is performed by the expansion of the wave function $\phi(\vec{r})$ with the spherical harmonics as:

$$\phi(\vec{r}) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} A_{lm} \frac{u_l(r)}{r} Y_{lm}(\phi) \quad \ldots \quad 6$$

where A_{lm} being the expansion of the coefficients for the equation of Schrödinger which are satisfied by $u_l(r)$ is:

$$\left[-\frac{\hbar^2}{2\mu} \frac{d^2}{dr^2} + \frac{l(l+1)\hbar^2}{2\mu r^2} - E\right] u_l(r) = 0 \quad \ldots \quad 7$$

The boundary conditions are used to solve this equation.

$$(r \rightarrow \infty) \quad u_l(r) \rightarrow 0 \quad \ldots \quad 8$$

$$u_l(r) = H_l^{(-)}(kr) - S_l H_l^{(+)}(kr) \quad r \rightarrow \infty \quad \ldots \quad 9$$

when S_l has taken, the elastic cross section of the differential is determined as:

$$\frac{d\sigma_{el}}{d\Omega} = |f(\theta)|^2 \quad \ldots \quad 10$$

where

$$f(\theta) = \frac{i}{2k} \sum_{l=0}^{\infty} (2l + 1) P_l(cos \theta) \left(1 - S_l\right) \quad \ldots \quad 11$$

The total elastic cross section can be found as:

$$\sigma_{el} = 2\pi \int_{-1}^{1} d(cos \theta) \frac{d\sigma}{d\Omega} = \pi \sum_{l=0}^{\infty} (2l + 1) |S_l - 1|^2 \quad \ldots \quad 12$$
Fusion reactions could be considered as incident flow absorption. The s-matrix absolute value is less than unity, when the potentials are complex, i.e. \(|S| < 1\), and from Eq. 3 it is possible to quantify the difference in total radial flux between the incoming and outgoing waves:\[f_{in} - f_{out} = \frac{\hbar \pi}{\mu k^2} \sum (2l + 1) \left(1 - |S_l|^2\right)^{13} \]To derive Eq. 11, for all the values of \(\theta \) to be considered, the radial flux has been integrated and divided by the incident flux, \(\nu = \hbar k / \mu \) the fusion cross section is then taken as:\[\sigma_{fus}(E) = \frac{\pi}{k^2} \sum (2l + 1) \left(1 - |S_l|^2\right) \]In the heavy-ion fusion, the regular boundary condition at origin is not imposed Eq. 8, IWBC is called the “incoming wave boundary condition” and it has been applied with the goal of preserving the real potential. The wave function has a form under this boundary condition and can be written as: \[u_t(r) = T_t \exp \left(-i \int_{s_{abs}}^{r} k_l(s) \, ds \right) \]at a distance less than radius absorption \(r_{abs} \), which is considered to be within the barrier of Coulomb. \(k_l(r) \) is number of the local wave for the l-th wave partial, which can be described as:\[k_l(r) = \frac{2r}{\hbar^2} \left(E - V(r) - \frac{l(l+1)\hbar^2}{2m} \right) \]Due to the occurring of the strong absorption in the region of the interior, the incoming wave boundary condition is equal such that the incoming flux is not returned. The final results for heavy-ion fusion reactions are not really dependent on the radius of absorption \(r_{abs} \) and the minimum position of the potential is also considered. With IWBC, \(T_t \) in Eq. 13 is the coefficient of transmission, therefore the S-matrix, \(S_l \) in Eq.7 is nothing but the coefficient of reflection. So, Eq. 14 is turned into:\[\sigma_{fus}(E) = \frac{\pi}{k^2} \sum (2l + 1) P(r) \]where \(P_l(E) \) is called the l-wave penetrability for the scattering which is described as:\[P_l(E) = 1 - |S_l|^2 = \frac{k_l(r_{abs})}{k} |T_l|^2 \]the boundary conditions included by Eq.6 and Eq.13.

2.2 The distribution of the fusion barrier

The classical cross section of the fusion can be written as:\[\sigma_{fus}^{cl}(E) = \pi R_b^2 \left(1 - \frac{V_b}{E}\right) \theta(E - V_b) \]where \(R_b \) is the barrier position and \(V_b \) is the barrier height. The first derivative of the product is noticeable from this expression of the cross-section of the fusion \(\sigma_{fus}^{cl}(E) \) and the energy of the center of mass \(E \), \[\frac{d}{dE} \left[E \sigma_{fus}^{cl}(E)\right] = \frac{\pi R_b^3}{2} \theta(E - V_b) \]is equivalent to the penetrability of classical mechanics for a one-dimension height barrier \(V_b \):\[\frac{d}{dE} \left[E \sigma_{fus}^{cl}(E)\right] = \frac{\pi R_b^2}{2E} \theta(E - V_b) \]The effect of tunnelling smears the delta function of quantum mechanics. An analytical formula can be taken for the fusion cross section if an inverse parabola approaches the Coulomb barrier referring to the well-known Wong formula:\[\sigma_{fus}(E) = R_b^2 \frac{\hbar^2}{2E} \ln \left(1 + \exp \left[\frac{m_0^2}{\hbar \Omega} (E - V_b)\right]\right) \]where \(\hbar \Omega \) is the barrier of Coulomb curvature. The first order derivative of \(E \sigma_{fus}^{cl}(E) \) is related to the penetrability as:\[\frac{d}{dE} \left[E \sigma_{fus}^{cl}(E)\right] = \frac{\pi R_b^2}{2} \frac{2m_0}{\hbar \Omega} \frac{e^{-2\pi(E - V_b)/\hbar \Omega}}{(1 + e^{-2\pi(E - V_b)/\hbar \Omega})^2} = \pi R_b^2 \frac{dP(E)}{dE} \]

Results and Discussion:

In this work, the theoretical calculations of the cross-section of fusion \(\sigma_{fus} \), the distribution barrier \(D_{fus} \) and mean angular momentum \(\langle L \rangle \) using the quantum mechanical approach for the systems \(^6\text{He}^{+209}\text{Pb} \), \(^8\text{B}^{+25}\text{Si} \), \(^{11}\text{B}^{+209}\text{Bi} \) and \(^{17}\text{F}^{+208}\text{Pb} \), \(^6\text{He}^{+197}\text{Au} \), \(^8\text{He}^{+238}\text{U} \), \(^{16}\text{He}^{+197}\text{Au} \) and \(^{15}\text{C}^{+232}\text{Th} \). The quantum mechanical calculations using CC code for the \(\sigma_{fus} \), \(D_{fus} \) and \(\langle L \rangle \) are compared with measured data. The parameters of the potential (Woods-Saxon potential) with different parametrizations which is called Winther-Akyüz potential used throughout in the current calculations are illustrated in Table 1. These parameters were obtained by the least-square fit method to match the correct position of the experimental barrier height+ at the center point.
Table 1. Winther-Akyüz potential parameters with barrier height V_b

<table>
<thead>
<tr>
<th>Projectile + Target</th>
<th>V_0 (MeV)</th>
<th>a_0 (fm)</th>
<th>r_0 (fm)</th>
<th>V_b (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^6\text{He}^+\text{Pb}$</td>
<td>-131.9</td>
<td>0.6</td>
<td>1.2</td>
<td>18.66</td>
</tr>
<tr>
<td>$^6\text{B}^+\text{Si}$</td>
<td>-96.9</td>
<td>0.6</td>
<td>1.1</td>
<td>11.45</td>
</tr>
<tr>
<td>$^4\text{B}^+\text{Bi}$</td>
<td>-191</td>
<td>0.898</td>
<td>1.001</td>
<td>37.86</td>
</tr>
<tr>
<td>$^{11}\text{Fe}^{200}\text{Pb}$</td>
<td>-115.5</td>
<td>0.83</td>
<td>1.09</td>
<td>86.59</td>
</tr>
<tr>
<td>$^8\text{He}^+\text{Au}$</td>
<td>-192.9</td>
<td>0.7</td>
<td>1.1</td>
<td>18.13</td>
</tr>
<tr>
<td>$^6\text{He}^+\text{U}$</td>
<td>-76.0</td>
<td>0.816</td>
<td>1.192</td>
<td>19.60</td>
</tr>
<tr>
<td>$^3\text{He}^+\text{Au}$</td>
<td>-162.3</td>
<td>0.850</td>
<td>1.03</td>
<td>17.71</td>
</tr>
<tr>
<td>$^{13}\text{C}^{232}\text{Th}$</td>
<td>-134.0</td>
<td>0.8</td>
<td>1.1</td>
<td>60.41</td>
</tr>
</tbody>
</table>

The results of the quantum mechanical calculations show in Fig. 1 in the panels (a, b, c) for σ_{fus}, b D_{fus} and $\langle L \rangle$, respectively, for the system $^6\text{He}^+\text{Pb}$. The results show that the coupling calculations and non-coupling channels were able to describe the measured data below and around Coulomb barrier V_b. The calculations and measured data 22 in all figures are plotted in both logarithm and linear scales for σ_{fus} (mb). The calculations enhanced markedly below the Coulomb when the coupling channel were included. For this system the average angular momentum $\langle L \rangle$ agrees well with the measured data for both coupling and 30.8/4/without coupling.

Fig.2 (a, b and c) depicted the comparison of theory and measured data of σ_{fus}, D_{fus} and $\langle L \rangle$ with the measured data for the system $^6\text{B}^+\text{Si}$. The measured data are taken from 23. Our results of σ_{fus} for both coupling and no coupling channels reproduce the measured data, whereas the linear curves for coupling and no coupling channels results overshoot the measured data. The results of our calculations for D_{fus}, the coupling channel predictions agreed more reasonably with experimental data 23, while the results of the mean angular momentum $\langle L \rangle$ overshoots the measured data above the Coulomb barrier, for both coupling and no-coupling. Fig.3 panel (a), (b) and (c) compared theoretical results with measured data for σ_{fus}, D_{fus} and $\langle L \rangle$ for the system $^{11}\text{Be}^{208}\text{Bi}$. The calculations of σ_{fus} both logarithmic and linear curves for coupling and no coupling channels results overshoot the measured data 24. The results of the calculations with channel coupling are in agreed more with the measured data for the D_{fus}, while the coupling channel result for average angular momentum $\langle L \rangle$ agrees with the measured data above the barrier. Fig.4 depicts the comparison of the calculated σ_{fus}, D_{fus} and $\langle L \rangle$ with their corresponding measured data for both coupling and no coupling for the system $^{17}\text{F}^{208}\text{Pb}$. The calculations of σ_{fus} for both coupling and non-coupling could not describe two experimental data 25 below the Coulomb barrier V_b, because ^{17}F is proton rich halo nucleus that made suppression to the fusion cross section which makes theoretical predictions overshoots the measured data. Including the coupling in the calculations of D_{fus} reproduce the behaviour of the experimental data and deviate from the Gaussian shape in the case of no coupling. The calculations with coupling included for $\langle L \rangle$ agrees with experiment above V_b and overshoots the experimental values below V_b. Fig.5 panel (a), (b) and (c) show the results of the quantum mechanical calculations for σ_{fus}, D_{fus} and $\langle L \rangle$, respectively, for the system $^6\text{He}^+\text{U}$ compared to the experimental data 25. The results show that calculations included coupling and no-coupling channels were able to describe the measured data below and around Coulomb barrier V_b.

The inclusion of the coupled channel enhances the calculations of σ_{fus} below the Coulomb barrier. While D_{fus} and $\langle L \rangle$ calculations with shows ripple behaviour with two peaks appear for D_{fus} which are closer to the experimental data. Fig.6 panel (a), (b) and (c) presented the theoretical predictions compared to measured data 26 for σ_{fus}, D_{fus} and $\langle L \rangle$ for the system $^8\text{He}^{+\text{Au}}$. The location of barrier of the measured data for Coulomb V_b appear as an arrow on the $E_{c.m.}$ axis. For this system the inclusion of the coupling has very slight effect on the peak height of the D_{fus} calculations and have same results in the case of no-coupling and in general have no agreement with the experimental data for the σ_{fus} and $\langle L \rangle$ calculations expect very slightly difference in the peak value of D_{fus}.

The calculated results of σ_{fus}, D_{fus} and $\langle L \rangle$ were compared with the measured data 27 in panels (a), (b) and (c) of Fig.7, respectively for $^{15}\text{C}^{232}\text{Th}$ system. The inclusion of coupled channel in quantum mechanical calculations enhanced markedly the calculations for σ_{fus} below the Coulomb barrier makes theoretical predictions in more match with the measured data and were able to reproduce the data satisfactorily. The quantum mechanical with and without coupling couldn’t describe the experimental data for the D_{fus} and $\langle L \rangle$. The results of the calculations for fusion cross section σ_{fus} for both coupling and no-coupling channels agreed with the measured data in both logarithmic and linear curves. The results of the calculations for D_{fus} the coupling channel results overshoot the measured data for this reaction. For mean angular momentum $\langle L \rangle$ the coupling channel
results overshoot the measured data below the Coulomb barrier. But we found good agreement with the measured data above this barrier. The results from the present study agree with previous work of Hamid and Majeed28, for the calculations of the fusion cross section and the fusion barrier distribution where they had employed quantum mechanical model based on the continuum discretized coupled-channel method to study some systems involving weakly bound nuclei.

Figure 1. Displays theoretical predicted for the σ_{fus}, and D_{fus}, $\langle L \rangle$ compared to measured data22 for 4He+206Pb system.

Figure 2. Displays theoretical predicted for the σ_{fus}, and D_{fus}, $\langle L \rangle$ compared to measured data23 for 8B+28Si system.

Figure 3. Displays theoretical predicted for the σ_{fus}, and D_{fus}, $\langle L \rangle$ compared to measured data24 for 11Be+209Bi system.
Figure 4. Displays theoretical predicted for the σ_{fus}, and D_{fus}, $\langle L \rangle$ compared to measured data for 17F+208pb system.

Figure 5. Displays theoretical predicted for the σ_{fus}, and D_{fus}, $\langle L \rangle$ compared to measured data for 6He+238U system.

Figure 6. Displays theoretical predicted for the σ_{fus}, and D_{fus}, $\langle L \rangle$ compared to measured data for 197He+8Au system.

Figure 7. Displays theoretical predicted for the σ_{fus}, and D_{fus}, $\langle L \rangle$ compared to measured data for 15C+232Th system.
Conclusion:
The conducted study detailed theoretical investigation of the calculations for σ_{fus}, D_{fus}, and $\langle L \rangle$ for the systems $^6\text{He} + ^{208}\text{Pb}$, $^8\text{B} + ^{28}\text{Si}$, $^{11}\text{Be} + ^{208}\text{Bi}$, $^{15}\text{F} + ^{208}\text{Pb}$, $^6\text{He} + ^{238}\text{U}$, $^8\text{He} + ^{197}\text{Au}$ and $^{15}\text{C} + ^{232}\text{Th}$ were analyzed and discussed. The best fitted coupling parameters were obtained based on the best fitted parameters of the Woods-Saxon parameters that match the centroid of the measured and calculated barrier height V_b. The results compared to experiment reveals that the breakup channel is very necessary to describe σ_{fus}, D_{fus}, and $\langle L \rangle$ for these systems involving light halo nuclei as a projectile. A comparison of our theoretical calculations of quantum mechanical with the measured data display a reasonable agreement with the available measured data. The results of this study are very important for researchers who are interested in studying the physics of weakly bound systems where the projectile is a halo nucleus.

Acknowledgements:
Authors acknowledge the financial support from Al-Mustaqbal University College.

Authors’ declaration:
- Conflicts of Interest: None.
- We hereby confirm that all the Figures and Tables in the manuscript are mine ours. Besides, the Figures and images, which are not mine ours, have been given the permission for republication attached with the manuscript.
- Ethical Clearance: The project was approved by the local ethical committee in Al-Mustaqbal University College.

Authors’ contributions statement:
Title of manuscript:
S. A. A.: Performed theoretical calculations and wrote the theoretical section.
A. A. H.: Collect the experimental data and arrange it in tables to be used in grapher for comparison with theory.
N. A. M.: Wrote the introduction section with literature review and the goal of the study and participate in writing the result section.
S. M. O.: Contribute in plotting the graphs to compare theory with experiment and wrote the conclusion section and arrange references according to journal author guidelines.
The tables and figures are all original and configured well in all the manuscript.

References:
5. Majeed FA, Hamodi RSh, Hussien FM. Effect of coupled channels on semiclassical and quantum mechanical calculations for heavy ion fusion reactions, J ComputTheor Nanosc.2017 May; 14: 2242-2247.
10. Najim AJ, Majeed FA, Al-Attiiyah KH. Coupled-channel calculations for fusion reactions of $^6^9\text{Li}$, ^{40}Ca and ^{124}Sn+^{40}Ca Systems, J Eng Appl Sci. 2019 Jul; 14: 10406.
11. Musa HJ, Majeed FA, Mohi AT. Coupled channels calculations of fusion reactions for ^{40}Ti+^{48}Ni, ^{40}Ca+^{192}Pt and ^{40}Ar+^{184}Sm systems. Iraqi J Phys. 2020 Dec; 18: 84.

